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Abstract—Evolutionary multi-objective optimization (EMO) 
algorithms have become prevalent and obtained a great success 
for solving two- or three-objective problems. However, with the 
number of objectives increases, most of the algorithms cannot 
perform well due to the expansion of the objective space. 
Therefore, there is an urgent need for improving EMO 
algorithms to handle many-objective (four or more objectives) 
optimization problems (MaOPs). To this end, this paper proposes 
a parallel multi-strategy evolutionary algorithm (PMEA) to 
make full use of the advantages of different selection strategies. 
Specially, PMEA maintains three populations in parallel to select 
individuals based on three strategies as decomposition-based 
approach, indicator-based approach, and shift-based density 
estimation approach. PMEA uses message passing interface (MPI) 
to share the information after the selection of the three strategies, 
so that the advantages of diverse approaches can be utilized. In 
this way, PMEA can explore the objective space more thoroughly 
and thus achieve more promising performance. We evaluated 
PMEA on two frequently used MaOP suites and compared the 
results with several state-of-the-art many-objective peer 
algorithms. Numerical results demonstrate that PMEA can 
achieve a statistically superior performance, or at least highly 
competitive performance on most of the problems instances. 

Keywords—Parallel, Multi-Strategy, Message Passing Interface 
(MPI), PMEA, Many-Objective Optimization 

I. INTRODUCTION  
Many real-world problems can be formulated as multi-

objective problems (MOPs), since they naturally have two or 
more conflict objectives that must be optimized 
simultaneously. Research on MOPs has drawn a considerable 
attention over the past several decades [1]-[4]. As 
evolutionary computation (EC) algorithms have obtained a 
great success in single-objective optimization [5]-[10], many 
researchers try to extend EC algorithms to MOPs [11]-[16], 

which has gradually formed the current evolutionary multi-
objective optimization (EMO) methodologies. However, since 
an MOP has multiple objectives that often contradict with 
each other, there does not exist a single solution that can 
optimize all the objectives. Besides, it is hard to determine 
whether one individual is better than another if it is better on 
one objective but worse on another objective. As a result, 
many researchers encounter the problem on how to select 
good individuals for the next generation [13]. This problem 
will be aggravated when dealing with four or more objectives. 
Hence, optimizers are required to find a set of trade-off 
solutions among the conflicting objectives. This set of 
solutions is called Pareto optimal solutions. Generally, there 
are two ultimate goals when solving MaOPs. One is the 
convergence, which aims to minimize the distance to the 
Pareto front. The other one is the diversity, which aims to 
maximize the distribution of solutions. A number of EMO 
algorithms have been proposed to achieve these two goals 
simultaneously, mainly being classified into the following four 
major categories.  

(1) Pareto dominance based methods: This method uses 
Pareto dominance relation as the selection criterion. 
Individuals are ranked based on their dominance relations 
with other individuals. Besides, this method incorporates 
a density selection criterion to keep the population 
diversity, such as the crowding distance in NSGA-II [13] 
and k-th nearest distance in SPEA2 and PESAII [14]-[16]. 

(2) Decomposition-based methods: This method decomposes 
an MOP into several single objective subproblems. By 
solving each subproblem, we can get the optimum of each 
subproblem, which approaches the Pareto front. The most 
representative algorithm is MOEA/D [17]. 

(3) Indicator-based methods: This method constructs a fitness 
evaluation function as a performance indicator according 
to the distribution of population. Three famous exemplars 
are IBEA [18], SMS-EMOA [19] and HypE [20]. 

(4) Multiple populations coevolutionary technique: Zhan et al. 
[11] proposed a novel coevolutionary framework named 
multiple populations for multiple objectives (MPMO), 
which let each population correspond with only one 
objective. Different populations exchange search 
information by using an external shared archive. 
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The above EMO algorithms work well on two- or three- 
objective problems. However, their performances are not 
entirely satisfying when dealing with many-objective 
optimization problems (MaOPs). First and foremost, the 
proportion of non-dominated solutions becomes exponentially 
large when the number of objectives increases. This poses 
great challenges to Pareto dominance based algorithms as their 
selection operators cannot well distinguish the qualities of 
solutions in high-dimensional objective space. Second, the 
implementation of diversity-preservation operators [14]-[16] 
becomes computationally expensive, which slows down the 
search process considerably. Therefore, the performance of 
Pareto dominance based algorithms is seriously damaged. 
Nevertheless, in recent years, research into exploiting the 
potential of Pareto dominance based algorithms in handling 
MaOPs are gaining popularity and have made some 
achievements. Some new methods, such as -dominance [21], 
fuzzy Pareto dominance [22], and grid dominance [23], 
concentrate on relaxing the conditions of the traditional 
dominance relation and propose new dominance relations. 
Besides, there are also some studies, like the shifted-based 
density estimation proposed in [24] and the niche-preservation 
operation in NSGA-III [25], dedicated to the improvement of 
the diversity maintenance mechanism.  

In the literatures, some enhanced Pareto dominance based 
algorithms such as shifted-based density estimation [24], 
decomposition-based methods [17], indicator-based methods 
[18], and MPMO based methods [26] have shown certain 
promising performance in dealing with MaOPs. However, 
there is still much room for improvement. To do so, a 
promising way is to combine the advantages of different 
computation paradigms to obtain promising solution. Besides, 
parallel computation has also been found a straightforward 
way to accelerate algorithms through distributed processing. 
Therefore, this paper is devoted to the design of a parallel 
many-objective algorithm which can combine the advantages 
among decomposition-based method, indicator-based method, 
and shifted-based density estimation method using a 
MASTER-SLAVE model. Based on the consideration, a 
parallel multi-strategy evolutionary algorithm (PMEA) is 
proposed. During the evolutionary process, we maintain three 
parallel populations on three SLAVEs. Each population 
utilizes a different selection mechanism. The first population 
is updated according to the aggregation function values of 
individuals. The selection operator of the second population is 
based on the binary additive -indicator [27]. While the 
shifted-based density estimation is adopted in the third 
population. The information sharing among all the three 
populations are implemented using a mating selection strategy 
that picks parents from the three populations on MASTER, 
with the help of message passing interface (MPI). 
Experiments have been carried out on two commonly used 
many-objective test suites to examine the performance of 
PMEA. Experimental results show that the proposed algorithm 
is compared favorably with several state-of-the-art many-
objective algorithms.

 The rest of the paper is organized as follows. Section II 
introduces the some basic definitions of MaOPs and their 
developments briefly. PMEA method is proposed in Section III. 
Section IV compares PMEA with other state-of-the-art peer 
algorithms on two commonly used many-objective test suites 
and makes discussions. Conclusions are given in Section V. 

II. RELATED WORKS 
In this section, some basic definitions in MaOPs are first 

given. Then, we will briefly introduce three famous many-
objective optimization algorithms, named SDE, MOEA/D and 
IBEA, which are the basis of our proposed algorithm. 

A. Basic Definitions 
 Generally speaking, MaOPs are defined as problems with 

four or more objectives. A MaOP with minimization 
objectives can be formulated as: 

 
T( ) ( ( ), ( ),..., ( ))1 2

subject to

MIN F X f X f X f Xm
nX

=

∈Ω ⊆
  (1) 

where X is a n-dimensional decision variable vector from the 
decision space . m 4 is the number of objectives and fi 
represents the i-th objective. More definitions are given below. 

Definition 1: Given two decision vectors X, Y∈ , X is said 
to Pareto dominate Y, denoted by X Y , iff for all 
i∈{1,2,…,m}, fi(X)≤fi(Y) and there exists at least one index j 
such that fj(X)<fj(Y).  

Definition 2: A solution X*∈  is Pareto optimal iff no 
solution in the decision space  can Pareto dominate it.  

Definition 3: The Pareto set (PS) is defined as the set of all 
Pareto optimal solutions. 

Definition 4: The Pareto front (PF) is the set of the 
corresponding objective vectors of solutions in PS.  

Definition 5: The ideal point Z*=(z1*, z2*,…,zm*)T and the 
nadir point Znad=(z1, z2, …, zm)T are two points in the 
objective space, where zi* and zi

nad are the infimum and 
supremum of the i-th objective (subject to PS) respectively. 

The goal of many-objective optimization is to find a set of 
approximate true Pareto front. The quality of the solution set 
is measured from two aspects: convergence, which is the 
distance of the solutions to the Pareto front; and diversity, 
which is the distribution of the solutions. 

B. Shift-Based Density Estimation (SDE) 
Generally, density estimation techniques estimate the 

density of an individual by considering the mutual position 
relation between it and other individuals in the population. 
And the density of an individual X in the population P can be 
presented as: 
 1 2 1( , ) ( ( , ), ( , ),..., ( , ))ND X P D d X Y d X Y d X Y −=  (2) 
where Yi∈P and Yi X; N is the size of P and d(X,Y) is the 
similarity degree between X and Y, often measured by their 
Euclidean distance. D() is the function of the similarity degree 
between the interested individual and other individuals in the 
population. 

The main idea in SDE is to give the individuals which have 
no clear advantage over other individuals in the population 
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high density value, so as to filter the poorly converged 
individuals by the density-based second selection criterion 
[24]. Specifically, if an individual performs better than X for 
an objective, it will be shifted to the same position of X on this 
objective; otherwise, it remains unchanged. As for a 
minimization MOP, the shifted density SD(X, P) of individual 
X in the population P can be described as follows: 
  1 2 1( , ) ( ( , ), ( , ),..., ( , ))NSD X P D d X Y d X Y d X Y −

′ ′ ′=  (3) 
where Y’ is the shifted position of individual Y, which can be 
formulated as: 

 ( ) ( ) ( )
( )

( )

,  <
,

m i m m
i j

i m

X if Y X
Y

Y otherwise
′ =   (4) 

where X(m), Yi(m) and Y’i(j) denote the mth objective value of 
individuals X(m), Yi(m) and Yi(j), respectively. 

C. Decomposition-based Algorithms 
The key idea of decomposition-based algorithm is to 

divide an MOP into a number of single-objective optimization 
subproblems by using aggregation functions. The most 
representative technique is MOEA/D, which was proposed by 
Zhang and Li [17]. In MOEA/D, a subproblem can be defined 
as follows: 

 
( ( ), )

subject to

MIN G F X W
nX ∈Ω ⊆

  (5) 

where W is a set of evenly distributed weight vectors {W1, 
W2, …, WN}, G is an aggregation function that maps an 
objective vector F(X) and a weight vector W into a single real 
value. Generally, three aggregation functions, named weighted 
sum functions, Tchebycheff functions, and penalty-based 
boundary intersection (PBI) functions can well serve the 
purpose in MOEA/D. Just take the weighted sum function as 
an example, the aggregation function value is obtained by 
calculating the inner product of the two input vectors, namely, 
G(F(X), W)=F(X)TW. The weight vector W=(w1, w2, …, wm)T 
is an m-dimensional vector that satisfies two constraints: (1) 
wi 0 for any i∈{1, 2, … ,m}, where m is the number of 
objectives, (2) 11

m wii == . The i-th element wi represents the 
relative importance of the i-th objective. Multiple subproblems 
are obtained by multiple weight vectors. MOEA/D aims to 
optimize these subproblems simultaneously by evolving a 
population of N individuals {X1, X2, …, XN}, where Xi 
represents the current solution to the i-th subproblem. When 
generating the i-th offspring, two parents are chosen from the 
predefined neighborhood of Wi. Then, an offspring Yi is 
produced by performing SBX and polynomial mutation 
operators on these two parents. Once Yi is obtained, it is 
compared with its neighborhood solutions. Suppose Xj is a 
neighbor of Yi, Xj will be replaced by Yi if the condition 
G(F(Yi),Wj)<G(F(Xj),Wj) is satisfied. A new population is 
formed after N offspring have been produced in this manner 
one after another. The procedures are repeated until the 
termination criterion is met. Further details of MOEA/D can 
be referred in [17]. 

Experimental results reported in [17] show that the 
performance of MOEA/D is quite promising on some groups 

of multi-objective problems, as a result, growing attentions 
such as self-adaptation mechanism [28], local search strategy 
[29] have been paid on improving the performance of the 
decomposition-based algorithms.  

D. Indicator-based Algorithms 
The basic framework of indicator-based algorithms is to 

construct a fitness evaluation function as a performance 
indicator to guide the search of individuals. And this 
performance indicator transfers the convergence and diversity 
to a single value. Zitzler and Kunzli [18] proposed the 
indicator-based EA (IBEA), which is a pioneer study and 
makes the predominant contribution in this group of 
algorithms. The main idea is based on a dominance preserving 
quality indicator, which amplifies the influence of non-
dominated individuals over the dominated ones. It proposed 
two quality indicators called the binary additive ε-indicator 
and the hypervolume indicator. The experimental results in 
[18] show that IBEA is superior to several famous EMO 
algorithms. Based on this thought, numerous new algorithms 
emerged. Beume et al. [19] proposed an S-metric selection 
operator which is based on hypervolume and incorporated it 
into EMO algorithm (SMS-EMOA). Individuals with little 
hypervolume will be removed from the population. However, 
it is not appropriate for MaOPs since its computational time is 
unacceptable when the number of objectives increases to four 
or more. Therefore, Bader and Zitzler proposed a 
hypervolume estimation algorithm (HypE) by using the Monte 
Carlo simulation to reduce the computational time. Since the 
exact calculation of hypervolume is avoided, the algorithm 
can be used to solve many-objective problems. Moreover, 
there are also several other performance indicators, such as the 
R2 indicator [30], which have been proved to be quite 
effective in tackling many-objective problems. 

From the mentioned above, it is clear that the shift-based 
density estimation methods, decomposition-based methods 
and indicator-based methods can produce satisfying results on 
many-objective problems. However, their performance may be 
further improved when combining the advantages of all of the 
three methods. Note that the major difference among the three 
groups of algorithms is the selection mechanism, it is possible 
to design a framework that can exploit the advantages of all 
the three methods. To this end, a parallel multi-strategy 
evolutionary algorithm (PMEA) is proposed in this paper. The 
detailed procedures of PMEA are presented in the next section. 

III. PMEA APPROACH 

A. Parallel Framework 
To combine the above three algorithms together, a parallel 

strategy is needed. The message passing interface (MPI) is 
adopted herein. In this strategy, four virtual processors are 
used. The processor, whose role is to control the whole 
evolution process, is called MASTER. The other three 
processors, each responsible for one of the three 
aforementioned algorithms, act as SLAVEs. 

To give an overview of the PMEA, the parallel structure 
and the complete flowchart are depicted in Fig. 1 and Fig. 2. At 
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first, we will generate N evenly distributed weight vectors {W1, 
W2, …, WN} using a systematic approach and a two layer 
generation scheme with inner and outer divisions [25], [31]. At 
each generation, we keep three parallel populations POP1, 
POP2, and POP3 with size N on three SLAVEs (each of them 
has N population slots). Each population slot is associated with 
a weight vector Wi and is used to store the current best solution. 
All the population slots are initialized as empty. After that, we 
randomly generate N individuals {X1, X2, …, XN} in the 
decision space and calculate their objective vectors. And it is 
needed to normalize them to ensure that they are in the same 
space as the weight vectors. Then, we put the individuals to the 
population slots of POP1, POP2, and POP3 separately 
according to their perpendicular distances to the weight vectors. 
After the assignment, we perform  environmental selection on 
each population in parallel using three distinct operators based 
on MOEA/D, IBEA, and SDE respectively. Note that the 
individuals assigned to the same population slot will have to 
compete for the living space since it can only accommodate 

one individual. In contrast, there is no competitive relation 
between individuals in different slots. To have a more intuitive 
look, this procedure is illustrated in Fig. 3. The detailed steps 
of performing environmental selection on the three populations 
will be shown in the following subsections. After the 
environmental selection, we choose parents from all the three 
populations and the offspring population of size N is produced 
using the SBX and polynomial mutation operators on the 
MASTER. The offspring are evaluated and normalized, and 
continued to be assigned to the three populations on three 
SLAVEs for selection. Up to now, we have finished a loop 
sequent. And the procedures are repeated until the termination 
criterion is met. For completeness, some important steps are 
further described as follows. 

1) Normalization. Normalization is a significant step for 
handling MaOPs whose objectives are of different scales. It is 
implemented using two important points, the ideal point Z* 
and the nadir point Znad, shown below:  
 * , 1,2,..., .nad *

f zi if i mi
z zi i

−= =
−

  (6) 

Note that Z* and Znad are unknown before solving a MaOP. 
They are estimated by the non-dominated individuals in the 
population. Z* is estimated using the minimum objective 
values found so far. While the Znad is approximated according 
to m extreme points from the non-dominated solutions. For 
more details of estimating Z* and Znad, please refer to [32]. 

2) Individual assignment. For each individual X, we first 
calculate its perpendicular distances to all the weight vectors 
{W1, W2, …, WN} in the normalized objective space, shown in 
Fig. 4. X will be assigned to the population slots POP1[i], 
POP2[i] and POP3[i] respectively if Wi is the nearest weight 
vector to X. 

3) Mating selection. After the environmental selection, we 
picks parents from all the three populations randomly. 
Specifically, for each i∈{1,2,…,N}, we select a parent from 
{POP1[i], POP2[i], POP3[i]} with equal probability. 

B. Environmental Selection of the First Population 
The selection operator in the first population is based on 

MOEA/D, which is determined by an aggregation function. 
The smaller the function value, the better the individual. Zhang 
and Li proposed three aggregation functions to solve MOPs 
[17]. However, according to the results in [25], it indicates that 
the penalty-based boundary intersection (PBI) approach is 
more suitable for MaOPs than other approaches. So we also 
use the aggregation function defined by the PBI approach here 
in POP1. The aggregation function is defined as follows: 

 PBI( ( ), ) 1 2G F X W d dθ= +   (7) 
where d1 is the distance between the origin and the projection 
point of F(X), while d2 is the perpendicular distance to the 
weight vector W, shown in Fig. 4. As we can see, d1 is used to 
measure the closeness to the Pareto front, while d2 is used to 
maintain the diversity of individuals.  is a predefined penalty 
parameter that combines d1 and d2 into a single value. The 
individuals with small distances to the weight vectors and the 
Pareto front is preferred. Besides, different objectives may  
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Fig. 1 Parallel structure in PMEA 

 

  
Fig. 2 The flowchart of PMEA 
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have different ranges of values, the two distances are also need 
to be normalized, given as: 

 T( ) || ||1d F X W W=   (8) 
 || ( ) ( || ||) ||2 1d F X d W W= −   (9) 
Suppose there are k individuals {Xp1, Xp, .., Xpk} assigned to the 
population slot POP1[i] and Xp0 is the winner of the last 
generation. We choose the best individual from{Xp0, Xp1, Xp2, .., 
Xpk} with the smallest function values of GPBI(F(X), Wi) and 
remove other individuals. 

C. Environmental Selection of the Second Population 
The selection operator in the second population is based on 

IBEA, which is determined by a performance indicator. There 
are several indicators such as binary additive ε-indicator, the 

hypervolume indicator, the R2 indicator and hypervolume 
estimation algorithm (HypE). However, as we have mentioned, 
hypervolume indicator is not computationally efficient when 
the number of objectives increases, while the implement of R2 
indicator and HypE is conceptually complicated. As a result, in 
our method, the binary additive ε-indicator (Iε+) is adopted as 
the basis of the second selection operator. And its property of 
dominance preserving and the effectiveness of solving MaOPs 
have been demonstrated in [18]. Given two solution sets A and 
B, the indicator is defined as follows: 

( , ) min { : ( ) ( ) for {1,2,..., }}I A B Y B X A f X f Y i mi iεε ε= ∀ ∈ ∃ ∈ − ≤ ∈+   (10) 
The main idea is to get the minimum shift required by each 
dimension of the objectives so that A can weakly dominate B. 
To see the idea more apparently, Fig. 5 illustrates our idea. In 
our method, for each individual X that in the population slot 
POP2[j], we construct a reference set S by choosing all the 
other winning individuals of POP2[i] (i∈{1,2,…,N}\{j}) in 
the previous generation. And the fitness of X is calculated as:  
 ({ },{ }) 0.05( ) I Y XFit X eY S

+−= −∈
ε  (11) 

The larger the function value, the better the individual. 
Therefore, after the fitness assignment, we choose the best 
individual with the largest fitness value and remove all other 
individuals in each population slot of POP2. 

D. Environmental Selection of the Third Population 
In this population, we use shift-based density estimation 

(SDE) to evaluate the density of individuals. In [24], SDE are 
applied into NSGA-II, SPEA2, and PESA-II to prove its 
effectiveness. And experimental results show that SPEA2-
SDE is more competitive and has a clear advantage over the 
other Pareto dominance based algorithms, which is more 
suitable for MaOPs. So we also use this mechanism in our 
method, which is used in each population slot and choose the 
best individual. Specifically, for each individual X that in the 
population slot POP3[j], we also construct a reference set S by 
choosing all the other winning individuals of POP3[i] 
(i∈{1,2,…,N}\{j}) in the previous generation, similar to POP2. 
And the shifted density of X is calculated using (3)-(4) and the 
kth nearest neighbor density estimator in [15]. In this way, 
these poorly converged individuals will be assigned a high 
density value, thus being eliminated easily during the 
evolutionary process. Therefore, after the fitness assignment, 
we choose the best individual with the least density value and 
remove all other individuals in each population slot of POP3. 

To summarize, the fitness of individuals in the first 
population in PMEA is updated according to the individual 
itself, which is a local view. While in the other two 
populations, the fitness is updated from a global view, which 
is calculated according to the distribution of the entire 
population. Therefore, PMEA can achieve a good balance 
between convergence and diversity. Moreover, with the help 
of three populations, we can increase the algorithm’s 
exploration ability and avoid getting trapped in local Pareto 
fronts. Although we use three populations, only N offspring 
are produced at each iteration. As a result, PMEA does not 
increase the number of fitness evaluations. 

POP1

POP2

Winner of POP1[i] at the last generation

Offspring to be 
assigned in 

population slots 
POP1, POP2 and 

POP3

W1 WNW2 WiWeight vectors

First selection operator, PBI

POP3

Winner of POP2[i] at the last generation

Second selection operator, -indicator

Winner of POP3[i] at the last generation

Third selection operator, SDE

 
Fig.3 Parallel muti-strategy in PMEA 
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Fig.4 Illustration of the distance d1 and d2. 
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Fig.5 Illustration of binary additive ε-indicator 
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IV. EXPERIMENT TESTING AND RESULTS 

A. Experimental Setup 
1) Test Functions: In this paper, two commonly used 

many-objective problem suites DTLZ [33] and WFG [34] are 
adopted to test the performance of PMEA. The problems in 
this two test suites have different characteristics, which make 
our experiments more comprehensive and convincing. Note 
that DTLZ5 and DTLZ6 are unincluded in our experiments 
because their Pareto fronts are unclear when the number of 
objectives is larger than three, as mentioned in [33]. 

2) Algorithms for Comparison: We compare PMEA with 
eight state-of-the-art many-objective algorithms, MOEA/D-
PBI [17], NSGA-III [25], GrEA [23], SDE-SPEA2 [24], IBEA 
[18],  -DEA [36], KnEA [37] and EPSMOEA [38]. To have a 
reliable and fair comparison, the recommended parameter 
configurations are set for all competitor algorithms as 
suggested in their original papers.  

3) Parameter Settings: Five different settings of the 
number of objectives, i.e., 3, 5, 8, 10, and 15, are used in our 
experiments. The weight vectors and the settings of the outer 
and inner divisions (H1 an H2) used in PMEA are provided in 
Table I. The population sizes of all the algorithms are equal to 
the number of weight vectors. Besides, the crossover and 
mutation probabilities (Pc and Pm) are set at 0.9 and 1/n, 
respectively, where n is the number of decision variables. In 
SBX and polynomial mutation operators, the distribution 
indexes ( c and m) are both set to 20. And the penalty factor  
in PMEA is set to 5 as recommended in [17]. Algorithms are 
executed until the maximum number of generations is met. 
Table II shows the settings of MaxGen for all the MaOPs. 
Each algorithm runs 25 times for each problem instance. For 
all algorithms, the non-dominated individuals in the final 
generation are used for the performance evaluation. 

4) Performance Measure: Hypervolume indicator is 
adopted here to evaluate the performance of many-objective 
algorithms, which is currently the only single set quality 
measure that known to be strictly monotonic with respect to 
Pareto dominance. Given a reference point r, the hypervolume 
(HV) of a solution set A is calculated as:  
 ( , ) ( ( , ))HV A r volume Cube X rX A= ∈   (12) 
where Cube(X,r) represents the hypercube constructed by X 
and r. The points in A which dominates r are used for 
calculation. Note that the hypervolume should be normalized 
first and the reference point r is set to (1.1, …, 1.1)T. 

B. Results and Discussion 
The mean HV values of different algorithms on DTLZ and 

WFG are presented in Table III. For clarity, the results of the 
best algorithms are marked in boldface. In addition, 
Wilcoxon’s rank sum test [35] at =0.05 is tested to evaluate 
the statistical significance of the results between different 
algorithms. The symbols +, , and - indicates PMEA performs 
significantly better (+), similarly ( ), or worse (-) when 
compared with the corresponding algorithm. From the Table III, 
we can see that PMEA can achieve the largest HV values on 
most of DTLZ problems, especially on DTLZ1-DTLZ4. Note 
that the DTLZ1 and DTLZ3 are two multimodal problems with 
many local Pareto fronts, however, PMEA is superior to other 
algorithms and can converge to the real Pareto front. GrEA and 
IBEA are able to achieve better results on DTLZ5. As for 
WFG problems, GrEA and SPEA2-SDE show great 
performance on WFG1. While IBEA performs relatively well 
on WFG3 and WFG9. But PMEA performs the best in most of 
the remaining problems. Overall, PMEA outperforms NSGA-
III, MOEA/D-PBI, GrEA, IBEA, KnEA, EPSMOEA, SPEA2-
SDE and -DEA on 57, 69, 61, 45, 65, 70, 63 and 61 problem 
instances respectively, in other words, PMEA achieves better 
results on a large proportion of the problem instances. And the 
better performance is due to the well combination of 
advantages among three different selection operator, which can 
achieve a good balance between exploration and exploitation. 

V. CONCLUSION 
In this paper, a parallel multi-strategy evolutionary 

algorithm (PMEA) is proposed for solving MaOPs. The 
algorithm makes use of the potential of decomposition-based 
method, indicator-based methods and shift-based density 
estimation by maintaining three populations in parallel. The 
individuals in the first population are evaluated and selected 
from a local view, while in the other two populations, the 
individuals are chosen from a global view according to the 
distribution of population. Furthermore, with the support of 
three populations, we can improve the population diversity 
and increase the algorithm’s exploration ability. Experimental 
results also illustrate that PMEA is very competitive and 
performs better than some other peer algorithms on several 
benchmark functions frequently used in a statistically 
meaningful way. In the future, the proposed PMEA is 
expected to be applied to more complex real-world MaOPs 
like power systems or cloud computing resources scheduling. 

TABLE I. SETTINGS OF DIVISIONS AND WEIGHT VECTORS 
Objectives Divisions(H1, H2) Weight Vectors 

3 12, 0 91 
5 6, 0 210 
8 3, 2 156 
10 3, 2 275 
15 2, 1 135 

 
TABLE II. MAXIMUM GENERATIONS FOR DIFFERENT MaOPs 

Problem m Max_Gen Problem m Max_Gen

DTLZ1 

3 400 

DTLZ4 

3 600 
5 600 5 1000 
8 750 8 1250 
10 1000 10 2000 
15 1500 15 3000 

DTLZ2 

3 250 

DTLZ7 

3 1000 
5 350 5 1000 
8 500 8 1000 
10 750 10 1500 
15 1500 15 2000 

DTLZ3 

3 1000 

WFG 

3 400 
5 1000 5 750 
8 1000 8 1500 
10 1500 10 2000 
15 2000 15 3000 
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TABLE III. EXPERIMENTAL RESULTS OF PMEA AND OTHER STATE-OF-THE-ART MaOPs 
Problem m PMEA NSGA-III MOEA/D-PBI GrEA IBEA KnEA EPSMOEA SPEA2-SDE -DEA 

DTLZ1 

3 1.1231 1.1184(+) 1.1172(+) 1.0717(+) 0.5964(+) 1.0972(+) 1.0080(+) 1.1003(+)  1.1183(+)
5 1.5834 1.5776(+) 1.5777(+) 1.4725(+) 1.2123(+) 1.3889(+) 1.3260(+) 1.5505(+) 1.5779(+) 
8 2.1417 2.1378(+) 2.1358(+) 2.1135(+) 1.7129(+) 1.3821(+) 1.9093(+) 2.0947(+) 2.1380(+) 
10 2.5937 2.5928( ) 2.5924( ) 2.5691(+) 2.4243(+) 1.7101(+) 2.5693(+) 2.5663(+) 2.5927( ) 
15 4.1752 4.1751( ) 4.1678(+) 3.9382(+) 3.0039(+) 0(+) 4.0875(+) 4.0971(+) 4.1745( ) 

DTLZ2 

3 0.7638 0.7439(+) 0.7440(+) 0.7405(+) 0.7479(+) 0.7253(+) 0.5350(+) 0.7430(+) 0.7443(+) 
5 1.3336 1.3042(+) 1.3070(+) 1.3042(+) 1.3223(+) 1.2740(+) 1.1883(+) 1.3042(+) 1.3073(+) 
8 2.0117 1.9689(+) 1.9778(+) 1.9904(+) 1.9972(+) 1.6263(+) 1.6463(+) 1.9875(+) 1.9786(+) 
10 2.5418 2.5088(+) 2.5150(+) 2.5158(+) 2.5222(+) 2.1349(+) 2.2249(+) 2.5195(+) 2.5145(+) 
15 4.1477 4.1301(+) 4.1363(+) 4.0773(+) 4.1144(+) 3.4854(+) 3.0998(+) 4.1022(+) 4.1362(+) 

DTLZ3 

3 0.7576 0.7370(+) 0.7359(+) 0.7009(+) 0.3307(+) 0.6892(+) 0.5928(+) 0.7406(+) 0.7369(+) 
5 1.3311 1.3012(+) 1.3040(+) 1.1229(+) 0.6156(+) 0.4483(+) 0.7962(+) 1.3049(+) 1.3058(+) 
8 2.0208 1.9462(+) 1.7484(+) 1.6574(+) 1.1292(+) 0.5142(+) 0(+) 1.9770(+) 1.9718(+) 
10 2.5612 2.5087(+) 2.5139(+) 2.1785(+) 1.5998(+) 0.2461(+) 0.8443(+) 2.5185(+) 2.5141(+) 
15 4.1417 3.9494(+) 3.6948(+) 3.2441(+) 2.0544(+) 0(+) 0(+) 4.0757(+) 4.1345(+) 

DTLZ4 

3 0.7518 0.7212(+) 0.6866(+) 0.5836(+) 0.7021(+) 0.7164(+) 0.6744(+) 0.6878(+) 0.7070(+) 
5 1.3322 1.3015(+) 1.2960(+) 1.3077(+) 1.3233(+) 1.2791(+) 1.2238(+) 1.3067(+) 1.3087(+) 
8 2.0327 1.9805(+) 1.9672(+) 1.9901(+) 1.9884(+) 1.8227(+) 1.7968(+) 1.9867(+) 1.9808(+) 
10 2.5654 2.5152(+) 2.5154(+) 2.5129(+) 2.5251(+) 0.4361(+) 2.4155(+) 2.5146(+) 2.5154(+) 
15 4.1456 4.1364(+) 4.1209(+) 4.1292(+) 4.1140(+) 4.0976(+) 3.7494(+) 4.1150(+) 4.1358(+) 

DTLZ7 

3 1.1722 1.1739(-) 0.8760(+) 1.1571(+) 1.1914(-) 1.1623(+) 1.0459(+) 1.1492(+) 1.1453(+) 
5 1.1431 1.1356(+) 0.7344(+) 1.2381(-) 1.2764(-) 1.1634(-) 0.9914(+) 1.2720(-) 1.0274(+) 
8 1.0237 1.1176(-) 0.7212(+) 1.2278(-) 1.1619(-) 0.9672(+) 0.6844(+) 0.6728(+) 1.0111(+) 
10 1.0772 1.2005(-) 0.9066(+) 1.3142(-) 1.2800(-) 0.0045(+) 0.9632(+) 0.8140(+) 1.1953(-) 
15 1.1007 1.2903(-) 0.4038(+) 1.3653(-) 1.2852(-) 0(+) 0.8431(+) 0.0782(+) 1.3197(-) 

WFG1 

3 0.5711 0.5120(+) 0.5475(+) 0.5990(-) 0.5800(-) 0.5584(+) 0.3671(+) 0.6569(-) 0.5346(+) 
5 0.7022 0.6465(+) 0.6307(+) 0.7506(-) 0.7034(-) 0.6808(+) 0.3633(+) 1.0306(-) 0.6708(+) 
8 0.9887 0.7925(+) 0.5444(+) 1.5326(-) 0.8341(+) 0.8315(+) 0.4782(+) 1.5536(-) 0.8306(+) 
10 1.1357 0.9578(+) 0.6039(+) 1.0740(+) 0.9879(+) 0.9645(+) 0.6810(+) 2.2261(-) 0.9808(+) 
15 1.5705 1.4283(+) 0.4107(+) 3.4222(-) 1.4033(+) 1.3588(+) 1.0715(+) 2.8975(-) 1.4533(+) 

WFG2 

3 1.2283 1.2266( ) 1.1900(+) 1.2281( ) 1.2334(-) 1.2258( ) 1.1564(+) 1.2268( ) 1.2310(-) 
5 1.5996 1.5981( ) 1.5812(+) 1.5704(+) 1.5845(+) 1.5968( ) 1.4934(+) 1.5812(+) 1.5901(+) 
8 2.1366 2.1349( ) 0.7176(+) 2.0979(+) 2.1088(+) 2.1241(+) 1.9549(+) 2.1070(+) 2.0892(+) 
10 2.5878 2.5876( ) 1.1461(+) 2.5669(+) 2.5715(+) 2.5819( ) 2.4452(+) 2.5727(+) 2.5346(+) 
15 4.1696 4.1701(-) 0.5361(+) 4.0941(+) 4.1217(+) 4.1070(+) 3.9153(+) 4.1459(+) 3.8475(+) 

WFG3 

3 0.8511 0.8198(+) 0.7805(+) 0.8337(+) 0.8532(-) 0.8181(+) 0.5413(+) 0.8439(+) 0.8185(+) 
5 1.1125 1.0167(+) 0.9270(+) 1.0157(+) 1.1040(+) 1.0169(+) 0.7626(+) 0.9872(+) 1.0274(+) 
8 1.2931 1.2665(+) 0.2179(+) 1.2667(+) 1.4892(-) 1.3351(-) 1.0982(+) 1.1471(+) 1.1162(+) 
10 1.8455 1.5867(+) 0.2692(+) 1.5905(+) 1.8450( ) 1.6622(+) 1.4351(+) 1.4399(+) 1.5463(+) 
15 2.8176 2.4341(+) 0.3858(+) 2.7079(+) 2.9146(-) 1.5118(+) 2.1678(+) 1.7674(+) 2.5293(+) 

WFG4 

3 0.7399 0.7292(+) 0.6904(+) 0.7176(+) 0.7436(-) 0.7120(+) 0.5726(+) 0.7256(+) 0.7295(+) 
5 1.3199 1.2854(+) 1.2656(+) 1.2710(+) 1.3125( ) 1.2610(+) 0.8474(+) 1.2387(+) 1.2873(+) 
8 2.0074 1.9621(+) 1.9577(+) 1.9332(+) 1.9853(+) 1.9223(+) 0.9797(+) 1.8346(+) 1.9649(+) 
10 2.5146 2.5029(+) 2.5099(+) 2.4794(+) 2.5105( ) 2.4883(+) 1.3430(+) 2.3638(+) 2.5037(+) 
15 4.1359 4.1351( ) 4.1160(+) 3.8933(+) 4.1143(+) 3.9054(+) 1.8238(+) 3.7139(+) 4.1354( ) 

WFG5 

3 0.7002 0.6864(+) 0.6578(+) 0.6693(+)  0.6934(+) 0.6728(+) 0.5373(+) 0.6847(+) 0.6873(+) 
5 1.2488 1.2216(+) 1.2085(+) 1.2194(+) 1.2401( ) 1.1922(+) 0.9204(+) 1.1912(+) 1.2227(+) 
8 1.8866 1.8500(+) 1.8431(+) 1.8620(+) 1.8681(+) 1.8262(+) 0.9487(+) 1.7510(+) 1.8501(+) 
10 2.3771 2.3462(+) 2.3459(+) 2.3347(+) 2.3525(+) 2.3324(+) 1.3314(+) 2.2441(+) 2.3465(+) 
15 3.8447 3.8315(+) 3.1930(+) 3.4544(+) 3.8160(+) 3.8131(+) 1.6755(+) 3.1853(+) 3.8316(+) 

WFG6 

3 0.6992 0.6867(+) 0.6475(+) 0.6760(+) 0.6994( ) 0.6697(+) 0.5292(+) 0.6890(+) 0.6899(+) 
5 1.2522 1.2188(+) 1.2104(+) 1.2258(+) 1.2499( ) 1.1945(+) 0.8924(+) 1.1884(+) 1.2238(+) 
8 1.8819 1.8444(+) 1.8400(+) 1.8587(+) 1.8641(+) 1.8024(+) 0.8728(+) 1.7304(+) 1.8434(+) 
10 2.3501 2.3230(+) 2.3408(+) 2.3233(+) 2.3332(+) 2.3089(+) 1.2795(+) 2.2196(+) 2.3307(+) 
15 3.7200 3.7064(+) 0.5036(+) 3.5043(+) 3.7096(+) 3.5525(+) 1.5877(+) 3.1997(+) 3.7148(+) 

WFG7 

3 0.7545 0.7295(+) 0.6710(+) 0.7218(+) 0.7470(+) 0.7258(+) 0.5920(+) 0.7354(+) 0.7313(+) 
5 1.3233 1.2924(+) 1.2866(+) 1.2983(+) 1.3197( ) 1.2736(+) 1.0166(+) 1.2592(+) 1.2956(+) 
8 2.0025 1.9717(+) 1.9665(+) 1.9925(+) 1.9928(+) 1.9385(+) 1.0541(+) 1.8438(+) 1.9740(+) 
10 2.5256 2.5074(+) 2.5093(+) 2.5008(+) 2.5124(+) 2.5053(+) 1.4704(+) 2.3874(+) 2.5086(+) 
15 4.1396 4.1339(+) 1.0186(+) 3.8402(+) 4.1145(+) 3.5187(+) 1.9407(+) 3.9081(+) 4.1349( ) 

WFG8 

3 0.6829 0.6664(+) 0.6396(+) 0.6571(+) 0.6804( ) 0.6375(+) 0.4963(+) 0.6643(+) 0.6689(+) 
5 1.1962 1.1820(+) 1.1860(+) 1.1738(+) 1.2144(-) 1.1289(+) 0.8356(+) 1.1453(+) 1.1837(+) 
8 1.7725 1.7642(+) 1.7686(+) 1.7327(+) 1.7873(-) 1.6954(+) 0.9625(+) 1.7046(+) 1.7685(+) 
10 2.3551 2.2910(+) 2.3082(+) 2.2511(+) 2.3039(+) 2.2533(+) 1.4460(+) 2.2138(+) 2.2874(+) 
15 3.7805 3.9032(-) 0.3799(+) 3.6693(+) 3.8388(-) 2.6674(+) 1.8559(+) 3.7565(+) 3.8639(-) 

WFG9 

3 0.7123 0.6782(+) 0.6124(+) 0.6730(+) 0.7112( ) 0.6854(+) 0.5683(+) 0.6949(+) 0.6698(+) 
5 1.2877 1.2161(+) 1.1959(+) 1.2386(+) 1.2871( ) 1.2231(+) 0.9359(+) 1.1944(+) 1.2198(+) 
8 1.8891 1.8214(+) 1.8076(+) 1.8728(+) 1.8517(+) 1.8591(+) 0.9922(+) 1.7231(+) 1.8411(+) 
10 2.3690 2.3020(+) 2.2292(+) 2.3413(+) 2.3587(+) 2.3076(+) 1.2755(+) 2.2197(+) 2.3689( ) 
15 3.8903 3.8172(+) 0.3880(+) 3.6751(+) 3.7398(+) 2.0019(+) 1.6700(+) 3.6339(+) 3.8720(+) 

+( PMEA significantly better) 57 69 61 45 65 70 63 61 
-(PMEA significantly worse) 6 0 8 15 2 0 6 4 

 7 1 1 10 3 0 1 5 
+, , - indicates PMEA performs significantly better (+), similar ( ), and worse (-) compared the corresponding algorithm according the Wilcoxon rank-sum test. 
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