
Sum of Arbitrarily Correlated Gamma Random
Variables with Unequal Parameters and Its
Application in Wireless Communications

Yizhi Feng1,2, Miaowen Wen1,2, Jun Zhang1,2, Fei Ji1,2, and Geng-xin Ning1,2

1School of Electronic and Information Engineering,

South China University of Technology, Guangzhou, 510640, China
2National Engineering Technology Research Center for Mobile Ultrasonic Detection,

South China University of Technology,Guangzhou, 510640, China

Email: yzfeng@scut.edu.cn, eemwwen@scut.edu.cn, eejzhang@scut.edu.cn,eefeiji@scut.edu.cn,ninggx@scut.edu.cn

Abstract—Characterizing the distribution for the sum of corre-
lated Gamma random variables (RVs), especially for the sum of
those with unequal fading and power parameters, is still an open
issue. In this paper, based on the Cholesky factorization on the
covariance matrix and moments matching method, we propose
an approximate expression for the probability density function
(PDF) of the sum of correlated Gamma RVs with unequal fading
and power parameters and arbitrary correlation matrix. The pro-
posed PDF expression is simple, accurate, and closed-form and
thus can be conveniently used for general performance analysis in
wireless communications. Simulation results are used to confirm
the validity of the proposed PDF expression. The performance
analysis of maximal-ratio combining (MRC) diversity system and
cellular mobile radio system in wireless communications using the
proposed PDF expression is also presented.

Index Terms—Correlated Nakagami fading channels, sum
of Gamma variables, unequal fading and power parameters,
arbitrary covariance matrix, diversity system.

I. INTRODUCTION

Multipath fading is one of the main obstacles which se-

riously affect the performance of wireless communication

system. To model the multipath fading statistics of the channel,

Nakagami-m distribution [1] is widely used and has attracted

continued interest due to its wide versatility, experimental

validity, and analytical tractability [2]-[5]. It has been a very

popular fading model for performance analysis investigations

in many important topics of wireless communications, such as

diversity schemes, cochannel interference in cellular mobile

radio systems, multihop relay networks, and so on [6]-[8].

As an efficient and powerful fading mitigation method, di-

versity technique has marked an important impact in the arena

of wireless communication systems, in which the maximal-

ratio combining (MRC) diversity scheme has been considered

to be one of the optimal diversity combining schemes [8]. The

performance analysis problem of MRC diversity combining

system in a Nakagami-m environment requires determination

of the statistics (usually denoted by the probability density

function, PDF) of the signal-to-noise ratio (SNR) at the com-

biner’s output, which is the sum of the squared Nakagami-m

random variables (RVs) or equivalently the sum of the Gamma

RVs since the square of a Nakagami-m variable follows a

Gamma distribution [1], [2], [6].

The PDF of the sum of the Gamma RVs has long been

of interest in mathematics and wireless communications [9],

and has been extensively studied over the past five decades.

There are numerous papers on the PDF of the sum of the

Gamma RVs, where most of the recent works focus on the

correlated Gamma RVs [4], [8]-[11]. In [4], Alouini et. al
derive an infinite-series representation for the PDF of the

sum of arbitrarily correlated Gamma RVs with equal shape

and unequal scale parameters. In [8], the PDF of the sum of

independent but not necessarily identical distributed (i.n.i.d.)

Gamma RVs is expressed in terms of Fox’s H function, which

can be extended for the correlated case; however, the extending

for the correlated case only applied to the Gamma RVs with

equal shape parameter (also called fading parameter) m. In [9],

the PDF of the sum of arbitrarily correlated and non-identically

distributed Gamma RVs with non-identical and non-integer

fading orders is derived but only the integer and half-integer

values of fading parameter m are considered and the PDF

of the sum is also expressed as an infinite-series similar to

[4]. The PDF of the sum of non-identical correlated Gamma

RVs with integer fading parameters is derived in [10] whereas

the result also involves a series of nested summations. In

[11], the PDFs of the sum of correlated Gamma RVs with

constant and exponential correlation are respectively given

but only identical shape and scale parameters are considered.

The characteristic function (CF) of the sum of correlated

Gamma RVs is considered in [2], [3], [5], and [12], whereas

no explicit form of the PDF is presented therein thus analyzing

some performance measures may be complicated [9]. The

multivariate Nakagami-m PDF is presented using Green’s

matrix approximation in [13], whereas the identical shape

and scale parameters are considered; moreover, it is very

difficult, if not impossible, to obtain the PDF of the sum of

the correlated Gamma RVs form the presented multivariate

Nakagami-m PDF therein.
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In this paper, we propose a simple, accurate, and closed-

form approximation for the PDF expression of the sum of cor-

related Gamma RVs based on the moments matching method

and the Cholesky factorization on the covariance matrix. Since

unequal fading and power parameters and arbitrary correla-

tion is considered for the Gamma RVs, the proposed PDF

expression is very general and convenient for the performance

evaluation in wireless communications.

The rest of this paper is organized as follows. The approx-

imate PDF expression of the sum of correlated Gamma RVs

based on the moments matching method and the Cholesky

factorization on the covariance matrix is derived in section

II. Section III gives numerical examples to illustrate the

high accuracy and validity of the proposed PDF approximate

expression. In section IV, the proposed PDF expression is

applied to derive the average bit-error-rate (BER) for MRC

diversity system with M-ary phase-shift (MPSK) and M-ary

quadrature amplitude modulation (MQAM), as well as the

outage probability for cellular mobile radio systems. The last

section concludes this paper.

II. PDF OF THE SUM OF CORRELATED GAMMA

VARIABLES WITH ARBITRARY PARAMETERS

Let γ = [γ1, γ2, . . . , γN ]T be an N dimensional real column

vector, where[·]T means transposition, γn (n = 1, 2, . . . , N)
are non-identically distributed and correlated Gamma RVs and

the PDF of γn is given by

fγn (x) =
1

Γ (mn)

(
mn

Ωn

)mn

xmn−1 exp

(
−mn

Ωn
x

)
(1)

where Γ (·) is the Gamma function [14], Ωn is the mean fading

power given by Ωn = E[γn] with E [·] being the expectation

operator, mn ≥ 1/2 is called as the fading parameter as well as

the shape parameter and Ωn/mn the scale parameter. In what

follows, we will use the notation W ∼ G (m,Ω) to denote

that W follow Gamma distribution with fading parameter m
and mean fading power (also called as power parameter) Ω.

Let γ be the sum of γn, n = 1, 2, . . . , N , i.e.,

γ =

N∑
n=1

γn (2)

We will show that γ can be rewritten as the sum of a set

of independent Gamma RVs. Let Rγ denote the covariance

matrix of γ, then Rγ is given by

Rγ = E
[
(γ − E [γ]) (γ − E [γ])

T
]

(3)

and the (l, n)th element of Rγ is given by

Rγ (l, n) = cov(γl, γn) = E [γlγn]− E [γl]E [γn] (4)

By performing Cholesky factorization on the covariance ma-

trix Rγ , a lower triangular matrix L can be uniquely obtained

such that [15]

Rγ = LLT (5)

Let {wn}Nn=1 be a set of independent Gamma RVs where

wn ∼ G (mw,n,Ωw,n) and w = [w1, w2, . . . , wN ]T be

an N dimensional column vector with an (N ×N) identity

covariance matrix. Then γn can be approximated by the sum

of weighted independent Gamma RVs wk, k = 1, 2, . . . , n [15]

γn =
n∑

k=1

lnkwk (6)

where the fading parameter mw,k and power parameter Ωw,k

of wk can be obtained by matching the first and second

moments of both sides of (6), lnk is the (n, k)th element of

L. It should be pointed out that in our method, the fading and

power parameters of wk is not necessary for the derivation of

the PDF of γ = γ1 + γ2 + · · ·+ γN , which will be shown in

the following part of this paper. From (6), γ can be written as

γ =
N∑

n=1

γn =

N∑
n=1

(
n∑

k=1

lnkwk

)
(7)

Combining the similar items, (7) can be rewritten as

γ =
N∑

n=1

(
N∑

k=n

lkn

)
wn (8)

It’s easy to show if X ∼ G (m,Ω), then aX ∼ G (m, aΩ),
where a is an constant number. Let

xn =

(
N∑

k=n

lkn

)
wn (9)

Then xn ∼ G
(
mw,n,

(∑N
k=n lkn

)
Ωw,n

)
and we have

γ =

N∑
n=1

xn (10)

Since {wn}Nn=1 is a set of independent Gamma RVs, from

(9), {xn}Nn=1 is also an independent Gamma RVs set. Since

the sum of independent Gamma RVs can be approximated

as a new Gamma distributed RV [1], it’s easy to show that

γ ∼ G (mγ ,Ωγ), namely, the PDF of γ = γ1 + γ2 + · · ·+ γN
can be expressed as

fγ (y) =
1

Γ (mγ)

(
mγ

Ωγ

)mγ

ymγ−1 exp

(
−mγ

Ωγ
y

)
(11)

where the fading parameter mγ and mean fading power Ωγ is

given by [1. eq.(80)]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mγ =

(
N∑

n=1

Ωx,n

)2

N∑
n=1

Ω2
x,n

mx,n

Ωγ =
N∑

n=1
Ωx,n

(12)

where mx,n and Ωx,n is the fading parameter and the mean

fading power of xn, respectively. Utilizing (6) and substituting
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mx,n = mw,n and Ωx,n =
(∑N

k=n lkn

)
Ωw,n into (12), we

obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ωγ =
N∑

n=1
Ωx,n =

N∑
n=1

(
N∑

k=n

lkn

)
Ωw,n =

N∑
n=1

Ωn

mγ =

(
N∑

n=1

Ωx,n

)2

N∑
n=1

Ω2
x,n

mx,n

=

(
N∑

n=1

Ωn

)2

N∑
n=1

(
N∑

k=n

lkn

)2

Ω2
w,n

mw,n

=

(
N∑

n=1

Ωn

)2

N∑
n=1

(
N∑

k=n

lkn

)2

(13)

where we use the fact that var[wn] = Ω2
w,n

/
mw,n = 1( w =

[w1, w2, . . . , wN ]T have an identity covariance matrix). From

(5), it can be easily obtained that

N∑
n=1

(
N∑

k=n

lkn

)2

=
N∑
i=1

N∑
j=1

Rγ (i, j) (14)

Therefore, we have

γ ∼ G

⎛
⎝( N∑

n=1

Ωn

)2/ N∑
i=1

N∑
j=1

Rγ (i, j),
N∑

n=1

Ωn

⎞
⎠ (15)

On the other hand, it’s easy to show that the expectation and

variance of γ = γ1 + γ2 + · · ·+ γN is given by⎧⎪⎪⎨
⎪⎪⎩

E[γ] = E

[
N∑

n=1
γn

]
=

N∑
n=1

Ωn

var[γ] = var

[
N∑

n=1
γn

]
=

N∑
i=1

N∑
j=1

Rγ (i, j)
(16)

From (15) and (16), we can draw an interesting and useful con-

clusion that the sum of arbitrary correlated Gamma RVs with

unequal fading and power parameters can be approximated as

a new Gamma RV whose fading parameter and mean fading

power can be also directly and simply obtained by matching

their first and second moments, which is the same result as

that can be obtained for the sum of independent Gamma RVs.

III. NUMERICAL EXAMPLES

In this section, sample numerical examples are given to

illustrate the high accuracy of the proposed PDF approximate

expression by comparing the proposed PDF expression with

the exact expression offered in [4] and the approximate ex-

pression proposed in [16] for constant and circular correlation

model with equal shape and scale parameters, as well as with

Monte Carlo simulations for arbitrary correlation model with

arbitrarily unequal shape and scale parameters. The correlated

Gamma RV set {γn} for Monte Carlo simulation are generated

100000 times by using the algorithm in [15].
Fig. 1 shows a comparison of the PDF obtained from the

proposed expression (11), the exact expression [4, eq. (5)], and

the approximate expression in [16] for five correlated Gamma

RVs with equal fading and power parameters and constant

correlation. The parameters and correlation are the same as

those in [4], i.e.,N = 5, m = 2.5, Ω = 1, ρ = ρij = 0.64, i �=
j, where

ρij =
Rγ (i, j)√

var (γi) var (γj)
(17)
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Fig. 1. Comparison between proposed, exact, and approximate PDFs for
constant correlation with N = 5, Ω = 1, m = 2.5, and correlation
coefficients ρ = ρij = 0.64, i �= j.

denotes the correlation coefficient between γi and γj . It can be

observed perfect match between the proposed approximation

(11) and the approximate solution in [16] for the PDF of

the sum of correlated Gamma RVs with constant correlation

model. It can be also observed that the PDF in Fig. 1 given by

the proposed method match very well with the exact solution

offered in [4], especially for high SNR.

The comparison between the proposed PDF obtained from

(11), the exact PDF obtained from [4, eq. (5)], and the

approximate PDF in [16] for circular correlation model with

equal fading and power parameters is shown in Fig. 2, where

N = 5, m = 2.7, Ω = 1, and the correlation coefficient is

given by

ργ =

⎛
⎜⎜⎜⎜⎝

1 0.64 0.36 0.36 0.64
0.64 1 0.64 0.36 0.36
0.36 0.64 1 0.64 0.36
0.36 0.36 0.64 1 0.64
0.64 0.36 0.36 0.64 1

⎞
⎟⎟⎟⎟⎠ (18)

where the (i, j)th element of ργ is ρij . Similar to the results for

the PDFs with constant correlation model shown in Fig.1, it is

shown that for the PDF of the sum of correlated Gamma RVs

with circular correlation model, the proposed approximation

(11) matches perfectly with the approximate solution in [16],

and matches quite well with the exact solution offered in [4]

in particular for high SNR.

Fig. 3 compares the PDFs obtained from the proposed

expression (11) with the one obtained via Monte Carlo sim-

ulation for the sum of arbitrarily correlated Gamma RVs

with unequal parameters. In order to check the accuracy of

the proposed PDF approximation with more comprehensive

insight, the different number of correlated Gamma RVs, say,

N = 3, 4, and 5 is considered. For N = 5, we use the linearly

arbitrary correlation model whose correlation matrix was given
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Fig. 2. Comparison between proposed, exact, and approximate PDFs for
circular correlation with N = 5, Ω = 1, m = 2.7, and correlation coefficients
matrix (18).

in [2] as

ργ =

⎛
⎜⎜⎜⎜⎝

1 0.795 0.605 0.375 0.283
0.795 1 0.795 0.605 0.375
0.605 0.795 1 0.795 0.605
0.375 0.605 0.795 1 0.795
0.283 0.375 0.605 0.795 1

⎞
⎟⎟⎟⎟⎠ (19)

The fading parameters and the mean fading powers of the

five Gamma RVs are m = [1.0 1.2 1.4 1.6 1.8], Ω =
[1.0 1.3 1.9 2.7 4.1], respectively. The correlation matrices for

N = 3 and N = 4 can both be obtained from the above matrix

in (19), which are respectively the 3rd and 4th order leading

principle submatrices of the matrix in (19). Also, the fading

and power parameters for N = 3 and N = 4 are respectively

the 3rd and 4th order leading principle subvectors and can

be obtained from those for N = 5. Again perfect match

can be observed between the proposed method and Monte

Carlo simulation, which demonstrates the high accuracy of the

proposed approximation for the PDF of the sum of Gamma

RVs.

IV. APPLICATIONS TO THE PERFORMANCE OF WIRELESS

COMMUNICATION SYSTEMS

The derived approximate PDF for the sum of correlated

Gamma RVs in (11) can be conveniently used and give

tractable results for the general performance investigation in

many topics of wireless communications, such as the analy-

sis of average BER for MRC diversity systems and outage

probability for cellular mobile radio systems.

A. Average BER for MRC Diversity Systems

Consider an MRC diversity receiver with N diversity

branches go through correlated Nakagami-m fading channels.

The branch SNRs are denoted by γ1, γ2, . . . , γN , respectively.

The instantaneous SNR of the lth branch is γl ∼ G (ml,Ωl),
where Ωl is the average SNR of the lth branch and ml is the

fading parameter of the lth branch. The SNR at the MRC

output is then given by γ = γ1 + γ2 + · · · + γN . Since
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Fig. 3. Comparison between proposed and simulation PDFs for arbitrary
correlation and unequal parameters with different number of Gamma variables
N.

the branches are correlated, traditionally, the evaluation of

the average BER requires the knowledge of the joint PDF

of {γn}Nn=1 and an N-fold integration [19]. Here we present

a very simple method for the evaluation of the average BER.

According to section II, γ = γ1 + γ2 + · · · + γN can be

approximated as a new Gamma distributed RV such that

γ ∼ G (mγ ,Ωγ), where mγ and Ωγ can be obtained from (13)

or (15). With the help of [17, eq. (17)] and the CF expression

of Gamma variable, the average BER for the MRC receiver

with coherent detection of MPSK signals can be expressed as

Pe =
∫∞
0

[
1
π

∫ π−π/M

0
exp

(
−γ sin2(π/M)

sin2 θ

)
dθ
]
f (γ) dγ

= 1
π

∫ π−π/M

0
ϕγ

(
− sin2(π/M)

sin2 θ

)
dθ

= 1
π

∫ π−π/M

0

(
1 +

Ωγ

mγ

sin2(π/M)
sin2 θ

)−mγ

dθ

(20)

where ϕγ (s) is the CF of γ. Similarly, with the help of [17,

eq. (25)], the average BER for the MRC receiver with coherent

detection of MQAM can be expressed as

Pe =
4q
π

∫ π/2

0

(
1 +

Ωγ

mγ

p
cos2 θ

)−mγ

dθ

− 4q2

π

∫ π/2

π/4

(
1 +

Ωγ

mγ

p
cos2 θ

)−mγ

dθ
(21)

where p = 1.5/(M − 1) and q = 1−1
/√

M [17]. Obviously,

by using the proposed PDF expression for the sum of corre-

lated Gamma RVs, the derivation of the average BER using

N-branch MRC in correlated Nakagami fading reduces to a

single integral, which becomes a very simple and closed-form

expression.

B. Outage Probability for Cellular Mobile Radio Systems

Consider a cellular mobile radio system where N simul-

taneously active mobiles communicate with a single base

station and all users are assumed to go through Nakagami-

m fading with their instantaneous signal power sn ∼
G (ms,n,Ωs,n) , n = 0, 1, . . . , N − 1. The N − 1 interfering

signals {sn}N−1
n=1 are assumed to be correlated each other
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whereas independent from the desired signal s0 and the

correlation coefficient between si and sj is ρij = ρij(i, j =

1, . . . , N − 1)[4]. Let sI =
∑N−1

n=1 sn. Then sI ∼ G (mI ,ΩI)
and its PDF and fading parameters can be obtained from

(11)-(14). Let λ be the carrier-to-interference ratio (CIR),

i.e., λ = s0/sI . The PDF of λ can be easily obtained

with the help of [18, eq.(6-60)] and [14, eq. (3.381.4)]. The

outage probability is the probability that the CIR falls below

a predetermined threshold λth[4], which can be derived with

the help of [14, eq. (3. 194.1)] and given by

Pout =
Γ(ms,0+mI)
Γ(ms,0)Γ(mI)

(
ms,0ΩI

mIΩs,0

)ms,0 λ
ms,0
th

ms,0

· 2F1

(
ms,0 +mI ,ms,0;ms,0 + 1;−ms,0ΩI

mIΩs,0
λth

) (22)

where 2F1 (a, b; c; z) is the Gauss hyper-geometric function

[14, eq. (9.14.2)] . It’s evident that the outage probability can

be easily evaluated using (22).

V. CONCLUSION

In this paper, we proposed a simple, accurate, and closed-

form expression for the PDF of the sum of arbitrarily corre-

lated Gamma RVs with unequal fading and power parameters.

It’s found that the sum of correlated Gamma RVs with unequal

fading and power parameters and arbitrary correlation matrix

can be approximated as a new Gamma RV whose fading

parameter and mean fading power can be directly and simply

obtained by matching their first and second moments, which is

the same result as the sum of independent Gamma RVs. The

proposed PDF expression for the sum of arbitrarily correlated

Gamma RVs with unequal parameters can be conveniently

used to investigate the general performance in wireless com-

munications over arbitrarily correlated Nakagami-m fading

channels, since it not only greatly simplifies the analysis and

can give tractable and closed-form expressions of a number

of performance measures, such as the average BER for MRC

diversity systems and the outage probability of the cellular

mobile radio systems, but also provides a PDF-based approach

for the derivation of some performance measures which are

harder analyze via moment generating function (MGF) or CF-

based approaches.
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