
(1)

A Dynamic Competitive Swarm Optimizer Based-on

Entropy for Large Scale Optimization

Wen-Xiao Zhang

School of Data and Computer Science

Sun Yat-sen University

Guangzhou, China

Wei-Neng Chen* and Jun Zhang

 Key Lab. of Machine Intelligence and Advanced

Computing, Ministry of Education

Guangzhou, China

 Email: cwnraul634@aliyun.com

1 Abstract—In this paper, a dynamic competitive swarm

optimizer (DCSO) based on population entropy is proposed. The

new algorithm is derived from the competitive swarm optimizer

(CSO). The new algorithm uses population entropy to make a

quantitative description about the diversity of population, and to

divide the population into two sub-groups dynamically. During

the early stage of the execution process, to speed up convergence

of the algorithm, the sub-group with better fitness will have a

small size, and worse large sub-group will learn from small one.

During the late stage of the execution process, to keep the

diversity of the population, the sub-group with better fitness will

have a large size, and small worse sub-group will learn from

large group. The proposed DCSO is evaluated on CEC’08

benchmark functions on large scale global optimization. The

simulation results of the example indicate that the new algorithm

has better and faster convergence speed than CSO.

Keywords—competitive swarm optimizer; population entropy ;

sub-group; pairwise competition; large scale optimization

I. INTRODUCTION

Particle swarm optimizer (PSO) is an evolutionary
algorithm, introduced by Kennedy and Eberhart in [1] and [2].
The algorithm derives from the behavior of social animals like
bird flocking and fish schooling. The algorithm contains a
swarm of particles, which are randomly initialized in an n-
dimensional search space. Each particle has a velocity vector
and a position vector. During the each generation, each particle
update its velocity and position by learning from the particle’s
own best position and the historically best solution of the
whole swarm. The two vectors of each particle are updated
using the following equations: ��岫建 + 1岻 = � ∙ ��岫建岻 + �怠 ∙ 堅怠(���嫌建� − ��岫建岻) +�態 ∙ 堅態 ∙ 岫���嫌建 − ��岫建岻岻 ��岫建 + 1岻 = ��岫建岻 + ��岫建 + 1岻 (2)

where pBesti is the i-th particle own historically best position,
gBest is the historically best solution of the whole swarm. c1

and c2 are two parameters called learning factors, which keep a
delicate balance between pBesti and gBest. r1 and r2 are
random numbers uniformly distributed in [0,1]. w is a
parameter called the inertia weight.

 Due to its simplicity in program implementation, PSO has
become one of the most powerful optimization algorithms and
has been widely used in many subjects and engineering fields
[3]. However, many optimization problems in real world
applications are of large scale [4]. It has been found that PSO’s
performance becomes poor when the number of decision
variables grows [5]. In many cases, the growing of
dimensionality in an optimization problem will significantly
increase the number of local optima, resulting in premature
convergence of PSO [5].

 A natural approach to solve high-dimensional optimization
problems is to adopt a divide-and-conquer strategy. One
famous attempt is the cooperative co-evolution (CC) approach
[6]. It decomposes a large scale problem into smaller sub-
problems and solves these sub-problems separately. CC
approach is efficient when the variables are independent from
each other, but becomes less efficient if the problem is a non-
separable. This is because in non-separable problem it is not
easy to let non-separated variables optimized in just the same
groups. To improve the performance of CC approach, it is
necessary to make interacting variables in the same group. For
the original random grouping strategy for CC approach,
Omidvar [7][8] drew the conclusion that the probability of
grouping interacting variables in one sub-group using random
grouping dropped significantly as the number of interacting
variables increased. Later, several attempts have been made to
provide better grouping schemes for the CC approach, e.g.,
differential grouping [9], variable interaction learning
mechanism [10]. These approaches use a decomposition
phase to estimate the relationship among variables and group
accordingly. They have shown promising performance on
some benchmark problems. But in the problems with more
complicated fitness landscape, (e.g., the correlations of
variables change in different areas of the search space) it is
difficult for such approaches to get accurate groups. In a word,
the CC approach provides an efficient divide-and-conquer way
for large-scale optimization, but it remains a big challenge to

*Corresponding Author.

This work was supported in part by the NSFC projects Nos. 61379061,

61332002, 61511130078, in part by Natural Science Foundation of

Gungdong for Distinguished Young Scholars No. 2015A030306024, in part

by the “Guangdong Special Support Program” No. 2014TQ01X550, and in
part by the Guangzhou Pearl River New Star of Science and Technology No.

201506010002.

365

8th International Conference on Advanced Computational Intelligence
Chiang Mai, Thailand; February 14-16, 2016

978-1-4673-7782-9/16/$31.00 ©2016 IEEE
Authorized licensed use limited to: Hanyang University. Downloaded on November 21,2023 at 06:40:17 UTC from IEEE Xplore. Restrictions apply.

(3)

design effective grouping techniques for problems with
complicated fitness landscape.

 Apart from the CC approach, designing an effective
learning strategy for large-scale optimization is also very
important, as there are much more local optima in large-scale
problems and thus an efficient learning strategy should have
the ability to improve search diversity. One representative
approach is the competitive swarm optimizer (CSO) developed
in [11]. It doesn’t update particles’ velocity with pBesti and
gBest. This is because in the large scale optimization the
particles following the gBest would converge too fast to get
out of local optima. In view of this, it introduces a pairwise
competition mechanism. In each generation, the particles
would be divided into couples randomly. Afterwards, a
competition is made between the two particles in each couple.
After the competition, the particle with better fitness is known
as winner, the other is called loser. Winner would get to the
next generation directly, however, loser would update its
velocity vector and position vector. CSO keeps the simplicity
in program implementation and have better performance than
CC approach in non-separable functions. However, CSO faces
the problem of slow convergence.

 From the above discussions, it can be seen that the CSO
provides a new and promising learning strategy for avoiding
premature convergence in large-scale optimization. But it
remains room for further improving in its convergence speed.
One important reason for the slow convergence of CSO is that
in each generation only half of particles which lose in
competition can be updated, and the rest winning particles
remain unchanged. If the information of such winning particles
can be exploited, it is possible that the search speed of CSO
can be improved.

 Following this idea, this paper intends to propose a new
algorithm called dynamic competitive swarm optimizer
(DCSO). It uses population entropy to divide the population
into two sub-groups dynamically. The sub-group with worse
fitness will learn from better sub-group, and better sub-group
will learn on its own. During the early stage of the execution
process, as population entropy is high, the sub-group with
better fitness will have a small size, and large worse sub-group
will learn from small one.In this way, the new algorithm is
similar to PSO. Then, during the late stage of the execution
process, as population entropy is low, the sub-group with
better fitness will have a big size, and the other small worse
sub-group will learn from big one. The algorithm turns into
total CSO.

 The rest of this paper is organized as follows: Section II
presents the basic CSO algorithm and definition of population
entropy. Section III develops the DCSO algorithm in detail.
Section IV experimentally validates the DCSO and compares
it with CSO on 7 CEC’08 benchmark functions of dimension
of up to 1000.Conclusions are drawn in Section V.

II. PRELIMINARY

A. Basic Competitive Swarm Optimizer

Cheng and Jin[11] proposed the concept of pairwise
competition mechanism and introduced a approach: To solve
the problem, a swarm P(t) contains m particles is randomly

initialized, where m is its swarm size and t is generation index.
In each generation the particles are randomly allocated into
m/2 couples (assuming that the swarm size m is even number).
Afterwards, a competition is made in each couple. The particle
having a better fitness called winner will pass to the next
generation directly. And the loser in each couple will learn
from the winner use following equations: ��岫建 + 1岻 = 堅怠 ∙ ��岫t岻 + 堅態 ∙ (��岫建岻 − ��岫建岻) +� ∙ 堅戴 ∙ 岫�̅岫建岻 − ��岫建岻岻 ��岫建 + 1岻 = ��岫建岻 + ��岫建 + 1岻

where Vl(t) and Xl(t) represent velocity and position vectors of
the loser, and Vw(t) and Xw(t) represent velocity and position
vectors of the winner. r1, r2, r3 are random numbers uniformly
distributed in [0,1]. φ is a parameter that controls the influence

of X
�ü

(t). X
�ü

(t) is mean position value of relevant particles. It has
two versions: a global version and a local version. However,
experiments show that the diversity of the global CSO is
already sufficient and additional diversity may slow down the

convergence. Therefore, X
�ü

(t) usually denotes as the global
mean position of all particles.

 There are two parameters in CSO, namely, the swarm size
m and the social factor φ. If the swarm size is too small, the
particles tend to converge very fast, thus leading to premature
convergence. On the contrary, if the swarm size is too large, a
large number of fitness evaluations(FEs) will be required
during each generation, which may be impractical and waste
time. The values of their combination that were proposed in
[11] is summarized in Table I. From the result, it can be seen
that non-separable functions (f2, f3, and f7) require a smaller φ
than separable functions (f1, f4, f5, and f6) .The reason might
be that separable functions are easier to optimize, as a result, a
bigger φ would work better because it leads to faster
convergence.

B. The Definition of Population Entropy

Entropy is a measure of system complexity. Many
researches have introduced entropy in PSO. For example, Ran
and Wang[12] used population entropy to describe the
location confusion degree of particles, and it could reduce the
waste of search space of PSO. Entropy was also applied in
[13] to measure the diversity of the whole population and
guide the particles to migrate.

Parameters Dimensions
Separable

functions

Non-separable

functions

m

100-D

500-D

1000-D

100

250

500

100

250

500

φ

100-D

500-D

1000-D

0

0.1

0.15

0

0.05

0.1

(4)

TABLE I. PARAMETER SETTINGS OF CSO FOR SEVEN

FUNCTIONS OF 100-D,500-D,1000-D

366
Authorized licensed use limited to: Hanyang University. Downloaded on November 21,2023 at 06:40:17 UTC from IEEE Xplore. Restrictions apply.

(8)

(7)

(5)

(6)

(11)

(13)

(12)

(10)

The definition of population entropy is as follow:

In the set R which consists of the fitness of all particles exists
subsets A1, A2 ... An, satisfied the following equations:

 AnAARAAA n ...,... 2121

In the subsets A1, A2 ... An, there are corresponding elements s1,
s2 ... sn.

The definition of the population entropy is:

 n

i

ii ppE
1

)(log-

It can be found that the population entropy is 0 when the
fitness values of all particles are equal. The higher population
entropy means particle swarm have more diversity and
stronger exploration. In order to make population entropy
normalized, we can use the following equation:

)(log-
1i

i

n

ni ppE

In (7), the maximum of E is 1, which can be achieved when
p1= p2...= pn= 1/n .

III. ALGORITHM

The new algorithm proposed in this paper differs from the
CSO in that more than a half of particles are updated in one
generation. The sizes of two sub-groups are adaptively
adjusted according to the population entropy. When the
population entropy is high, worse particles only need to learn
from several particles. When the population entropy is small, it
means the diversity of swarm is bad. Therefore, the worse
particles should choose one from a large range of particles.
The main idea is showed in Fig.1.

For convenience, we denotes pb(t), pw(t) as better sub-
group and worse sub-group. The swarm size of pb(t) is mb, and
the size of pw(t) is mw. In each generation, the size of pb(t) and
pw(t) will be calculated using the following strategy:

dtPEm

dtPEm/d)(m/d)*PE(t
mb

1)(

1)(

�� = � − �� (9)

where PE(t) is the normalized population entropy of
generation t. And d is a factor that controls the increasing
speed of mb, usually less than 1. It is easy to see that the
minimum value of mb is 0, if and only if PE(t) equals 1. Then,
each particle in worse sub-group will update the velocity and
position by randomly choosing a particle in better sub-group to
learn from. The update rule is shown (10) and (11).

)1()()1(

))()((

))()(()()1(

3

21i

tVtXtX

tXtXr

tXtXrtVrtV

iii

i

iji

where Xj(t) is the randomly choosing particle in better sub-
group pb(t). The update strategy is similar to PSO, where Xj(t)

is just like pBest and X
�ü

(t) is just like gBest. For particles in
better sub-group pb(t), it will adopt pairwise competition
mechanism. In each couple, the winner will go through to the
next generation directly, and the loser will update using
following learning strategy:

)1()()1(

))()(()()1(21

tVtXtX

tXtXrtVrtV

lll

lwll

 The pseudo-code is showed in Fig.2 and steps involved are
given as follows:

Step 1 Initialization: The initial positions of all particles are
generated randomly within the n-dimensional search space,
with velocity initialized to 0.

Step 2 Calculation: Calculate each particle fitness and the
population entropy of swarm.

Step 3 Swarm division: Sort particles by fitness value. Then
use rule (8) and (9) to adjust the size of two sub-groups.

Step 4 Worse sub-group updating: For each particles in worse
sub-group follows the velocity update rule (10) and the
position update rule (11) to adjust its velocity and position .

Step 5 Better sub-group updating: For each particles in better
sub-group follows the velocity update rule (12) and the
position update rule (13) to adjust its velocity and position .

Step 6 Terminal Condition Check: If the number of FEs is
large than the predefined maximum number, the algorithm
terminates. Otherwise, go to Step 2 for a new generation.

IV. EXPERIMENT STUDIES

To test the performance of proposed algorithm, we do a set
of experiments on seven benchmark functions proposed in
CEC’08 special session on large scale optimization problems
[14]. Among the 7 functions, we can divide them into 2 groups.
f1, f4 and f6 are in first group, which are separable functions.
Other 4 functions are in another group, which are non-
separable functions.

All experiments are implemented on a PC with an Intel
Core i5-3210M 2.5GHZ CPU, 6GB RAM and Microsoft

 n

i

iii ssp
1

/

Fig. 1.The main idea of DCSO, In each generation particles in better

sub-group would compete in couples. Winner would pass to p(t+1)

directly and loser would learn from winner. For particles in worse sub-

group, each will learn from particles in better group.

367
Authorized licensed use limited to: Hanyang University. Downloaded on November 21,2023 at 06:40:17 UTC from IEEE Xplore. Restrictions apply.

Windows 7 Home SP1 64-bit operating system, and DCSO is
written in language C on Visual Studio 2010.

All results are averaged 25 independent runs. During each
run, the maximum number of fitness evaluations (FEs), as
recommended by [13], is set to 5000*D, where D is the search
dimension of functions.

A. Parameter Settings

From (8), it is obvious that the factor d has an effect on the
size of two sub-groups. With a large d, the size of better sub-
group increases slow, and the particles tend to converge very
fast before the search space is well explored, thus leading to
premature convergence. On the contrary, if the factor d is too
small, the size of better sub-group increases fast, which will
make convergence speed as slow as CSO. In order to
investigate the influence of factor d, we test the CEC’08
functions with dimensions of 500 with d varying from 0.1 to
0.5. Since DCSO is derived from CSO, the value of swarm
size m and social factor φ in DCSO is similar to CSO.
Therefore, the parameter setting in Table 1 is adopted.

 In Fig.3, the statistic results of the fitness error obtained by
DCSO with different value of factor d are studied. According
to the results, it seems that f1, f3 require a small d, The reason

might be that f1 and f3 are easier to optimize, as a result,
smaller d would work better because it leads to faster
convergence.

.

procedure generate

1. t=0;

2. randomly initialize p(0);

3. while terminal condition is not satisfied do

4. calculate the fitness of all particles in p(t);

5. sort particles in p(t);

6. calculate the population entropy of p(t) using (7);

7. divide p(t) into pb(t) and pw(t) using (8),(9);

8. for each particle Xi(t) in pw(t) do

9. randomly choose one particle Xj(t) from pb(t);

10. update Vi(t) and Xi(t) using (10) and (11);

11. add Xi(t) into p(t+1);

12. end for

13. while pb(t) is not none do

14. randomly choose two particles X1(t) and X2(t) ;

15. if f (X1(t)) < f (X2(t)) then

16. Xw(t) =X1(t), Xl(t) =X2(t);

17. else

18. Xw(t) =X2(t), Xl(t) =X1(t);

19. end if

20. update Vl(t) and Xl(t) using (12)and (13);

21. add Xw(t) and Xl(t) into p(t+1);

23. remove X1(t) and X2(t) from pb(t);

24. end while

25. t=t+1;

26.end while

end procedure

Fig. 2. The pseudo code of the Dynamic Competitive Swarm Optimizer

Fig. 3. Fitness error on 4 functions f1, f2, f3 and f4 of 500-D with factor

d varying from 0.1 to 0.5

(a) f1

(b) f2

 (c) f3

(d) f4

368
Authorized licensed use limited to: Hanyang University. Downloaded on November 21,2023 at 06:40:17 UTC from IEEE Xplore. Restrictions apply.

In order to better understand the relation between
population entropy PE(t) and factor d. We investigate the
variation of population entropy in CSO. The result is shown in
Fig 4. Since CSO doesn’t use pBest and gBest to update
particles and randomly choose couples to compete, it will
definitely make CSO have high population entropy, which
means a high diversity. That’s why CSO has powerful
performance in large scale optimization, and it is common that
the population entropy is over 0.8 when the convergence speed
is fast. More interesting, there is a sharply decrease in f5 when
it gets into premature convergence.

So in DCSO we adopt a strategy: If population entropy is
lower than 0.65, the size of better sub-group sets as whole
swarm. This is because it means the swarm tends to fall into
local optima. And if population entropy is close to 1, the size
of better sub-group will just have a few particles. Hence, in
(8), it go through (1,0) and (0.65,m).Using linear interpolation,
it can easily get the slope of the line is:

 K= -m/0.35

Thus, the factor d is set to 0.35 if dimension is 500. The
population entropy of DCSO with d equals is showed in Fig.5.
Furthermore, the best combinations in DCSO are summarized
in Table II.

B. Comparison Results

 In order to verify the performance of DCSO for large scale
optimization, DCSO have compared with CSO on CEC’08 test
functions with dimensions of 100, 500 and 1000. Based on the
previous experiments, we set the factor d with 0.25, 0.35, and
0.45 for 100-D, 500-D, 1000-D. The fitness error is
summarized on Table III, Table IV, Table V.

 The results of fitness error show that DCSO have better
performance in comparison with CSO on f1, f2, f3 and f6.
Especially, DCSO has significantly better performance on f1
and f6. Moreover, DCSO and CSO have similar performance
on f5. However, regardless of the number of the dimensions,
DCSO has poor performance on f4 in comparison with CSO,
which is a shifted Rastrigin function with a large number of
local optima. The probable reason is that pair competition
mechanism has poor performance on f4. Although the
diversity of CSO is strong, it still converge too fast to jump out
of local optima with a problem has a huge number of Optima.
Thus, speeding up the convergence will aggravate premature
convergence.

In additional, the convergence profiles of two typical separable
functions (f1, f6) and two non-separable functions (f2, f5) are
showed in Fig.6. It can be seen that, the convergence speed of
DCSO is much faster than CSO and have better performance
than CSO.

Parameter Dimensions
Separable

functions

Non-separable

functions

m

100-D

500-D

1000-D

100

250

500

100

250

500

φ

100-D

500-D

1000-D

100

250

500

100

250

500

d

100-D

500-D

1000-D

0.25

0.35

0.45

Fig. 4. The population entropy of non-separable function f5 and

separable function f6 of 500-D using CSO

TABLE II. PARAMETER SETTINGS OF DCSO FOR SEVEN FUNCTIONS OF

100-D,500-D,1000-D

Fig. 6. The convergence profits of DCSO and CSO on 500-D

Functions f1, f2, f5, f6

(a) f1

(c) f5

 (b) f2

(d) f6

Fig. 5. The population entropy of non-separable function f5 and

separable function f6 of 500-D using DCSO

369
Authorized licensed use limited to: Hanyang University. Downloaded on November 21,2023 at 06:40:17 UTC from IEEE Xplore. Restrictions apply.

100-D f1 f2 f3 f4 f5 f6 f7

DCSO

Mean 0.00E+00 2.57E+01 3.19E+02 1.12E+02 0.00E+00 1.10E-14 -7.77E+05

Best 0.00E+00 2.04E+01 8.47E+01 9.65E+01 0.00E+00 7.55E-15 -

Std 0.00E+00 1.97E+00 3.33E+02 1.37E+01 0.00E+00 6.96E-16 1.34E+04

CSO

Mean 1.72E-28 3.39E+01 3.46E+02 5.19E+01 0.00E+00 1.20E-14 -7.46E+05

Best 0.00E+00 2.33E+01 8.96E+01 3.48E+01 0.00E+00 1.11E-14 -

Std 1.73E-28 5.88E+00 4.85E+02 6.25E+00 0.00E+00 1.52E-15 1.67E+04

500-D f1 f2 f3 f4 f5 f6 f7

DCSO

Mean 3.54E-25 1.98E+01 5.26E+02 7.37E+02 2.22E-16 3.86E-14 -2.07E+06

Best 2.84E-25 1.32E+01 4.84E+02 6.87E+02 2.22E-16 3.24E-14 -

Std 5.54E-26 6.23E+00 2.70E+01 3.72E+01 0.00E+00 2.36E-15 2.81E+04

CSO

Mean 6.55E-23 2.55E+01 5.67E+02 3.24E+02 2.22E-16 4.13E-13 -1.97E+06

Best 6.13E-23 2.22E+01 4.89E+02 2.86E+02 2.22E-16 3.98E-13 -

Std 2.93E-24 4.08E+00 4.73E+01 1.91E+01 0.00E+00 8.17E-15 4.08E+04

1000-D f1 f2 f3 f4 f5 f6 f7

DCSO

Mean 1.83E-24 3.37E+01 9.80E+02 1.53E+03 5.55E-16 8.57E-14 -2.07E+06

Best 1.74E-24 3.32E+01 9.74E+02 1.49E+03 5.53E-16 8.24E-14 -

Std 2.62E-25 4.06E-01 3.65E+01 6.57E+01 5.23E-17 2.36E-15 2.81E+04

CSO

Mean 1.09E-21 4.07E+01 9.90E+02 6.96E+02 2.26E-16 1.22E-12 -3.86E+06

Best 1.04E-21 4.01E+01 9.86E+02 6.73E+02 2.22E-16 1.20E-12 -

Std 3.77E-23 4.72E-01 2.73E+01 2.47E+01 2.19E-17 2.27E-14 4.78E+04

TABLE IV. THE STATISTICAL RESSULTS (MEAN VALUES, BEST VALUES AND STANDARD DEVIATIONS) OF FITNESS ERROR ON 500-D TEST

FUNCTIONS

TABLE V. THE STATISTICAL RESSULTS (MEAN VALUES, BEST VALUES AND STANDARD DEVIATIONS) OF FITNESS ERROR ON

 1000-D TEST FUNCTIONS

TABLE III. THE STATISTICAL RESULTS (MEAN VALUES, BESR VALUES AND STANDARD DEVIATIONS) OF FITNESS ERROR ON 100-D TEST

FUNCTIONS

370
Authorized licensed use limited to: Hanyang University. Downloaded on November 21,2023 at 06:40:17 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

In this paper, we proposed a dynamical algorithm DCSO
based on population entropy. It manages to prevent premature
convergence and keep the fast convergence. The algorithm
adopts pairwise competition mechanism, and uses population
entropy to divide swarm into better sub-group and worse sub-
group dynamically. In order to confirm the effectiveness and
performance of DCSO, we compared it with CSO based on 7
CEC 08’s benchmark functions. Experiment results show that
the new algorithm can have faster convergence speed and the
performance of DCSO is much better than CSO on some
function.

REFERENCES

[1] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of International Symposium on Micro Machine
and Human Science. IEEE, 1995, pp. 39–43.

[2] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
vol. 4. IEEE, 1995, pp.1942-1948.

[3] R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources” in Proceedings of the IEEE Congress on
Evolutionary Computation. IEEE Service Center, 2001, pp.81~86.

[4] E. Sayed, D. Essam, and R. Sarker., “Dependency Identification
technique for large scale optimization problems,” in Proceedings of the
2012 IEEE Congress on Evolutionary Computation(CEC), IEEE,
Brisbane, 2012.

[5] F. Van den Bergh and A. P. Engelbrecht, “A Cooperative approach to
particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 225�"239, 2004.

[6] W.-N. Chen, et al., “Particle swarm optimization with an aging leader
and challengers,” IEEE Transactions on Evolutionary Computation, vol.
17, no. 2, pp. 241–258, 2013.

[7] M. A. Potter and K. A. De Jong, “ A cooperative coevolutionary
approach to function optimization,” Parallel Problem Solving from
Nature, PPSN III, pp. 249–257, 1994.

[8] M. N. Omidvar, X. D. Liu, X. Yao, and Z. Y. Yang, “Cooperative
Coevolution for large scale optimization through more frequent random
grouping,” in Proceedings of 2010 IEEE Congress on Evolutionary
Computation(CEC), IEEE, 2010, pp. 1�"8.

[9] M. N. Omidvar, X. Li, Y. Mei, et al., “Cooperative co-evolution with
differential grouping for large scale optimization”. Evolutionary
Computation, IEEE Transactions on, 18(3): 378-393, 2014.

[10] W. Chen, T. Weise, Z. Yang, et al. “Large-scale global optimization
using cooperative coevolution with variable interaction learning”,
Parallel Problem Solving from Nature, PPSN XI. Springer Berlin
Heidelberg, 2010, pp. 300-309.

[11] R. Cheng and Y. Jin, “A Competitive Swarm Optimizer for Large
Scale Optimization,” IEEE Transactions on Cybernetics , vol. 45, no.2,
pp. 191-204, 2014.

[12] M. Ran, Q. Wang, and C. Dong, “A dynamic search space Particle
Swarm Optimization algorithm based on population entropy,” in
Proceedings of the 26th Chinese Control and Decision Conference,
2014, pp.4292-4296

[13] C. Hu, M. Zhao, and Y. Wang, “Co-evolutionary particle swarm
optimization based on population entropy” in Proceedings of the 26th
Chinese Control Conference, 2008, pp. 70-74

[14] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y.-P. Chen, C.-M.
Chen, and Z. Yang, ”Benchmark functions for the cec’2008 special
session and competition on large scale global optimization,” Nature
Inspired Computation and Applications Laboratory, USTC, China, 2007.

371
Authorized licensed use limited to: Hanyang University. Downloaded on November 21,2023 at 06:40:17 UTC from IEEE Xplore. Restrictions apply.

