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1 Abstract—In this paper, a dynamic competitive swarm 

optimizer (DCSO) based on population entropy is proposed. The 

new algorithm is derived from the competitive swarm optimizer 

(CSO). The new algorithm uses population entropy to make a 

quantitative description about the diversity of population, and to 

divide the population into two sub-groups dynamically. During 

the early stage of the execution process, to speed up convergence 

of the algorithm, the sub-group with better fitness will have a 

small size, and worse large sub-group will learn from small one. 

During the late stage of the execution process, to keep the 

diversity of the population, the sub-group with better fitness will 

have a large size, and small worse sub-group will learn from 

large group. The proposed DCSO is evaluated on CEC’08 

benchmark functions on large scale global optimization. The 

simulation results of the example indicate that the new algorithm 

has better and faster convergence speed than CSO. 

Keywords—competitive swarm optimizer; population  entropy ;  

sub-group; pairwise competition; large scale optimization 

 

I. INTRODUCTION  

Particle swarm optimizer (PSO) is an evolutionary 
algorithm, introduced by Kennedy and Eberhart in [1] and [2]. 
The algorithm derives from the behavior of social animals like 
bird flocking and fish schooling. The algorithm contains a 
swarm of particles, which are randomly initialized in an n-
dimensional search space. Each particle has a velocity vector 
and a position vector. During the each generation, each particle 
update its velocity and position by learning from the particle’s 
own best position and the historically best solution of the 
whole swarm. The two vectors of each particle are updated 
using the following equations:   ��岫建 + 1岻 = � ∙ ��岫建岻 + �怠 ∙ 堅怠(���嫌建� − ��岫建岻)                   +�態 ∙ 堅態 ∙ 岫���嫌建 − ��岫建岻岻        ��岫建 + 1岻 = ��岫建岻 + ��岫建 + 1岻                                  (2) 

 
 

 

 

where pBesti is  the i-th particle own historically best position, 
gBest is the historically best solution of the whole swarm. c1 

and c2 are two parameters called learning factors, which keep a 
delicate balance between pBesti and gBest. r1 and r2 are 
random numbers uniformly distributed in [0,1]. w is a 
parameter called the inertia weight. 

 Due to its simplicity in program implementation, PSO has 
become one of the most powerful optimization algorithms and 
has been widely used in many subjects and engineering fields 
[3]. However, many optimization problems in real world 
applications are of large scale [4]. It has been found that PSO’s 
performance becomes poor when the number of decision 
variables grows [5]. In many cases, the growing of 
dimensionality in an optimization problem will significantly 
increase the number of local optima, resulting in premature 
convergence of PSO [5]. 

 A natural approach to solve high-dimensional optimization 
problems is to adopt a divide-and-conquer strategy. One 
famous attempt is the cooperative co-evolution (CC) approach 
[6]. It decomposes a large scale problem into smaller sub-
problems and solves these sub-problems separately. CC 
approach is efficient when the variables are independent from 
each other, but becomes less efficient if the problem is a non-
separable. This is because in non-separable problem it is not 
easy to let non-separated variables optimized in just the same 
groups. To improve the performance of CC approach, it is 
necessary to make interacting variables in the same group. For 
the original random grouping strategy for CC  approach,  
Omidvar [7][8] drew the conclusion that the probability of 
grouping interacting variables in one sub-group using random 
grouping dropped significantly as the number of interacting 
variables increased. Later, several attempts have been made to 
provide better grouping schemes for the CC approach, e.g., 
differential grouping [9], variable interaction learning 
mechanism [10].  These approaches use a decomposition 
phase to estimate the relationship among variables and group 
accordingly. They have shown promising performance on 
some benchmark problems. But in the problems with more 
complicated fitness landscape, (e.g., the correlations of 
variables change in different areas of the search space) it is 
difficult for such approaches to get accurate groups. In a word, 
the CC approach provides an efficient divide-and-conquer way 
for large-scale optimization, but it remains a big challenge to 
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design effective grouping techniques for problems with 
complicated fitness landscape. 

 Apart from the CC approach, designing an effective 
learning strategy for large-scale optimization is also very 
important, as there are much more local optima in large-scale 
problems and thus an efficient learning strategy should have 
the ability to improve search diversity. One representative 
approach is the competitive swarm optimizer (CSO) developed 
in [11]. It doesn’t update particles’ velocity with pBesti and 
gBest. This is because in the large scale optimization the 
particles following the gBest would converge too fast to get 
out of local optima. In view of this, it introduces a pairwise 
competition mechanism. In each generation, the particles 
would be divided into couples randomly. Afterwards, a 
competition is made between the two particles in each couple. 
After the competition, the particle with better fitness is known 
as winner, the other is called loser. Winner would get to the 
next generation directly, however, loser would update its 
velocity vector and position vector. CSO keeps the simplicity 
in program implementation and have better performance than 
CC approach in non-separable functions. However, CSO faces 
the problem of slow convergence. 

 From the above discussions, it can be seen that the CSO 
provides a new and promising learning strategy for avoiding 
premature convergence in large-scale optimization. But it 
remains room for further improving in its convergence speed. 
One important reason for the slow convergence of CSO is that  
in each generation only half of particles which lose in 
competition can  be updated, and the rest winning particles 
remain unchanged. If the information of such winning particles 
can be exploited, it is possible that the search speed of CSO 
can be improved. 

 Following this idea, this paper intends to propose a new 
algorithm called dynamic competitive swarm optimizer 
(DCSO). It uses population entropy to divide the population 
into two sub-groups dynamically. The sub-group with worse 
fitness will learn from better sub-group, and better sub-group 
will learn on its own. During the early stage of the execution 
process, as population entropy is high, the sub-group with 
better fitness will have a small size, and large worse sub-group 
will learn from small one.In this way, the new algorithm is 
similar to PSO. Then, during the late stage of the execution 
process, as population entropy is low, the sub-group with 
better fitness will have a big size, and the other small worse 
sub-group will learn from big one. The algorithm turns into 
total CSO. 

 The rest of this paper is organized as follows: Section II 
presents the basic CSO algorithm and definition of population 
entropy. Section III develops the DCSO algorithm in detail. 
Section IV experimentally validates the DCSO and compares 
it with CSO on 7 CEC’08 benchmark functions of dimension 
of up to 1000.Conclusions are drawn in Section V. 

II. PRELIMINARY 

A. Basic Competitive Swarm Optimizer  

Cheng and Jin[11] proposed the concept of pairwise 
competition mechanism and introduced a approach: To solve 
the problem, a swarm P(t) contains m particles is randomly 

initialized, where m is its swarm size and t is generation index. 
In each generation the particles are randomly allocated into 
m/2 couples (assuming that the swarm size m is even number). 
Afterwards, a competition is made in each couple. The particle 
having a better fitness called winner will pass to the next 
generation directly. And the loser in each couple will learn 
from the winner use following equations: ��岫建 + 1岻 = 堅怠 ∙ ��岫t岻 + 堅態 ∙ (��岫建岻 − ��岫建岻)    +� ∙ 堅戴 ∙ 岫�̅岫建岻 − ��岫建岻岻 ��岫建 + 1岻 = ��岫建岻 + ��岫建 + 1岻 

 

where Vl(t) and Xl(t) represent velocity and position vectors of 
the loser, and Vw(t) and Xw(t) represent velocity and position 
vectors of the winner. r1, r2, r3 are random numbers uniformly 
distributed in [0,1]. φ is a parameter that controls the influence 

of  X
�ü

(t). X
�ü

(t) is mean position value of relevant particles. It has 
two versions: a global version and a local version. However, 
experiments show that the diversity of the global CSO is 
already sufficient and additional diversity may slow down the 

convergence. Therefore, X
�ü

(t) usually denotes as the global 
mean position of all particles. 

 There are two parameters in CSO, namely, the swarm size 
m and the social factor φ. If the swarm size is too small, the 
particles tend to converge very fast, thus leading to premature 
convergence. On the contrary, if the swarm size is too large, a 
large number of fitness evaluations(FEs) will be required 
during each generation, which may be impractical and waste 
time. The values of their combination that were proposed in 
[11] is summarized in Table I. From the result, it can be seen 
that non-separable functions (f2, f3, and f7) require a smaller φ 
than separable functions (f1, f4, f5, and f6) .The reason  might 
be that separable functions are easier to optimize, as a result, a 
bigger φ would work better because it leads to faster 
convergence. 

 

 

 

B. The Definition of Population Entropy 

Entropy is a measure of system complexity. Many 
researches have introduced entropy in PSO. For example, Ran 
and Wang[12] used population entropy to describe the  
location confusion degree of particles, and it could reduce the 
waste of search space of PSO. Entropy was also applied in 
[13] to measure the diversity of the whole population and 
guide the particles to migrate.  

Parameters Dimensions 
Separable 

functions 

Non-separable 

functions 

m 

100-D 

500-D 

1000-D 

100 

250 

500 

100 

250 

500 

φ 

100-D 

500-D 

1000-D 

0 

0.1 

0.15 

0 

0.05 

0.1 

(4) 

TABLE I.  PARAMETER SETTINGS OF CSO  FOR SEVEN 

FUNCTIONS OF 100-D,500-D,1000-D 
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(8) 

(7) 

(5) 

(6) 

(11) 

(13) 

(12) 

(10) 

The definition of population entropy is as follow: 

In the set R which consists of the fitness of all particles exists 
subsets A1, A2 ... An, satisfied the following equations: 

 AnAARAAA n  ...,... 2121  

In the subsets A1, A2 ... An, there are corresponding elements s1, 
s2 ... sn. 

The definition of the population entropy is: 

 n

i

ii ppE
1

)(log-  

 
It can be found that the population entropy is 0 when the 
fitness values of all particles are equal. The higher population 
entropy means particle swarm have more diversity and 
stronger exploration. In order to make population entropy 
normalized, we can use the following equation: 

)(log-
1i

i

n

ni ppE   

In (7), the maximum of E is 1, which can be achieved when 
p1= p2...= pn= 1/n . 

III. ALGORITHM 

The new algorithm proposed in this paper differs from the 
CSO in that more than a half of particles are updated in one 
generation. The sizes of two sub-groups are adaptively 
adjusted according to the population entropy. When the 
population entropy is high, worse particles only need to learn 
from several particles. When the population entropy is small, it 
means the diversity of swarm is bad. Therefore, the worse 
particles should choose one from a large range of particles. 
The main idea is showed in Fig.1. 

 

 

 

 

For convenience, we denotes pb(t), pw(t) as better sub-
group and worse sub-group. The swarm size of pb(t) is mb, and 
the size of pw(t) is mw. In each generation, the size of pb(t) and 
pw(t) will be calculated using the following strategy: 






dtPEm

dtPEm/d)(m/d)*PE(t
mb

1)(

1)(
 

�� = � − ��                                                                    (9) 

where PE(t) is the normalized population entropy of 
generation t. And d is a factor that controls the increasing 
speed of mb, usually less than 1. It is easy to see that the 
minimum value of mb is 0, if and only if PE(t) equals 1. Then, 
each particle in worse sub-group will update the velocity and 
position by randomly choosing a particle in better sub-group to 
learn from. The update rule is shown (10) and (11). 

)1()()1(

))()((

))()(()()1(

3

21i
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where Xj(t) is the randomly choosing particle in better sub-
group pb(t). The update strategy is similar to PSO, where Xj(t) 

is just like pBest and X
�ü

(t) is just like gBest. For particles in 
better sub-group pb(t), it will adopt pairwise competition 
mechanism. In each couple, the winner will go through to the 
next generation directly, and the loser will update using 
following learning strategy: 

)1()()1(

))()(()()1( 21




tVtXtX

tXtXrtVrtV
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 The pseudo-code is showed in Fig.2 and steps involved are 
given as follows: 

Step 1 Initialization: The initial positions of all particles are 
generated randomly within the n-dimensional search space, 
with velocity initialized to 0. 

Step 2 Calculation:  Calculate each particle fitness and the 
population entropy  of swarm. 

Step 3 Swarm division: Sort particles by fitness value. Then 
use rule (8) and (9) to adjust the size of two sub-groups. 

Step 4 Worse sub-group updating: For each particles in worse 
sub-group follows the velocity update rule (10) and the 
position update rule (11) to adjust its velocity and position . 

Step 5 Better sub-group updating: For each particles in better 
sub-group follows the velocity update rule (12) and the 
position update rule (13) to adjust its velocity and position . 

Step 6 Terminal Condition Check: If the number of FEs is 
large than the predefined maximum number, the algorithm 
terminates. Otherwise, go to Step 2 for a new generation.   

 

IV. EXPERIMENT STUDIES 

To test the performance of proposed algorithm, we do a set 
of experiments on seven benchmark functions proposed in 
CEC’08 special session on large scale optimization problems 
[14]. Among the 7 functions, we can divide them into 2 groups. 
f1, f4 and f6 are in first group, which are separable functions. 
Other 4 functions are in another group, which are non-
separable functions. 

All experiments are implemented on a PC with an Intel 
Core i5-3210M 2.5GHZ CPU, 6GB RAM and Microsoft 

 n

i

iii ssp
1

/

Fig. 1.The main idea of DCSO, In each generation particles in better 

sub-group would compete in couples. Winner would pass to p(t+1) 

directly and loser would learn from winner. For particles in worse sub-

group, each will learn from particles in better group. 
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Windows 7 Home SP1 64-bit operating system, and DCSO is 
written in language C on Visual Studio 2010.  

All results are averaged 25 independent runs. During each 
run, the maximum number of fitness evaluations (FEs), as 
recommended by [13], is set to 5000*D, where D is the search 
dimension of functions. 

 

 

A. Parameter Settings 

From (8), it is obvious that the factor d has an effect on the 
size of two sub-groups. With a large d, the size of better sub-
group increases slow, and the particles tend to converge very 
fast before the search space is well explored, thus leading to 
premature convergence. On the contrary, if the factor d is too 
small, the size of better sub-group increases fast, which will 
make convergence speed as slow as CSO. In order to 
investigate the influence of factor d, we test the CEC’08 
functions with dimensions of 500 with d varying from 0.1 to 
0.5. Since DCSO is derived from CSO, the value of  swarm 
size m and social factor φ in DCSO is similar to CSO. 
Therefore, the parameter setting in Table 1 is adopted. 

 In Fig.3, the statistic results of the fitness error obtained by 
DCSO with different value of factor d are studied. According 
to the results, it seems that f1, f3 require a small d, The reason  

might be that f1 and f3 are easier to optimize, as a result,  
smaller d would work better because it leads to faster 
convergence. 
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procedure generate 

1. t=0; 

2. randomly initialize p(0); 

3. while terminal condition is not satisfied  do 

4.  calculate the fitness of  all particles in p(t); 

5.  sort particles in p(t); 

6.  calculate the population entropy of p(t) using (7); 

7.  divide p(t) into pb(t) and pw(t)  using (8),(9); 

8.  for each  particle Xi(t) in pw(t) do 

9.       randomly  choose  one particle Xj(t) from pb(t); 

10.                   update  Vi(t) and  Xi(t) using (10) and (11); 

11.       add  Xi(t) into p(t+1); 

12.  end for 

13.    while  pb(t) is not none do 

14.      randomly  choose  two particles  X1(t) and X2(t) ;  

15.      if f (X1(t)) < f (X2(t)) then  

16.          Xw(t) =X1(t), Xl(t) =X2(t);  

17.     else 

18.         Xw(t) =X2(t), Xl(t) =X1(t);   

19.      end if 

20.      update Vl(t) and  Xl(t) using (12)and (13);  

21.      add Xw(t) and Xl(t) into p(t+1); 

23.     remove   X1(t) and X2(t) from  pb(t); 

24.  end  while  

25.  t=t+1; 

26.end while 

end  procedure 

Fig. 2. The pseudo code of the Dynamic Competitive Swarm Optimizer 

Fig. 3. Fitness error on 4 functions f1, f2, f3 and  f4 of  500-D with factor 

d  varying  from 0.1 to 0.5 

(a) f1 

(b) f2 

     (c) f3 

(d) f4 
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In order to better understand the relation between 
population entropy PE(t) and factor d. We investigate the 
variation of population entropy in CSO. The result is shown in 
Fig 4. Since CSO doesn’t use pBest and gBest to update 
particles and randomly choose couples to compete, it will 
definitely make CSO have high population entropy, which 
means a high diversity. That’s why CSO has powerful 
performance in large scale optimization, and it is common that 
the population entropy is over 0.8 when the convergence speed 
is fast. More interesting, there is a sharply decrease in f5 when 
it gets into premature convergence.  

 

 

 

So in DCSO we adopt a strategy: If population entropy is 
lower than 0.65, the size of better sub-group sets as whole 
swarm. This is because it means the swarm tends to fall into 
local optima. And if population entropy is close to 1, the size 
of better sub-group will just have a few particles. Hence, in  
(8), it go through (1,0) and (0.65,m).Using  linear interpolation, 
it can easily get the slope of the line is: 

  K= -m/0.35    

Thus, the factor d is set to 0.35 if dimension is 500. The 
population entropy of DCSO with d equals is showed in Fig.5. 
Furthermore, the best combinations in DCSO are summarized 
in Table II.  

 

 

 

 

 

 

 

 

 

 

 

B.  Comparison Results 

 In order to verify the performance of DCSO for large scale 
optimization, DCSO have compared with CSO on CEC’08 test 
functions with dimensions of 100, 500 and 1000. Based on the 
previous experiments, we set the  factor d with 0.25, 0.35, and 
0.45 for 100-D, 500-D, 1000-D. The fitness error is 
summarized on Table III, Table IV, Table V.  

 The results of fitness error show that DCSO have better 
performance in comparison with CSO on f1, f2, f3 and f6. 
Especially, DCSO has significantly better performance on f1 
and f6. Moreover, DCSO and CSO have similar performance 
on f5. However, regardless of the number of the dimensions, 
DCSO has poor performance on f4 in comparison with CSO, 
which is a shifted Rastrigin function with a large number of  
local optima. The probable reason is that pair competition 
mechanism has poor performance on f4. Although the 
diversity of CSO is strong, it still converge too fast to jump out 
of local optima with a problem has a huge number of Optima. 
Thus, speeding up the convergence will aggravate premature 
convergence. 

In additional, the convergence profiles of two typical separable 
functions (f1, f6) and two non-separable functions (f2, f5) are 
showed in Fig.6. It can be seen that, the convergence speed of 
DCSO is much faster than CSO and have better performance 
than CSO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Dimensions 
Separable 

functions 

Non-separable 

functions 

m 

100-D 

500-D 

1000-D 

100 

250 

500 

100 

250 

500 

φ 

100-D 

500-D 

1000-D 

100 

250 

500 

100 

250 

500 

d 

100-D 

500-D 

1000-D 

0.25 

0.35 

0.45 

Fig. 4. The population entropy of non-separable function   f5 and 

separable function  f6 of 500-D using CSO 

TABLE II.  PARAMETER SETTINGS OF DCSO  FOR SEVEN FUNCTIONS OF  

100-D,500-D,1000-D 

Fig. 6. The convergence profits of DCSO and CSO on 500-D 

Functions f1, f2, f5, f6 

(a) f1 

(c) f5 

  (b) f2 

(d) f6 

Fig. 5. The population entropy of non-separable function f5 and 

separable function  f6 of 500-D using DCSO 
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100-D f1 f2 f3 f4 f5 f6 f7 

DCSO 

Mean 0.00E+00 2.57E+01 3.19E+02 1.12E+02 0.00E+00 1.10E-14 -7.77E+05 

Best 0.00E+00 2.04E+01 8.47E+01 9.65E+01 0.00E+00 7.55E-15 - 

Std 0.00E+00 1.97E+00 3.33E+02 1.37E+01 0.00E+00 6.96E-16 1.34E+04 

CSO 

Mean 1.72E-28 3.39E+01 3.46E+02 5.19E+01 0.00E+00 1.20E-14 -7.46E+05 

Best 0.00E+00 2.33E+01 8.96E+01 3.48E+01 0.00E+00 1.11E-14 - 

Std 1.73E-28 5.88E+00 4.85E+02 6.25E+00 0.00E+00 1.52E-15 1.67E+04 

500-D f1 f2 f3 f4 f5 f6 f7 

DCSO 

Mean 3.54E-25 1.98E+01 5.26E+02 7.37E+02 2.22E-16 3.86E-14 -2.07E+06 

Best 2.84E-25 1.32E+01 4.84E+02 6.87E+02 2.22E-16 3.24E-14 - 

Std 5.54E-26 6.23E+00 2.70E+01 3.72E+01 0.00E+00 2.36E-15 2.81E+04 

CSO 

Mean 6.55E-23 2.55E+01 5.67E+02 3.24E+02 2.22E-16 4.13E-13 -1.97E+06 

Best 6.13E-23 2.22E+01 4.89E+02 2.86E+02 2.22E-16 3.98E-13 - 

Std 2.93E-24 4.08E+00 4.73E+01 1.91E+01 0.00E+00 8.17E-15 4.08E+04 

1000-D f1 f2 f3 f4 f5 f6 f7 

DCSO 

Mean 1.83E-24 3.37E+01 9.80E+02 1.53E+03 5.55E-16 8.57E-14 -2.07E+06 

Best 1.74E-24 3.32E+01 9.74E+02 1.49E+03 5.53E-16 8.24E-14 - 

Std 2.62E-25 4.06E-01 3.65E+01 6.57E+01 5.23E-17 2.36E-15 2.81E+04 

CSO 

Mean 1.09E-21 4.07E+01 9.90E+02 6.96E+02 2.26E-16 1.22E-12 -3.86E+06 

Best 1.04E-21 4.01E+01 9.86E+02 6.73E+02 2.22E-16 1.20E-12 - 

Std 3.77E-23 4.72E-01 2.73E+01 2.47E+01 2.19E-17 2.27E-14 4.78E+04 

TABLE IV. THE STATISTICAL RESSULTS (MEAN VALUES, BEST VALUES AND STANDARD  DEVIATIONS) OF FITNESS ERROR ON 500-D TEST 

FUNCTIONS 

TABLE V. THE STATISTICAL RESSULTS (MEAN VALUES, BEST VALUES AND STANDARD DEVIATIONS) OF FITNESS ERROR ON   

                      1000-D TEST FUNCTIONS 

TABLE III.  THE STATISTICAL RESULTS (MEAN VALUES, BESR VALUES AND STANDARD DEVIATIONS) OF FITNESS ERROR ON 100-D TEST 

FUNCTIONS 
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V. CONCLUSION 

In this paper, we proposed a dynamical algorithm DCSO 
based on population entropy. It manages to prevent premature 
convergence and keep the fast convergence. The algorithm 
adopts pairwise competition mechanism, and uses population 
entropy to divide swarm into better sub-group and worse sub-
group dynamically. In order to confirm the effectiveness and 
performance of DCSO, we compared it with CSO based on 7 
CEC 08’s benchmark functions. Experiment results show that 
the new algorithm can have faster convergence speed and the 
performance of DCSO is much better than CSO on some 
function. 
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