
Learning-Based Power Prediction for Data Centre
Operations via Deep Neural Networks

Yuanlong Li
Nanyang Technological

University
Singapore

liyuanl@ntu.edu.sg

Han Hu
Nanyang Technological

University
Singapore

hhu@ntu.edu.sg

Yonggang Wen
Nanyang Technological

University
Singapore

ygwen@ntu.edu.sg

Jun Zhang
South China University of

Technology
China

junzhanghk@gmail.com

ABSTRACT
Modelling and analyzing power consumption for data cen-
tres can diagnose potential energy-hungry components and
applications, and facilitate in-time control, benefiting the
energy efficiency of data centers. However, solutions to
this problem, including static power models and canonical
prediction models, either aim to build a static relationship
between power consumption and hardware/application con-
figurations without considering the dynamic fluctuation of
power; or simply treat it as time series, ignoring the inherit
power data characteristics. To tackle these issues, in this
paper, we present a systematic power prediction framework
based on extensive power dynamic profiling and deep learn-
ing models. In particular, we first analyse different power se-
ries samples to illustrate their noise patterns; accordingly we
propose a power data de-noising method, which lowers noise
interference to the modelling. With the pretreated data, we
propose two deep learning based prediction models, includ-
ing a fine-grained model and a coarse-grained model, which
are suitable for different time scales. In the fine-grained
prediction model, a recursive autoencoder (AE) is employed
for short-duration prediction; in the coarse-grained model,
an AE is used to encode massive fine-grained historical data
as a further data pretreatment for long-duration prediction.
Experimental results show that our proposed models out-
perform canonical prediction methods with higher accuracy,
up to 79% error reduction for certain cases.

CCS Concepts
•Applied computing → Data centers; IT architec-
tures;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

E2DC, June 21-24, 2016, Waterloo, ON, Canada
c© 2016 ACM. ISBN 978-1-4503-4421-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2940679.2940685

Keywords
Data centre; power modelling; power prediction; deep learn-
ing

1. INTRODUCTION
With the ongoing increase in the volume and scale of data

centers globally, the resulted high power consumption prob-
lem has attracted great attention from both industry and
academy. Google, a leading search service provider, owns
at least 12 data centers in US, and a single fully-operated
data centre is estimated to consume up to 90 MW power
in Oregon. This huge energy consumption brings along a
growing number of problems, such as electricity capitalize in-
vestment, carbon emission, and serious system performance
un-reliability and degradation. Thus, various of power con-
trol technologies have been studied, including DVFS [25],
power napping [12], and consolidation [3], to save energy
from different aspects. However, all these technologies rely
on power estimation, which makes it a essential problem for
data centre power management.

Power estimation often includes two scopes, i.e., building
the relationship between the power consumption and the
hardware/software configuration, and tracking the power
dynamic within different time scales (e.g., short or long).
These two tasks are not straightforward as: 1) there are
distinctive hardware/software factors (e.g., CPU, cooling,
request workload, etc.), which may be correlated with each
other and have different effects on power consumption. Fur-
thermore, several potential confounding factors may also im-
pact the power consumption, e.g., the local temperature,
component aging. A static explicit relationship, if existing,
is not sufficient; 2) power consumption is a dynamic pro-
cess, rather than a quantitative value. For instance, the
workload fluctuates during the execution period, leading to
different levels of power consumption. An adaptive model
is needed to capture such dynamics and make continuous
accurate predictions within the execution period.

Many researchers have dedicated their efforts on the power
estimation problem of data centres. Power modelling has
been widely explored by utilizing different functions [5] [19].
These models are derived on specific system settings and
fixed workloads, and not easy to be extended for different

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2940679.2940685&domain=pdf&date_stamp=2016-06-21

configurations. For dynamic power analysis, Wang et al. in-
vestigated the temporal characteristic of the power series
and analyzed the power peaks [26]. However, this work
only focuses on analyzing the peak patterns of the power
series and cannot provide a complete prediction of the fu-
ture power consumption. A straightforward idea for power
prediction is utilizing the canonical machine learning algo-
rithms to achieve such a goal. Their methods ignore the
inherent characteristic of power data, such as noise patterns
and fluctuation patterns, and are unsuitable for prediction
in different time scales.

In this paper, we present a systematic power prediction
framework based on extensive power dynamic profiling and
deep learning models, with a complete roadmap which cov-
ers from data acquisition, data pretreatment, to prediction
models. In data acquisition, we collect power series and
some power-related system counters, which are used to build
a black-box model without considering the explicit relation-
ship between power and other factors. In data pretreat-
ment, we analyse different power series samples to illustrate
their noise patterns and propose a power data de-noising
method. With the pretreated data, we propose two deep
learning [10] based prediction models for different purposes:
a fine-grained prediction model for short-duration prediction
and a coarse-grained prediction model for long-duration pre-
diction.

Our contributions of this paper are as follows:

• We use detrended fluctuation analysis (DFA) to anal-
yse the noise patterns of the power series and present a
smoothing method that can reduce the white noise and
retain as much workload-related fluctuation as possi-
ble.

• For the fine-grained power prediction, we propose to
use recursive auto-encoder (AE) [10], which handles
the historical data in a recursive way. For the coarse-
grained prediction model, we leverage AE to encode
massive small time-scale historical data, which is used
to reduce the dimensionality of the input data while
preserving more useful information than common re-
sampling based methods.

• Experimental results show that, our fine-grained pre-
diction model can reduce the prediction error by up to
79% on certain cases, and the coarse-grained predic-
tion model can lower the prediction error by at most
50%, in comparison with the canonical methods.

The remainder of this paper is organized as follows. In
Section 2, the power-dynamic modelling problem is formu-
lated. In Section 3 we introduce data collection details.
Section 4 presents the data pretreatment process. Section
5 present fine-grained and coarse-grained prediction mod-
els and the evaluation results. In Section 7, we provide the
related works and in Section 8 we conclude the whole paper.

2. DATA CENTER OPERATIONS WITH PO-
WER PREDICTION

In this section, we first present the overall architecture
and workflow of our emulation-based data center operation
system, demanding an accurate prediction engine to improve
the business continuity. Then we lay out the roadmap of
our proposed learning-based prediction engine including two

Workload

Data

System

Counters

Scheduling

Cloud3DView

Visualization

Engine

Execution

Engine

Prediction

Engine

Prediction
Results

Incoming Jobs

Historical
Power Data

System
under
Prediction

Figure 1: The overall architecture and workflow of
our emulation-based data centre operation system.
The prediction engine receives historical data and
output the prediction results to the Cloud3DView
management platform.

Data

Acquisition

Data

Pretreatment

Fine-Grained

Prediction

Coarse-Grained

Prediction

Prediction Models

Figure 2: Learning based prediction engine work
flow.

prediction models, a fine-grained model and a coarse-grained
model.

2.1 System Flow for Emulation-Based Data Cen-
tre Operation

The overall architecture and workflow of our emulation-
based data centre operation system is shown in Fig. 1. The
system under prediction is a data centre with a monitoring
system which can provide various runtime status, such as
the workload level, various system counters like CPU us-
age, memory utility, etc; and also the current power con-
sumption. These data are recorded as several time series
and used as the input data of the prediction engine. The
prediction engine learns from the historical data to predict
the future power consumption. The prediction results along
with various other system information are further processed
by the Cloud3DView [27] platform to optimize the energy
performance via resource/workload scheduling.

The prediction engine is the key module for the above
emulation-based data centre operation system. In the fol-
lowing we will detail how to build the prediction engine.

2.2 Learning-based Prediction Roadmap
The roadmap of our learning-based prediction engine con-

sists of three steps (as shown in Fig. 2), including data
acquisition, data pretreatment, and prediction models. In
data acquisition, we collect the historical power consumption
data, workload data and various system counters, which are
needed for the prediction model. In data pretreatment, as
the raw data may contain noises which can bias the predic-
tion, we analyse different power series samples to illustrate
their noise patterns and propose a power data de-noising
method. For the prediction models, our observation shows
that: on the one hand, for a short duration, power series
fluctuates severely with high randomness and the prediction
model should be fast enough to track changes; on the other

t-1 t t+1 t+mt-2t-W�O Time

Power

Fine-grained prediction y1: one time slot

Coarse-grained prediction y2: average over multiple time slots

y1

Historical data

t-1 t t+1 t+mt-2t-W� Time

y2

Historical data

O

Figure 3: The two prediction models. The historical
data from t−τ to t−1 (green) are used in prediction.
For fine-grained prediction, we predict the power
consumption at time slot t; for coarse-grained pre-
diction, we predict the average power consumption
over multiple time slots (from t to t+m).

hand, for a long duration, the power series shows more sta-
ble fluctuation pattern (such as the daily pattern) that can
be predicted easily. Also in this case, as the power series is
measured in a small time granularity, a large amount of fine-
grained data is available, which should be properly utilized
in prediction. Thus, we propose a fine-grained prediction
model and a coarse-grained prediction model respectively,
as shown in Fig. 3:

• Fine-grained prediction: The objective is to predict
the power consumption of a single time slot (the yel-
low area in Fig. 3) in the future by using nearby past
historical information (the green area in Fig. 3). In
this case, the predicted time slot is small (e.g., 30 sec-
onds in this work). The prediction results can benefit
online workload scheduling with higher real time re-
quirements.

• Coarse-grained prediction: Similarly, we use the his-
torical information for the power consumption predic-
tion; however, we aim to predict the average power
consumption in multiple time slots in the future (the
blue area in Fig. 3). In this case, the predicted time
interval is much longer than the time unit of power
series, saying one hour in this work. The prediction
result can illustrate the power fluctuation in a larger
time scale and is useful for hardware-level scheduling
requiring a long-time preparation.

In the following sections we will introduce the prediction
engine step by step with more details.

3. DATA ACQUISITION
In this section, we build an experimental system to em-

ulate the system running and power consumption of data
centers. Using two benchmark workloads as the input to
the emulation system, we collect power data and other sys-
tem status.

3.1 Experimental System Architecture
The experimental system architecture is shown in Fig.

4. It contains two servers with a power distribution unit
(PDU), a client machine, and a monitor machine. These two
servers are with the same hardware configuration (Dell Pow-
erEdge R620), but different software installations. The PDU
can monitor the power consumption of each server. The

Monitor

Client

Server 1 Server 2

PDU

Figure 4: System setup: two servers with different
configurations are used to process http requests sent
by the client. The monitor collects data from the
server and the PDU.

client machine is responsible for sending HTTP requests to
two web servers. Workload information, server status, and
power consumption from PDU are recorded by the monitor
machine.

In our experiments, we configure the client machine with
distinctive benchmark workloads to emulate the real user
requests, and therefore drive the servers running to generate
different power consumptions. The request sending rate is
scaled to make both servers running in different states (e.g.,
idle, normal, heavy loaded).

Note that the experimental system, compared with a real
data centre, is simplified in many ways. For instance, we
only emulate the web service, without consideration of other
complicated services, e.g. big data applications. However,
our prediction engine is based on a learning based black-box
model and not specified for certain applications. We can
easily extend our model to other applications by replacing
the corresponding training data.

3.2 Benchmark Workload and Server Config-
uration

In general, the power consumption depends on workload
level and server configuration. In our simulation, we adopt
two widely-used web request traces and two representative
web server configurations.

The web traces used by the client machine are the world
cup 98 (WC98) [1] and Clark net (Clark) [2]. These two
web traces have distinctive dynamic patterns, as shown in
Fig. 5(a) and (d): the WC98 trace has more irregular peaks
while the Clark trace has a stable daily fluctuation pattern.
In addition, to check the system noises, we consider the sit-
uation that the server is empty-loaded. For the web server
configuration, we install one server with Nginx and the other
with Apache to examine the impact of software setting on
power consumption.

3.3 Data Collection
We collect three types of data for power consumption pre-

diction:

• Workload Profile: The workload level can be approx-
imately measured by the number of requests received
by web servers. We record the number of requests ev-
ery three seconds in each server.

• System Status: The OS of each server can monitor the
system running status in terms of system counters. We

0 20000 40000 60000 80000 100000 120000 140000
Time(unit:3 seconds)

0

200

400

600

800

1000

Nu
m
be

r o
f R

eq
ue

st
s a

rri
ve

d
 p
er
 ti
m
e
un

it
WC98 workload

(a)

0 20000 40000 60000 80000 100000 120000 140000
Time(unit:3 seconds)

0

50

100

150

200

250

300

350

400

Po
we

r(W
at
ts
)

WCN

(b)

0 20000 40000 60000 80000 100000 120000 140000
Time(unit:3 seconds)

0

50

100

150

200

250

300

350

400

Po
we

r(W
at
ts
)

WCA

(c)

0 20000 40000 60000 80000 100000 120000 140000
Time(unit:3 seconds)

0

200

400

600

800

1000

Nu
m
be
r o

f R
eq
ue
st
s a

rri
ve
d

 p
er
 ti
m
e
un
it

Clark workload

(d)

0 20000 40000 60000 80000 100000 120000 140000
Time(unit:3 seconds)

0

50

100

150

200

250

300

350

400

Po
we

r(W
at
ts
)

CLN

(e)

0 20000 40000 60000 80000 100000 120000 140000
Time(unit:3 seconds)

0

50

100

150

200

250

300

350

400

Po
we

r(W
at
ts
)

CLA

(f)

Figure 5: Workload traces and collected power series under different configurations: (a) WC98 workload
trace; (b) Power series WCN; (c) Power series WCA; (d) Clark workload trace; (e) Power series CLN; (f)
Power series CLA.

Table 1: System counters collected by “collectd”.
System
counters

Dimension Details

CPU usage 1 100-(CPU idle percentage)
if packets 2 Packets per second, in and out

load 3
Number of runnable tasks in the

run queue as a 1, 5 and 15
minute average

memory
usage

1 Physical memory used (in bytes)

disk
merged

2
Number of disk read/write
operations can be merged

df 2
File system used/available

(in bytes)

Table 2: Power series with different configurations.

Name for short
of a power series

Type of
workload trace

WC98 Clark Empty
Type of

web server
Nginx WCN CLN

E
Apache WCA CLA

0 10000 20000 30000 40000 50000
Time(unit:3 seconds)

0

50

100

150

200

250

300

350

400
Po

we
r(W

at
ts
)

E

Figure 6: Power series E when workload is empty.

collect several power related counters as shown in Ta-
ble 1. Note that some counters are multidimensional
data. These data are also collected every three sec-
onds.

• Power Profile: The power consumption (in Watts)
from PDU is recorded every three seconds.

The detailed methods used to collect data are as follows:
the workload profile of each server is extracted from log in-
formation; system status, such as CPU utilization, memory
usage and network traffic, are measured by an open-source
software “collectd”; Simple Network Management Protocol
(SNMP) is used to collect the power consumption (Watts)
from PDU. Note that the power consumptions of two web
servers are measured independently.

With different workloads and server configurations, we
collect five power series as shown in Table 2. Their abbre-
viations indicate the combinations of workloads and server
configurations. Taking “WCN” as an example, the first two
letters “WC” denote this power series is driven by workload

Table 3: Values of α in different cases by DFA. α
value near 0.5 indicates white noise, near 1 indicates
pink noise, near 1.5 indicates red noise respectively.

Power series WCN WCA CLN CLA E
α 1.30 1.33 0.92 0.91 0.62

“WC98” and the last letter “N”means that the server config-
uration is Nginx. Power series WCN, WCA, CLN and CLA
are shown in Fig. 5 (b)(c)(e)(f) respectively. The trace “E”
denotes the empty workload power series, which is shown in
Fig. 6.

4. DATA PRETREATMENT
By comparing the empty power series (Fig. 6) with the

non-empty power series (such as WCN, in Fig. 5(b)), it
is obvious that the amplitude of the power profile without
workload, i.e., system noise, is comparable to that of the
non-empty power series. It is possible that the system noise
may affect the subsequent prediction. Therefore, we utilize
detrended fluctuation analysis (DFA) to characteristic the
noise pattern, and propose a proper smoothing algorithm to
de-noise the power data. The smoothing results are further
verified by the correlation test between the power series and
workload series.

4.1 Power Series Predictability Characteriza-
tion

We adopt DFA to analyse the noise pattern of the power
series. DFA is a time series analysis method that compares
the fluctuation degree of a time series in different time scales,
which can be used to determine the noise type of a signal,
measured by a factor α. The value of α indicates the noise
type as:

• when α ≈ 1/2, the signal is composed of white noise;

• when α ≈ 1, the signal is composed of pink noise,
which indicates regular fluctuation pattern;

• when α ≈ 3/2, the signal is composed of red noise,
which indicates random walk.

The white noise is caused by the random fluctuation of the
system or measurement error, which is unpredictable and
should be removed as much as possible. Pink and red noise
indicate that the fluctuation of the signal is following cer-
tain hidden trends, which should be preserved as much as
possible.

We measure the α value via DFA on the power series, and
the results are shown in Table 3. We can observe that: 1)
the α value of the empty workload power series“E” is close to
0.5, which confirms that the system noise is almost random
white noise; 2) α values for WC98 power series (WCN and
WCA) are close to 1.3, which indicates that the noise is
between pink and red; 3) α values of the Clark power series
(CLN and CLA) are close to 1, which indicates that the
noise is pink.

4.2 Smoothing for Noise Reduction
Based on the above analysis, there exists three types of

noises, including white noise, pink noise and red noise, in
our collected raw data. To alleviate the impact from noise,
our objective is to remove the white noise, while keep the

Table 4: Correlation coefficient of power series and
workload series before and after smoothing.

Spearman’s rank correlation coefficient

Before smoothing
WCN WCA CLN CLA
0.8209 0.8342 0.7490 0.6123

After smoothing
WCN WCA CLN CLA
0.9712 0.9686 0.9547 0.9364

pink and red noise, which are related to the workload. To
this end, we leverage an average value based downsampling
method detailed as below.

Given the original power series with a time unit ρ, for
each consecutive non-overlapping window consisting of L
time slots, we downsample the power series to the average
power consumption in this window. This new power series
then has a time unit ρ · L. Since the white noise has zero
mean value, when the window length L is large enough, the
white noise can be eliminated using this method.

In practice, L cannot approach to infinity. A key problem
is how to choose an appropriate window size L. Through
extensive experiments, we find that, when L = 10, the
downsampled series to the ‘E’ trace approximates a straight
horizontal line with variance reduced by 95%. Although a
larger L can achieve better smoothing performance, it leads
to higher pink/red noise loss, which is undesirable. There-
fore, we set L = 10.

We apply this smoothing method to all the raw data we
collected. The time unit of the downsampled data is changed
to 30 seconds.

4.3 Noise Reduction Result Verification
To verify the smoothing performance to the power series,

we calculate the correlation between the workload series and
power series before/after smoothing. The reason we choose
the workload series as the reference is that the workload se-
ries is measured by the number of requests without system
noise. In particular, we compute Spearman’s rank correla-
tion coefficient [4] between two time series. The correlation
coefficient falls into the range [-1, 1]. A coefficient close to
1 or -1 indicates there exists strong correlation; while the
coefficient close to 0 means there is weak correlation.

The correlation coefficients are shown in Table 4. When
we compare the coefficients before and after smoothing for
four traces, we observe that the coefficients after smooth-
ing are increased significantly for all the cases. Especially,
the coefficient for the CLA trace is increased from 0.6123
to 0.9364. We can conclude that our proposed smoothing
method can reduce the system noise and preserve the work-
load correlated trends.

5. FINE-GRAINED AND COARSE-GRAINED
PREDICTION MODELS

In this section, we first briefly introduce the preliminar-
ies of deep neural network model, which is the basis of our
proposed two prediction models. Following that, we present
the fine-grained and coarse-grained prediction models. For
fine-grained prediction, we propose to use the RAE model
to track fast power fluctuation; for coarse-grained predic-
tion, we propose to utilize AE to handle the large amount
of fine-grained data.

5.1 Deep Neural Network Model

(a) (b)

Figure 7: Illustration of (a) auto-encoder (AE) and
(b) recursive auto-encoder (RAE). An AE consisting
of two layers can encode the input data into codes
with a different length. RAE recursively encodes
the data in the series into a short code. In the illus-
tration example, X(t−4), X(t−3), X(t−2) and X(t−1)
are encoded into the code E(1) with the same length
3 of any of the given input data, which can be used
for further prediction.

In this subsection, we introduce the key idea of auto en-
coder and recursive auto encoder.

5.1.1 Auto Encoder
AE is a two-layer neural network as shown in Fig. 7 (a)

which has an input layer and an output layer. Nodes in an
AE are connected with full connections between the two lay-
ers. For any input data X, where X is a vector, AE can en-
code X into a code X ′ of a different dimension (equal to the
number of the nodes in the output layer of the AE). There
can be different coding methods for AE, here we consider the
following method: for an AE with N nodes in input layer
and M nodes in output layer, with an activation function g,
for example, the sigmoid function, a M ×N transformation
matrix W and a M × 1 bias vector b, given input vector X,
the code X ′ is computed as X ′ = g(WX + b); with a new
transformation matrix W ′ of size N ×M and bias vector b′

of size N × 1, X can then be reconstructed as g(W ′X ′ + b′).
An AE can be pre-trained by adjusting W ,W ′, b and b′ to
minimize its reconstruction error, i.e. |X − g(W ′X ′ + b′)|.

5.1.2 Recursive Auto Encoder
The recursive auto encoder (RAE) [21] built on AE is

originally proposed for language modelling, which can recur-
sively encode a whole sentence into a simple code to predict
the following phrase. We are particularly interested in RAE
here as it can recursively encode the data in a sequence.

We introduce the structure of the RAE in the context of
our power prediction model as shown in Fig. 7 (b). Denote
X(t) as the input data at time slot t, which means X(t)
contains all the data including power consumption, workload
and all the systems counters aligned as a vector. Then the
input data from time slot t − τ to t − 1 can be encoded
recursively in the following way: firstly X(t− τ) and X(t−
τ + 1) are encoded into E(τ), then E(τ) and X(t − τ +
2) are encoded into E(τ − 1),..., finally E(2) and X(t − 1)
are encoded into E(1). E(1) is a code of the same length
as X(t), which can be taken as a weighted summation of
X(t − τ, ..., t − 1). E(1) can then be used to predict power
consumption yt, for example, with a transformation matrix
W and bias vector b, the predicted power can be computed
as y′

t = WE(1) + b.

5.2 Fine-Grained Prediction Model

The fine-grained prediction model is designed to predict
the power consumption at time slot t given the related his-
torical data at time slots t− 1, t − 2, For such purpose,
NARX, which is a non-linear neural network (NN) and one
of the most widely used prediction models for time series,
fits our problem well in the sense that exogenous factors
(i.e., workload and system counters) are available in our
case. However, we find that NARX cannot track rapid power
fluctuations in certain cases, especially for the fine grained
prediction. To tackle this problem, we propose a linear re-
cursive auto encoder (RAE) based prediction model.

The RAE based prediction model works as follows: the
input of the RAE is all the historical data from t − τ to
t − 1 aligned as a vector; A same linear AE is used in the
encoding process of the RAE. With the output E(1) of the
RAE, the predicted power consumption y′

t at t is computed
as WE(1) + b, with a transformation matrix W and bias
vector b.

To train the RAE network, the optimization objective is
to minimize the following loss function:

ǫRAE = ǫPRD ∗ 0.95 + ǫAE ∗ 0.05, (1)

where ǫPRD is the prediction error and ǫAE is the recon-
struction error of the RAE. In other words, ǫRAE is the
weighted sum of prediction error and reconstruction error
with the corresponding weighted factor 0.95 and 0.05 re-
spectively. ǫPRD and ǫAE are given by:

ǫPRD =

∑Ntrain

t=1
‖y(t)− y′(t)‖2
Ntrain

+ 0.0001 · ‖W ‖2,

ǫAE =

∑Ntrain

t=1
Errrec(t)

Ntrain

,

where ǫPRD is the mean square error (MSE) of prediction
with L2-norm parameter regularization, and Ntrain is the
number of training samples. ǫAE is the mean value of all the
reconstruction error Errrec(t) over Ntrain encoding steps.

The control variables of the RAE prediction model in-
clude the RAE parameters (WAE, W

′
AE ,bAE, and b′AE) and

the prediction layer parameters (W and b), which are put
together as a parameter set denoted by θ. Then the train-
ing process is to adjust θ to optimize the error function. To
avoid the over-fitting problem, we follow the general train-
ing process of an NN with a validation process, which are
shown in Algorithm 1.

The general NN training framework Algorithm 1 works
in the following way. In the data preparation (line 1), we
choose a piece of power series of L time slots as the test
series, and each time slot t = 1, ..., L corresponds to a data
pair (Xt, yt), where yt is the target power consumption, Xt is
the recent historical data aligned as a vector used to predict
yt. Then for this collection of data, we choose the first L1

time slots as the training data, the following L1+1 to L2 as
the validation data, and the left time slots as the test data.
During the training process (line 2-14), the training error
function Eq. (1) is minimized by adjusting the parameters
(WAE, W

′
AE, bAE , b

′
AE, W , and b) of the prediction model;

at the same time, the validation error is checked to mark
the parameter settings that achieve the minimum validation
error, which is used as the final setting of the model (line 15).
Note that Algorithm 1 is a general NN training framework,
which can also be used to train NARX model by setting the
corresponding error function in line 5.

Algorithm 1 General NN Training Framework

1: Data preparation: Choose a piece of power series of L
time slots, for which we prepare a pair of data (XT , y),
in which XT (t) is all the data aligned as a vector used to
predict y(t) (the power series), t = 1, ..., L. The input
data with totally L time slots are divided into three
parts: time slots from τ to L1 are used for training;
time slots from L1 +1 to L2 are used for validation; the
left time slots are used for test.

2: Initialization: set Epoch = 0, best validation
error Vbest = ∞; denoting θ as the set of
all control parameters of a NN (e.g., for RAE,
θ={WAE,W

′
AE, bAE, b

′
AE ,W, b}), randomly initialize θ;

set best NN parameter setting θbest = ∅; initialize
MaxEpoch.

3: //Training process:
4: while Epoch < MaxEpoch do
5: Compute the training error ǫ of the model (e.g., for

RAE, the training error is computed by Eq. (1)).
6: Update θ to reduce ǫ.
7: For k ∈ {L1 + 1, ..., L2}, compute prediction square

error e(k) = (yk − y′
k)

2.
8: Vc =

∑
k∈{L1+1,...,L2}

e(k)/(L2 − L1).
9: if Vc < Vbest then
10: Vbest ← Vc.
11: θbest ← θ.
12: end if
13: Epoch = Epoch+ 1.
14: end while
15: Output : The best parameter settings θbest.

With the output of Algorithm 1, the best parameter set-
tings are used to set the parameters WAE, W

′
AE, bAE , b

′
AE ,

W , and b for the RAE. Then this well-trained RAE can be
used for prediction.

5.3 Coarse-Grained Prediction Model
In this subsection, we present the coarse grained predic-

tion model, aiming to predict the average power consump-
tion in multiple time slots in the future, e.g., the subsequent
one hour. As the power series we collected has a small time
unit, i.e., 30 seconds, there exists a mismatch between the
data collection scale and prediction scale. To tackle this is-
sue, we first review existing methods, and then present our
AE based method.

5.3.1 Different Methods for Coarse-Grained Predic-
tion

Different methods can be used to utilize the historical data
for the coarse-grained prediction. We use our case to illus-
trate these different methods. In our experiment, the objec-
tive is to predict the average power consumption of one hour
in the future, which is 120 time slots of the power series we
collected (after pretreatment). There are three ways to deal
with the historical data (including all power, workload and
system counters) as shown in Fig. 8 and their differences
are summarized in Table. 5:

• Prediction with the original series: The original power
series can be directly used for prediction. In this case,
all the small time unit data from the last τ hours are
used to predict the average power consumption of one

Figure 8: Three methods to handle the input data
for coarse-grained prediction. Method 1 directly
utilizes the original series in an NN for prediction.
Method 2 first re-samples the time series to the large
time unit and then utilizes the re-sampled series
for prediction. Method 3 is our proposed method,
which first encodes the fine-grained series into lower
dimension with an AE and then utilizes the encoded
series for prediction.

Table 5: Comparison of different methods to handle
the input data for coarse-grained prediction.

Prediction methods Information retained Input dimension
With the original series Maximum(best) Maximum

With the re-sampled series Minimum Minimum(best)
With encoded series Medium Medium

hour in future. The input data contain τ · 120 time
slots in our experiment, as there are 120 time slots in
each hour. When these data are directly used in a
simple NN for prediction, the input data will have a
large dimension, i.e. τ ·120 ·N , where N is the number
of variables. Such a NN with high dimensional input
is hard to train, making this method impractical.

• Prediction with re-sampled series: We can re-sample
the power series to change the time unit to an hour
by computing the average value in each hour for each
variable. The prediction can then be conducted with
the new series with NARX or RAE.

• Prediction with encoded series: We propose to use an
AE to encode the small time unit data into lower di-
mension codes and then use these lower dimensional
codes (codes of different input variables are combined
into a vector) for prediction. Further details are shown
below.

5.3.2 AE Based Coarse-Grained Prediction
The proposed AE based coarse-grained prediction method

works as follows. We use an AE to encode all the data in
each hourly time interval. Training process of the AE fol-
lows the framework of Algorithm 1, in which the objective is
changed from prediction error to reconstruction error. After
the training of the AE, the well-trained AE is used to encode
all the data (training, validation and test). The codes are
then used as the input data of the NARX or RAE model
for prediction. Note that the AE code works similar to the
average value used in the re-sampling method, but it can be
a vector which can store more useful information.

6. EXPERIMENTAL RESULTS
In this section we evaluate the proposed fine-grained and

coarse-grained prediction models with other baseline algo-
rithms.

6.1 Experimental Settings
The experimental settings are as follows. For the fine-

grained prediction model, we compare the prediction results
of NARX and RAE. Training and test processes of both
NARX and RAE follow Algorithm 1. We select 12 test series
from WCN and CLN power series of length L = 1000, in
which the first L1 = 700 time slots are used for training;
time slots from L1 to L2 = 850 are used for validation the
left are used for test. The maximum number of training
epochs is set to MaxEpoch = 100. The input data are
normalized into zero mean and standard deviation before
training. Note that these settings are exactly the same for
NARX and RAE for fair comparison. The number of hidden
nodes of the NARX is set to 10. The time delay τ is set to
2.

For the coarse-grained model, we compare different meth-
ods on four power series: WCN, WCA, CLN and CLA. Each
time series has a total duration of 5 days, in which the first
70% are used for training, 70%-85% are used for validation
and the last 15% are used for testing. τ is set to 5 for all
these approaches, which means that the data of the past 5
hours are used to predict the data of the future one hour.
For the data encoding with AE, we set the code length to 15
for WCN, 10 for WCA, 3 for CLN and 1 for CLA. Different
code lengths can work differently and we manually tuned
these parameter settings.

6.2 Comparison on Fine-Grained Prediction
Models

In this subsection, we evaluate the proposed RAE model
by comparing it with the NARX model.

In general, the accuracy of all the prediction methods re-
lies on the similarity of the given training data and test
data. The more similar of the two types of data, the better
performance we will get. However the power consumption
fluctuates pattern can change unexpectedly, for example, as
illustrated in Figure 9(a), the training data (the first 70%
time slots) and the test data (the last 15%) are distributed
in different range. To demonstrate the fast tracking abil-
ity of RAE, we present the prediction results on three cases
categorized by the change pattern difference of training data
and test data in Fig. 9. Fig. 9(a) shows an example that
the test data increase out of the range of the training data.
This situation can be common in practice as the power de-
mand may increase higher than the recent historical peak.
We test the NARX and RAE on this example respectively,
with the prediction results shown in Fig. 9(a). Clearly RAE
achieves much better prediction results than NARX in this
example. Fig. 9(b) shows another example that the test
data decrease out of the range of the training data. For this
case RAE also performs much better than NARX. Fig. 9(c)
shows another example without such clear range difference
between the training data and test data, for which RAE and
NARX achieve similar prediction accuracy. The above re-
sults prove that RAE performs better than NARX on series
when there is unexpected fast change.

Second, to make a more detailed comparison of NARX
and RAE, we present the prediction error of NARX and
RAE on the 12 test series in Table 6. For each test series, the
prediction error is defined as normalized root mean square

Table 6: Prediction error (mean±std) comparison of
NARX and RAE (smaller is better). Test results are
based on 20 independent runs for each test sample.
Better results are shown in bold face.

WC98 Clark
NARX RAE NARX RAE

1 (500-1500) 1.1±0.04 0.24±0.06 0.87±0.02 0.80±0.01
2 (1000-2000) 0.22±0.02 0.17±0.01 0.88±0.02 0.87±0.01
3(1500-2500) 0.64±0.03 0.21±0.02 1.14±0.03 1.02±0.07
4 (2000-3000) 0.22±0.01 0.14±0.01 0.74±0.01 0.72±0.01
5 (8000-9000) 0.79±0.09 0.76±0.02 0.82±0.02 1.12±0.18
6 (9000-10000) 1.7±0.03 1.03±0.13 0.90±0.04 0.87±0.01

error (RMSE) ǫnms,

ǫnms =

√
MSE

σy

. (2)

where σy denotes the standard deviation of the whole test
power series. The experimental results are shown in Table 6,
in which we present the “mean±standard deviation” of the
prediction errors of 20 independent runs for each test series.

From Table 6 we can see that RAE outperforms NARX on
most cases with smaller mean prediction errors. RAE can
outperform NARX in the fine-grained prediction is due to
that the fast fluctuation pattern of the power series in this
small time unit. RAE, as a linear model, is more suitable
than NARX. Note that in this case actually a linear ver-
sion of NARX, namely ARX, can also perform better than
NARX. But in our experiments, RAE can still outperform
ARX (e.g., ARX can achieve error 0.32, compared to the
error 0.24 of RAE for the WCN 500-1500 test case). The
recursive structure of RAE shows its advantage in this case.

6.3 Comparison on Coarse-Grained Prediction
Methods

In this subsection we compare the prediction results of
the proposed AE encoded series based method and the re-
sampled series based method. The results of prediction
directly with the original series are omitted here, at the
method failed in our experiments due to large input dimen-
sion.

We compare the two methods on the four different power
series WCN, WCA, CLN, and CLA. The prediction error
distributions of 20 independent runs are shown in Fig. 10.
We observe that with the RAE prediction model, the AE
encoded series based method always has smaller prediction
error (reduced up to 40%) for all four cases; when we use
the NARX prediction model, the AE encoded series based
method can be worse than NARX with the re-sampled data
based method. However, overall, the best prediction results
are always generated by the AE encoded series based method
(with either NARX or RAE). It should be noticed that for
the CLA case, the code length of the AE is set to 1, which
means that the code has the same length to the average value
used in re-sampling; however, with encoded data the pre-
diction algorithm presents better prediction results, which
shows that the code “learned” from the historical data can
be more suitable for prediction than the average value di-
rectly “computed” from the data.

In summary, the AE encoded series based method can
utilize massive historical data to give better prediction re-
sults. The AE can properly reduce the dimension of the

400 600 800 1000 1200 1400 1600
Time(unit: 30 seconds)

100

105

110

115

120

125

130

135

140

145

Po
we
r(W

at
ts
)

True data
NARX
RAE

(a)

1400 1600 1800 2000 2200 2400 2600
Time(unit: 30 seconds)

100

105

110

115

120

125

130

135

140

Po
we
r(W

at
ts
)

True data
NARX
RAE

(b)

8000 8200 8400 8600 8800 9000
Time(unit: 30 seconds)

97

98

99

100

101

102

103

104

105

106

Po
we

r(W
at

ts
)

True data
NARX
RAE

(c)

Figure 9: Prediction results of NARX and RAE on three different cases: (a) increasing out-of-range: WCN
(time slots: 500-1500), (b) decreasing out-of-range: CLN (time slots: 500-1500), (c) no out-of-range: WCN
(time slots: 9000-10000)

1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

1 2 3 4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

1 2 3 4
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

(c)

1 2 3 4
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

(d)

Figure 10: Prediction error distribution of NARX,
RAE with re-sampled series (1 and 2), and NARX,
RAE with AE encoded series (3 and 4) on different
power series: (a) WCN, (b) WCA, (c) CLN, (d)
CLA. Results are based on 20 independent runs. (3)
or (4) is best in all four cases.

input data, while retains more useful information than the
simple average value used in re-sampling.

7. RELATED WORKS
In this section, we review related studies on power mod-

elling of data centres, including static power modelling, dy-
namic power modelling. Also we review some common meth-
ods used in time series prediction and deep learning.

Static power modelling : Most of the power models of data
centre proposed recently are static. In [7], Beloglazov et al.
presented a thorough survey on power consumption of data
centres, most of which are static models. According to their
study, there are many different levels of power models, such
as system level [28], virtualization level [22] [13] [11] [15],
and data centre level [18], considering different aspects of
data centres such as network [8], storage [29]. Static power
models can be used to save energy [6] [16] [12] and achieve
“green IT”as shown in [14] [17] [19]. Static models are useful
to evaluate the power needed for a certain data centre in
certain cases, however, it cannot reflect how the actual power
consumption fluctuates in the runtime.

Dynamic power modelling : Other than static power mod-
elling, there are also a few works on dynamic power mod-
elling of data centres. In [26] the authors studied the tem-
poral characteristics of power series collected from real data
centres. They used hurst exponent to measure the self-

similarity of the series. In this paper, we have extended
their work and performed more power dynamics analysis.
Also there are a number of works that utilizes the temporal
continuity of the power consumption and use historical data
to do power prediction and controlling. Especially, many
are using historical data to do direct controlling and adjust-
ment, such as the reinforcement learning method [24] [23],
look ahead controlling [11]. Others are using historical data
to build simple prediction models like [7] [3]. In these stud-
ies, the prediction is done by using simple mathematical
formulas implicitly or explicitly. Different with these works,
in this paper we propose a systematic prediction engine.

Time series prediction methods and deep learning : On
time series prediction, AR and NARX are two popular pre-
diction models, in this paper we compare the NARX with
a deep NN model. On deep learning, recent deep learning
studies [20] show that a deep NN can be constructed by
stacking multiple building blocks, such as auto-encoder [10]
and restricted Boltzmann machine (RBM) [9]. The effec-
tiveness of these deep NN have been demonstrated in image
recognition [10], language modelling [21] and various other
applications.

8. CONCLUSION
In this paper, we proposed a deep learning based sys-

tematic prediction engine for data centre power consump-
tion. The proposed prediction engine includes three mod-
ules, namely data acquisition, data pretreatment, and pre-
diction models. For the prediction models, we propose to
utilize RAE for short-duration fine-grained prediction, which
can track the fast changes of the power consumption of a
data centre. We also proposed to use AE to encode large
amount of fine-grained data for long-duration coarse-grained
prediction, which achieves smaller prediction error and bet-
ter stability than common re-sampling based method.

9. REFERENCES
[1] M. Arlitt and T. Jin. 1998 world cup web site access

logs, 1998.

[2] M. F. Arlitt and C. L. Williamson. Web server
workload characterization: The search for invariants.
In ACM SIGMETRICS Performance Evaluation
Review, volume 24, pages 126–137. ACM, 1996.

[3] J. Choi, S. Govindan, B. Urgaonkar, and
A. Sivasubramaniam. Profiling, prediction, and
capping of power consumption in consolidated
environments. In IEEE International Symposium on
Modeling, Analysis and Simulation of Computers and
Telecommunication Systems, pages 1–10. IEEE, 2008.

[4] G. W. Corder and D. I. Foreman. Nonparametric
statistics for non-statisticians: a step-by-step
approach. John Wiley & Sons, 2009.

[5] J. D. Davis, S. Rivoire, M. Goldszmidt, and E. K.
Ardestani. Chaos: Composable highly accurate
os-based power models. In IEEE International
Symposium on Workload Characterization (IISWC),
pages 153–163. IEEE, 2012.

[6] E. M. Elnozahy, M. Kistler, and R. Rajamony.
Energy-efficient server clusters. In Power-Aware
Computer Systems, pages 179–197. Springer, 2003.

[7] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and
M. Marwah. Minimizing data center sla violations and
power consumption via hybrid resource provisioning.
In 2011 International Green Computing Conference
and Workshops (IGCC), pages 1–8. IEEE, 2011.

[8] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. Elastictree: Saving energy in data center
networks. In NSDI, volume 10, pages 249–264, 2010.

[9] G. E. Hinton. Deep belief networks. Scholarpedia,
4(5):5947, 2009.

[10] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[11] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy,
and G. Jiang. Power and performance management of
virtualized computing environments via lookahead
control. Cluster computing, 12(1):1–15, 2009.

[12] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap:
eliminating server idle power. ACM SIGARCH
Computer Architecture News, 37(1):205–216, 2009.

[13] X. Meng, V. Pappas, and L. Zhang. Improving the
scalability of data center networks with traffic-aware
virtual machine placement. In Proceedings IEEE
INFOCOM, pages 1–9. IEEE, 2010.

[14] S. Murugesan and G. Gangadharan. Harnessing green
IT: Principles and practices. John Wiley & Sons, 2012.

[15] R. Nathuji and K. Schwan. Virtualpower: coordinated
power management in virtualized enterprise systems.
In ACM SIGOPS Operating Systems Review,
volume 41, pages 265–278. ACM, 2007.

[16] E. Pinheiro, R. Bianchini, E. V. Carrera, and
T. Heath. Load balancing and unbalancing for power
and performance in cluster-based systems. In
Workshop on compilers and operating systems for low
power, volume 180, pages 182–195. Barcelona, Spain,
2001.

[17] E. N. Power. Energy logic: Reducing data center
energy consumption by creating savings that cascade
across systems. A White Paper from the Experts in

Business-Critical Continuity, 2008.

[18] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade
servers. In ACM SIGARCH Computer Architecture
News, volume 34, pages 66–77. IEEE Computer
Society, 2006.

[19] R. Sawyer. Calculating total power requirements for
data centers. American Power Conversion, Tech. Rep,
70:80–90, 2004.

[20] J. Schmidhuber. Deep learning in neural networks: An
overview. arXiv preprint arXiv:1404.7828, 2014.

[21] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and
C. D. Manning. Semi-supervised recursive
autoencoders for predicting sentiment distributions. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 151–161.
Association for Computational Linguistics, 2011.

[22] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun.
Multi-tiered on-demand resource scheduling for
vm-based data center. In Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 148–155. IEEE
Computer Society, 2009.

[23] G. Tesauro, R. Das, H. Chan, J. Kephart, D. Levine,
F. Rawson, and C. Lefurgy. Managing power
consumption and performance of computing systems
using reinforcement learning. In Advances in Neural
Information Processing Systems, pages 1497–1504,
2007.

[24] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani.
A hybrid reinforcement learning approach to
autonomic resource allocation. In IEEE International
Conference on Autonomic Computing (ICAC), pages
65–73. IEEE, 2006.

[25] G. Von Laszewski, L. Wang, A. J. Younge, and X. He.
Power-aware scheduling of virtual machines in
dvfs-enabled clusters. In Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International
Conference on, pages 1–10. IEEE, 2009.

[26] D. Wang, C. Ren, S. Govindan, A. Sivasubramaniam,
B. Urgaonkar, A. Kansal, and K. Vaid. Ace:
Abstracting, characterizing and exploiting datacenter
power demands. In IEEE International Symposium on
Workload Characterization (IISWC), pages 44–55.
IEEE, 2013.

[27] J. Yin, P. Sun, Y. Wen, H. Gong, M. Liu, X. Li,
H. You, J. Gao, and C. Lin. Cloud3dview: an
interactive tool for cloud data center operations. In
Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM, pages 499–500. ACM, 2013.

[28] F. Zanini, D. Atienza, L. Benini, and G. De Micheli.
Multicore thermal management with model predictive
control. In European Conference on Circuit Theory
and Design (ECCTD), pages 711–714. IEEE, 2009.

[29] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou,
and P. Cao. Reducing energy consumption of disk
storage using power-aware cache management. In IEE
Proceedings-Software, pages 118–118. IEEE, 2004.

