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Differential Evolution for Power Electronic Circuit 
Optimization 

Zhi-Hui Zhan, Member, IEEE and Jun Zhang, Senior Member, IEEE 

Abstract-Power electronic circuit (PEC) design and 

optimization is a significant problem in both scientific and 

engineering communities. Due to the complex search space of 
the PEC optimization problem, lots of works have tried to use 

evolutionary computation (EC) algorithms to solve it, and have 
gained great progress. However, some existing EC based 

algorithms for PEC are still complex in algorithm design, or the 
solutions are still needed to be improved when considering the 

solution accuracy. Therefore, design a simpler yet powerful 
algorithm to solve the PEC problem efficiently is in great need. 

This paper makes the first attempt to proposing a novel 
differential evolution (DE), which is a kind of new, simple, yet 

efficient EC algorithm for the PEC design and optimization. 
The advantage of this paper is that the DE algorithm is the first 

time directly applied to PEC design and optimization, making 

the approach very simple for use. The results are compared with 
those obtained by using genetic algorithm (GA), particle swarm 

optimization (PSO), and brain storm optimization (BSO). 
Results show that the DE algorithm outperforms GA, PSO, and 

BSO in our PEC design and optimization study. 

Keywords- Differential evolution (DE), power electronic 
circuit (PEe), optimization 

I. INTRODUCTION 

During the past several decades, power electronics circuit 
(PEC) design has been fast developed mainly due to the 

significances of PEC in various applications, such as in 

the industrial, commercial, residential, aerospace, military, 

and utility areas [1][2]. The PEC design is a typical 

optimization problem that lots of the components in the 

circuit, such as resistors, capacitors, and inductors, have to be 

optimally designed so as to obtain better circuit performance 

[3]. In the early years, the engineers might use the 

trial-and-error process to determine the component values of 
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the PEe. However, as the complexity increased in PEC, 

efficient optimization methods become great need because 

suitable components design and parameters tuning of PEC 

often challenge the engineers. Therefore, various 

optimization approaches such as heuristic method [4], 
knowledge based method [5], gradient descent or 

hill-climbing method [6][7], and simulated annealing method 

[8], have been proposed for some specific analog circuit 

design automation. However, these approaches are very 

sensitive to the initial solution and might be inefficient to 
search globally when the problems are complex [9]. As a 

result, the obtained values for the circuit components may be 

sub-optimal, leading to low satisfaction when used in 

practical applications. 

As a kind of popular global optimization tool, evolutionary 

computation (EC) algorithms have been fast developed and 

have been applied in many real-world problems such as 

multicast routing optimization [10], intelligent transportation 

scheduling [11][12], and wireless sensor networks design 

[13][14]. Several EC algorithms such as the genetic algorithm 

(GA) [9], ant colony optimization (ACO) [15], particle 

swarm optimization (PSO) [16], and brain storm optimization 

(BSO) [17] have also been reported successfully applied to 

solve the PEC problem. These works have provided very 
encouraging results and have shown great promising of using 

EC algorithms in the PEC optimization problem. However, 

PEC is a very tough optimization problem due to its complex 
circuit structure and the multimodal search space. Moreover, 

Zhan et al. [18] argued that the PEC problem should be 

optimized in the free search range, further making the PEC 

model nearer to practical application but at the same time 

making the problem more challenging. Although an 
orthogonal learning PSO (OLPSO) has been applied to PEC 

optimization with free search range and obtained promising 

performance, the OLPSO approach seems to be more 

complex than traditional PSO [19]. Therefore, we still hope to 

find a simpler yet powerful algorithm to solve the PEC 

problem efficiently. Later, Zhang et al. [20] proposed to use 
normalization group strategy to extend BSO for PEC design 

and optimization. The normalization group based BSO 

(NGBSO) shown better performance than GA and traditional 

PSO. However, the solutions are still needed to be improved 

when considering the solution accuracy. 
Differential evolution (DE) is a kind of simple yet efficient 

EC algorithm [21]. Due to its simple algorithm 

implementation and efficient performance in many kinds of 

optimization problems, the DE algorithm and its variants 

have been extensively studied [22][23][24] and have been 
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applied to many real-world optimization problems [25][26]. 

The widely successful use of DE in various real-world 
problems has shown that DE is a promising approach for the 

PEC problem. 

To the best our knowledge, this is the first attempt to 

propose the DE algorithm, which is a kind of new, simple, yet 

efficient EC algorithm for the PEC design and optimization. 
The advantage of this paper is that the DE algorithm is the 

first time directly applied to PEC design and optimization, 

making the approach very simple for use. The results are 

compared with those obtained by using GA, PSO, and BSO. 

The rest of this paper is organized as follows. In Section II, 

the brief description of the DE algorithm and the PEC 
optimization problem are presented. Then Section III 

proposes to use DE to solve the PEC problem. Section IV 

verifies the performance of DE in optimizing the PEC by 

comparing with the well-studied GA, PSO, and BSO 

algorithms for PEC in the literature. Finally, conclusions are 
summarized and future work is highlighted in Section V. 

II. DE AND PEC 

A. DE 

The DE algorithm is a typical EC algorithm with three 

basic operations for the population reproduction: mutation, 
crossover, and selection. 

In every generation, a population P first goes through 

mutation. The mutation operation of DE is very special in that 

it uses a linear combination of a base vector and one 

differential vector or more to generate a mutated vector. For 
example, for every individual X, (i = 1, 2, '" N, where N is the 

population size) in P, its mutated vector Vi is generated by: 

V, = Xr, + F . (Xr, - Xr) (1) 

where r), rl, and r3 are three randomly selected individuals, 

and are also different from i. In this mutation scheme, the 

difference between individuals r2 and r3 is used as the 

mutation step while factor F controls the step scale. After a 

mutated population V is created, it will go through a crossover 

process with the parent populationP. The crossover operation 

for DE can be in binary or exponential. Here, without loss of 

generality, we only illustrate the binary crossover, as it is used 

in most cases. The crossover operation recombines every pair 

of individuals of (Vi, XJ to generate a new individual Vi as 

shown in: 

Uid = 
{Vid' ifrand(O,l)�CRlld== drand 

X;d' otherwise (2) 

where rand(O, I) is a random number uniformly distributed 

within interval [0, 1], D is the number of dimensions, CR is 

the crossover rate which controls how many dimensions of 

the newly generated individual are from the mutated vector V;, 
and drand is a randomly selected index to make sure that at 

least one dimension of the mutated vector will enter into the 

newly generated individual. 

The crossover process creates a temporary population V, 

which is evaluated and then enters into the selection 

procedure. This procedure uses a pair-wise comparison of V 

and P. As shown in (3), individual Vi and X, are compared 

and the better one will enter into the next generation. 

X
"'W = 

{Xi' ifjitness(x,) is better than jitness(u,) 
(3) , Ui, otherwise 

B. PEC 

PEC contains lots of components, including resistors, 

capacitors, inductors, etc. Fig. 1 is a block diagram of a basic 

PEC. Note that this figure to show a typical PEC was also 

previously used by us in our work of using other EC 
algorithms to solve PEC [9][18][20]. In the figure, we can see 

that a typical PEC can be decoupled into two parts. One part 

is the power conversion stage (PCS) that transfers input 

power to the output load. Another part is the feedback 

network (FN) that can control and coordinate the power. 

In the PCS part, the power from the input source V;11 to the 
output load RL. The PCS consists of P R resistors, Pi inductors, 

and Pc capacitors. In the FN part, it also consists lots of 

components that we denote as FR resistors, Fi inductors, and 

Fe capacitors. The circuit works generally as follows: First, 

the PCS part transfers the input source V;11 to the output load 
Rr., the output voltage is Va' Then a signal conditioner H in the 

FN circuit converts Vo into a suitable form v� which is used to 

compared with the reference voltage vl'ef Their difference Vd 
is then sent to an error amplifier in order to obtain a output Ve. 
Then Ve combines with the feedback signals Wp from the PCS 

part to form an output control voltage Vcon. Then Vcon is 
modulated by a pulse-width modulator to give a feedback 

voltage Vg to the PCS part. 

As we discussed in our previous works [9][18][20], the 

PCS part of a PEC is always with static characteristics and the 

component values are relative stable. Therefore, the 

components in PCS are not optimized by our approach but set 

to some fix values. Herein, the components in the FN part 

which are crucial to the circuit performance are only 

optimized by the DE approach. 

Pmver Conversion Stage (PCS) 

---Jf--

� =[Rl'R;:, ... ,�.F.) 
r; =[11,12' . J"IJ 
�=[C"C,··,C;cJ 

Drive 
Circuit 

.. 

Figure 1. A block diagram of PEe. 
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III. DE FOR PEe OPTIMIZATION 

A. Solution Encoding 

When using DE algorithm to solve the PEe, the 

components in the FN part can be represented with the use of 

a vector X. Specifically, the representation of each solution in 

DE for optimizing the FN components is coded as: 
- -

X =[FR FI Fcl (4) 

where FR, F1, and Fe are the resistors, inductors, and 

capacitors of the FN part. Also, we can encode the X as: 

X = [XPX2''''X[,] (5) 

where D= IFII I + IFI I + IFc l is the number of the component, 

and is also regarded as the number of dimension of the 

problem. 

B. Fitness Function 

The fitness function definition for FN is according to the 

proposals in [9] whose main considerations include reducing 
the settling time and controlling the overshoot. The fitness 

function is a maximal optimization problem described as: 

where RL_min and RL_max, Vil1_min, and Vil1_max are the minimal and 

maximal values of RL and Vim respectively. r5RL and 6vil1 are 

the step length in varying the values of Rr. and Vin. 
The F), F2, F3, and F4 are the four objective functions for 

the FN as designed in [9]. Specifically, FJ is to measure the 

steady-state error of the output voltage Va; F2 is to measure the 

transient response of Vd, including the maximum overshoot 

and undershoot, and the settling time; F3 is to control the 

steady-state ripple voltage on the output Vo; F4 is to measure 

the dynamic behaviors during the large-signal change. For 
more details of the fitness function definitions, refer to [9]. 

C. Initialization 

In the initialization, a set of N solutions are randomly 

generated as the population. Each solution Xi = [Xii , Xi2, ... , xm] 
represents a potential PEe, where I-:;'i-:;'N, N is the population 

size and D is the number of components in the PEe. Each 

dimension Xid (l-:;.d-:;'D) is initialized uniformly and randomly 

within the search space as: 

X'd = random (Ld'Ud) (7) 

where Ld and Vd are low bound and upper bound of the Jh 
dimension search space respectively. For each solution, DE 

evaluates its fitness value according to (6). 

D. Evolutionary Process 

After the initialization, DE goes to the evolutionary 
process. For each individual Xi in the population, it uses the 

following three operators named mutation, crossover, and 

selection to evolve new solutions generation by generation to 

approach the optimal solution. 

Firstly, the mutation operator, Xi uses Eq. (1) to generate its 
responding mutant solution Vi' It should be noted that, if the 

value of any dimension Vid exceeds the search range [Ld, Vd], 
it is reset to the corresponding bound. 

Secondly, the � and Vi crossover according to Eq. (2) to 

generate a new solution [1;. 
Thirdly, the new solution Vi is evaluated by Eq. (6). Then 

the Xi and Vi compete and is selected as the new solution 

according to Eq. (3). Herein, as we pursue the maximal 

fitness value to obtain best circuit performance, we select the 

better solution with large fitness value. 

All the individuals perform the same three mutation, 

crossover, and selection operators to evolve the solutions 

better and better, until the termination condition met, e.g. , the 

maximal generations have been reached. 

E. The Whole Algorithm 

According to the solution encoding scheme, fitness 

function, and evolutionary process described above, the 

whole approach flowchart of using DE to solve the PEe 

problem is shown as Fig. 2. 
�--�--------------, 

Initialization 
Each solution Xj is randomly generated \\,'ithin the search space; 

Evaluate the fitness value ofXj; 

Set current generation g= 1 ; 

Mutation 
Generate the mutant solution Vj for Xi according to Eg. (1); 

Make sure Vi is within the feasible search bound; 

Crossover 
Generate the crossover solution Uj for Xi according to Eg. (2); 

Selection 
Evaluate the fitness value or Ui; 

Select the better one with larger ritness value betv.,'een Xi and Ui as 

the new Xi according to Eq. (3); 

Set i�i+l; 

Yes 

SetIFg+1; 

Figure 2. The whole approach flowchart of using DE to solve the 
PEe problem. 
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IV. EXPERIMENTAL STUDIES 

A. Circuit Configuration Parameters 

In this section, the performance of DE in solving the PEe 

design and optimization problem is evaluated. The PEe is the 

same as the one in [9] and [16] where the buck regulator is 
with overcurrent protection, as shown in Fig. 3. In this circuit, 

the pes part is a classical buck converter and the FN part is a 

proportional-plus-integral controller. In this paper, we do not 

consider to optimize the components in pes for that only the 

Land C are required to be optimized whilst the RL, rc, and rH 
are assumed to be known as in a practical circuit. Moreover, 

the pes part is always with static characteristics and the 

components Land C are relatively stable [9]. Therefore, the 

values for Land C are set as 200f.tH and 1 OOOf.tF, respectively, 

according the proposals in [9] and by the considerations of 

available component values in industry. For FN, all 
component values are required to be optimized. That is, the 

components R), Rl, RC3, R4, Cl, C3, and C4 in the FN part are 

optimized by DE and the fitness function is as (2), with their 

search ranges as shown in Table I. 

SW 

rE r--l 
vil I 

L 

rc 

c 

Figure 3. Circuit schematics of the buck regulator with overcurrent 
protection. 

TABLE L SEARCH RANGES OF THE COMPONENTS IN THE FN PART 

Components Search Range 

Rl [600,6kO] 

R2 [30kO, 3000W] 

RC3 [4700, 47kO] 

R4 [1000,lOkO] 

C2 [O.2J..lF, 20J..lF] 

C3 [0.33J..lF,33J..lF] 

C4 [0.18J..lF,18J..lF] 

B. Algorithm Parameters Configuration 

The performance of DE in optimizing the PEe is evaluated 

and compared with not only the GA approach proposed in [9] 

and the PSG approach in [16] because they are two 
well-studied approaches that optimize PEe in continuous 

search space, but also with the NGBSO approach because it is 

a most recent approach for PEe optimization [20]. 

The parameters of GA, PSO, and BSO are set according to 

the configurations in their references. The crossover and 

mutation probabilities of the GA approach are set the same as 

in [9] where population size N=30,Px=0.85, and Pm=0.25. The 

inertia weight (j) in PSO linearly decreases from 0.9 to 0.4, 

while the acceleration coefficients CI and C2 are both set to be 

2.0 [16]. The population size of PSO is 30 according to [16]. 

For NGBSO, according to [20], the parameters N=100, 

cluster number M=5, PJeplace=O.2, Pr=0.005, 
p _center = N(O.4, 0.1) , while other parameters are set according 

to [17]. For DE, the parameter N=100, F=0.5, and CR=O.l. 

In order to make a fair comparison, all the algorithms use 

the same maximal fitness evaluations (FEs) of 1.5x I 04 as the 

termination criterion [9][16]. As the evaluation of the fitness 

function is usually the most expensive computational part in 

the optimization of PEe, the execution time of different 

algorithms will be almost the same if they use the same 

number of FEs. In order to make the comparisons in a 
statistical sense, the experiment is carried out 10 times 

independently with each approach and the average results are 

used for comparison. 

C. Comparisons on Fitness Quality 

The results of GA, PSO, NGBSO, and DE are compared in 
Table II where the "Mean" stands for the average fitness 

value of the 10 independent runs and "Std. Dev" is the 

standard deviation. Moreover, the "Median" fitness value and 

the "Best" fitness value among the 1 0 runs are given and 

compared in the Table II. 
It can be observed from the table that DE achieves the best 

results among all the four approaches when measured by the 

mean fitness value. Moreover, although the "Best" fitness 

solution is slightly beaten by PSO, the "Best" fitness solution 

obtained by is still larger than 190, indicating the strong 

global search ability of DE. By comparing the "Median" 

fitness, DE also performs best among all the 4 approaches, 

indicating that DE can obtain high quality solution at most of 

the time. The obtained component values in the "Median" 

fitness solution optimized by different approaches are 

presented in Table III. 

TABLE II. RESULT COMPARISONS OF DIFFERENT ApPROACHES 

Arrroach GA PSO NGBSO DE 
Mean 131205 147.417 158.826 184.732 

Std. Dev 2.391 24.971 18.4707 11018 
Best 134.197 194.863 168.005 192.652 

Median 131699 135.249 167.834 188.052 
Worst 127.332 134.897 123.647 159.377 

Success # 0 2 8 10 
The 'Success #' is the number of runs that can find final solution with a 

fitness larger than 150. 
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TABLE III.  OPTIMIZED COMPONENT VALUES IN THE BEST RUN WITH 
DIFFERENT APPROACHES 

Comp- 
onents 

GA PSO NGBSO DE 

R1 432.53 Ω 664.9622 Ω 60.0063 Ω 60 Ω 
R2 1651.37 kΩ 1587.174 kΩ 169.044 kΩ 30 kΩ 
RC3 45.6666 kΩ 9.9242 kΩ 492.272 Ω 470Ω 
R4 1.0291 kΩ 792.1815 Ω 6.51734 kΩ 407.465 Ω 
C2 18.3062 μF 10.859 μF 0.2005 μF 0.2 μF 
C3 14.8589 μF 0.33 μF 3.22305 μF 1.626 μF 
C4 7.7432 μF 9.427 μF 0.18026 μF 2.715 μF 
Fitness 
Value 131.699 135.249 167.834 188.052 

D. Comparisons on Reliability 
Besides the high solution quality of DE, the fast 

optimization speed and strong algorithm reliability of DE are 
also supported by the comparisons in Table II and Fig. 4. By 
giving an acceptable fitness value of 150, DE can 
successfully obtain final solutions with fitness values larger 
than 150 in all the 10 runs whilst NGBSO and PSO can only 
succeeds in 8 runs and 2 runs, respectively. The GA approach 
even totally fails in obtaining solutions with fitness values 
larger than 150. Therefore, DE is the most reliable algorithm 
that can obtain high quality solutions to PEC constantly. 

The mean convergence characteristics of different 
approaches are plotted in Fig. 4. The curves show that GA has 
very weak search ability and falls into very poor local optima 
quite early. Although PSO and NGBSO can obtain some 
good fitness in early stage, they stay stagnate for the long time 
during the late stage. Therefore, they are not efficient enough 
because of the premature convergence. On the other hand, the 
figure shows that DE has strong global search ability to avoid 
local optima. That is, the DE algorithm can improve the 
fitness value during the whole evolutionary process. This 
indicates that DE is much reliable and promising for the PEC 
and may also be promising for other complex real-world 
application. 
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Figure 4. Mean convergence characteristics of different approaches in 

optimizing the PEC. 

E. Comparisons on Simulation Results 
Simulations are conducted in this sub-section. In order to 

make the comparisons clearer, the component values of the 
PEC are set as the optimized results of the median solutions 
obtained by GA and DE. The simulation results are plotted 
and compared in Fig. 5 and Fig. 6. In the simulation results 
comparison, Fig. 5 gives the results of voltage and Fig. 6 
gives the results of current. 

The simulation lasts for 90 milliseconds (ms). The input 
voltage vin is 40 V and the output load RL is 10 Ω. The 
simulated startup transients can be compared in the first 30 
ms of the figures. It is observed that the circuit with 
DE-optimized component values has better performance, 
giving faster settling time. The buck with component values 
optimized by DE uses only about 5 ms to reach the steady 
state, while the ones with component values optimized by GA 
uses about 10 ms. 

Fig. 5 and Fig. 6 also show the simulated transient 
responses under large signal disturbances. On the 30 ms, 
when the regulator is in steady state, the input voltage is 
suddenly changed from 40 V to 20 V, with the load still fixed 
as 10 Ω. As the responses to this change, the output voltage vo, 
the control voltage vcon, and the inductor current iL are all 
disturbed. However, the circuit optimized by DE has much 
smaller disturbance and shorter response time (less than 5 ms) 
than the one optimized by GA (more than 10 ms), confirming 
the advantages of the DE algorithm. Moreover, the overshoot 
of vo of the GA-optimized circuit is much larger than that of 
the DE-optimized circuit. 

Similar tests on load disturbances are also studied when the 
system has reverted a steady state with vin equals 20 V and RL 
equals 5 Ω. In this disturbance, RL is suddenly changed from 
10 Ω to 5 Ω on the 60 ms, with the vin being still fixed as 20 V. 
The simulation results in the figures also show that the 
DE-optimized circuit has a smaller disturbance response to 
the change and a shorter time to revert the steady state when 
compared with GA. Therefore, the proposed DE algorithm 
can optimize the circuit component values and make the 
circuit exhibit better dynamic performance. 
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Figure 5. Simulated voltage responses from 0 ms to 90 ms. 
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Figure 6. Simulated current responses from 0 ms to 90 ms. 

V. CONCLUSIONS 

In this paper, we propose to directly apply the simple DE 

algorithm to solve the PEC problem and have gained 
encouraging results. By comparing DE with GA, PSG, and 

NGBSO, the DE algorithm show promising performance in 

solve this kind of complex optimization. 

It should be noted that the DE algorithm adopted in this 

paper is the traditional DE without any modifications. This is 

an advantage that the approach is kept to be simple and easy 

for used. However, in our future work, we will pay attentions 

to some recent enhanced adaptive DE variants [27][28] and 

try to obtain better results. 
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