
A Parallel Ant Colony System Based on Region
Decomposition for Taxi-Passenger Matching

Xin Situ1, Wei-Neng Chen2, Yue-Jiao Gong2,*, Ying Lin3, Wei-Jie Yu4, Zhiwen Yu2 and Jun Zhang2

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
2 School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

3 Department of Psychology, Sun Yat-sen University, Guangzhou, China
4 School of Information Management, Sun Yat-sen University, Guangzhou, China

* Corresponding Author: gongyuejiao@gmail.com

Abstract—Taxi dispatch is a critical issue for taxi company to
consider in modern life. This paper formulates the problem into a
taxi-passenger matching model and proposes a parallel ant colony
optimization algorithm to optimize the model. As the search space
is large, we develop a region-dependent decomposition strategy to
divide and conquer the problem. To keep the global performance,
a critical region is defined to deal with the communications and
interactions between the subregions. The experimental results
verify that the proposed algorithm is effective, efficient, and
extensible, which outperforms the traditional global perspective
greedy algorithm in terms of both accuracy and efficiency.

Keywords—taxi dispatch; ant colony system (ACS); Taxi-
Passenger Matching (TPM); region-dependent decomposition (RDD)

I. INTRODUCTION

Traditionally, the taxi drivers hunt for passengers on street.
The inexperienced drivers would cruise on street blindly, which
would increase a good deal of idle driving distance. Conversely,
the experienced drivers would try to maximize their own profit
by reducing their idle driving distance based on their experience.
However, this subjective behavior would bring out a problem
that some regions appear an excess of taxi supply over passenger
demand while vacant taxis are in short supply in other regions.
These two phenomena are due to the ‘blindness’ and
‘subjectivity’ of taxi driver.

With the proliferation of smart phones and the increasing
demands of taxi market, vehicle booking APPs like UBER are
being used more and more commonly [1]. It becomes available
to dispatch the taxis from a control center, namely, matching
passengers for taxis from a global perspective, in order to avoid
a battle of hunting the same passenger, which could cause the
waste of resources. Therefore, a taxi-dispatch system is required
to match taxis and customer service requests [2]-[3]. In this way,
the global profit of the taxi company could be improved.

The first-come-first-serve (FCFS) is commonly adopted, i.e.,
whenever a passenger demand appears, it is matched with the
nearest vacant taxi, which was proved an inefficient strategy in
[4]. In addition, for the sake of the total profit of the taxi
company, some other works implement the greedy strategy over
the global perspective, which gives priority to the most
profitable pair of taxi and passenger. However, although
increase the total profit, this kind of methods also increase the
expense of the matching time. More critically, the greedy
algorithm can only provide locally optimal results, which may
not be accurate, especially when the number of taxis is large. As

taxi dispatch is a critical issue, recent researches have studied
about the modern taxi networks based on the vehicular Global
Positioning System (GPS) of each taxi [5]-[11]. It was proved
that GPS technology is beneficial to enhance service quality to
customers [5]. Some driving direction systems were built
leveraging the intelligence of experienced drivers [6]. Taxi-
hunting recommendation system were proposed in [7] and [8],
in order to provide passengers with a waiting time to get a taxi
ride in a particular location and helps the drivers to make more
profit respectively. Meanwhile, Zhang et al. had analyzed taxi
service strategies through the GPS data set, aiming to provide
useful guidance to taxi drivers [9]. To predict the distribution of
taxis and passengers in a short-term time horizon, a novel
methodology was proposed in [10].

Considering that the task of taxi dispatch has a requirement
of real-time response, we need an effective algorithm to find
acceptable solutions. In [11], Miao et al. proposed a dispatching
scheme based on administrative subdistricts segmentation,
which can reduce the total idle driving distance of taxi network
and keep a balance between the passenger demand and taxi
supply in each sudistrict. But they only consider the dispatch
between the subdistricts without matching the vacant taxi to an
exact passenger one by one, so the individual taxi in subdistrict
still endures the ‘blindness’ and ‘subjectivity’ problems.

Ant colony system (ACS) was first proposed by Dorigo and
Gambardella in 1997, which is an efficient version of ant colony
optimization (ACO) [12]. ACS simulates the foraging process
of ant colony to optimize the discrete combinatorial
optimization problem. A number of research results have shown
that ACS can solve the real-world problem effectively, such as
the travelling salesman problem (TSP) [12], the aircraft arrival
sequencing and scheduling problem [13], and grid workflow
scheduling problem [14]. The Taxi-Passenger Matching (TPM)
Problem defined in the paper is also a combinatorial
optimization problem, for which the ACS algorithm is naturally
applicable. Besides, since we deal with practical city scenarios,
the problem space is extremely large. For dimension reduction,
the city is divided into several administrative regions according
to the geographical locations. Dividing by geographical
locations enables the parallel optimization of different regions,
which is beneficial to reduce the matching time and travelling
costs for the taxis.

Accordingly, ACS is performed in parallel based on a
region-dependent decomposition (RDD) strategy. The purpose
of decomposition is to reduce the number of taxis in each region,

This work was supported by the National Natural Science Foundation of
China under Grant Nos. 61502542, 61622206, 61379061, and 61332002.

978-1-5090-4601-0/17/$31.00 ©2017 IEEE

960
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

making the evolution more sufficiently within the same number
of iterations. In addition, the critical regions are given fully
consideration, which contributes to the evolution between
regions and improves the quality of solutions. In the meantime,
as taxi dispatch is a practical problem, it is necessary to consider
its timeliness. As afore-mentioned, the region decomposition
method enables parallel evolution, i.e., each sub-region evolves
concurrently. In this way, the running time for optimizing the
whole region is greatly reduced. Note that we use the Message
Passing Interface (MPI) to coordinate the different regions and
achieve parallel computation.

The rest of this paper is organized as follows. In Section II,
the TPM problem is formulated. Section III presents the RDD-
improved ACS algorithm for the TPM in detail. Experiments are
carried out in Section IV, and test results verify that the proposed
algorithm is effective, efficient, and extensible. Finally,
conclusions and future work are summarized in Section V.

II. PROBLEM FOMULATION

Traditionally, people used to hail a taxi on street when they
need taxi service. But with the rapid development of mobile
technologies, many transportation service providers come out,
like Uber, Lyft, Ola, GrabTaxi, etc. Nowadays, the younger
generation prefers to hail a taxi by a mobile phone application
when they need a taxi. The present researches have modeled the
taxi dispatch problem [11], but the emphasis of our work is to
optimize the total profit of the taxi network by matching the
vacant taxis and passengers when taxi resources are insufficient.
The proposed Taxi-Passenger Matching (TPM) problem is
formulated in this section. A list of parameters used in the TPM
model is shown in Table I.

In practice, due to the requirement of traffic regulations,
many modern cities have set temporary taxi stands, where a taxi
can pickup or dropdown a passenger. So the road network is
formulated as a Triple G = (V, E, T), where V represents the set
of vertices which denote the temporary taxi stands in practice, E
represents the set of edges between every reachable intersection,
and T represents the weight set of the edges, namely, the path
length between every two reachable intersections. All taxis and
passengers are generated on the vertices of road network.

The TPM problem is a combinatorial optimization problem
(COP). There are taxis and passengers who require taxi service
in an area, and we need to match the taxis and passengers in a
global perspective. Assume that the quantity of passengers NC

is slightly more than the quantity of taxis NS, there will be S

C

N
NA

different assignments.
The scheduling of taxis to pick up passengers is defined as

xi,j = 1	,	 if taxi i is scheduled to serve passenger j	0	,		otherwise
 (1)

Based on this, we define yj=∑ xi,j
NS
i=1 , and thus have

yj = 1	,	 if passenger j is scheduled to be served0	,	 otherwise
 (2)

The objective is to maximize the total profits. For each deal
with xi,j	=	1, there are three critical points to calculate the profits:
the position of taxi i (Tpos(i)), the position of passenger j
(Ppos(j)), and the destination of the passenger j (des(j)). These
three points are called major information of taxi and passenger.

In real life, not only major information, we can also get some
additional information from the software or the mobile phone
application, such as discounts, the tip provided by the passenger,
the credit of passenger, and so on. These information can also be
taken into account while calculating the profits. To simplify the
model, we divide the profit into two parts, the income part and
the cost part. The income part comes from the passenger paying
for the service, which can be calculated as

incomei,j	=	ξ		·	D Ppos j ,	des j 	+	tipj (3)

The cost part comes from the taxi traverse fee, which can be
calculated as

costi,j	=	ζ	·	(D(Tpos(i),Ppos(j))	+	D(Ppos(j),des(j))) (4)

Thus, we can deduce that the profit of a deal is

profiti,j	=	incomei,j	- costi,j (5)

We call profiti,j is the profit pair between taxi i and passenger
j. The total profits of all taxi-passenger pairs is then deduced as

P1	=	 ∑ ∑ xi,j	·	profiti,j
NC
j=1

NS
i=1 (6)

However, if only the profit term is considered, it may give
priority to the most profitable passengers, leading to the
starvation of the other passengers whose destination is not far
away. For example, suppose that there are two passengers and
one taxi. The distance between the first passengers and the taxi
is 3 times than second passenger, while the first trip’s length is
twice than the other. It is obvious that, if ξ	>	3ζ	>	0, the profit
got from the first passenger is more than the second one.
However, it will cost two and a half times time to finish the trip
(considering that the time consumption is proportional to the
length of path). So, in the proposed TPM model, the objective is
to maximize the total profits of all taxi-passenger pairs per unit
time, namely, 	P	=	 ∑ ∑ xi,j·

profiti,j

D Tpos i ,Ppos(j) 	+	D Ppos j ,des(j)

NC
j=1

NS
i=1 (7)

subject to ∑ xi,j
NS
i=1 	≤	1,∑ xi,j

NC
j=1 	≤	1 (8)

The constraints in (8) restrict that each taxi could not serve
more than one passenger at once, and that each passenger could
not be served by more than one taxi concurrently.

TABLE I. PARAMETERS OF THE TPM

Parameters Description
S set of vacant taxis
NS quantity of vacant taxis
C set of passengers
NC quantity of passengers
Tpos(i) the current position of taxi i
Ppos(j) the current position of passenger j
des(j) the destination of passenger j
D(a,b) the distance between intersection a and b
tipj the tips provided by passenger j
ξ a coefficient of the taxi fare per distance unit
ζ a coefficient of traverse fee per distance unit

961
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

III. THE PORPOSED ALGORITHM

A. ACS Solution Construction

Ant colony system, proposed by Dorigo and Gambardella in
1997 [12], is an improved version of the original ant colony
optimization algorithm. The framework of ACS algorithm is
appropriate for the discrete combination optimization problems.
In the Taxi-Passenger Matching Problem, ACS needs to
optimize the matching pairs of the taxis and passengers to
maximize the total profits per unit time. As described in the
above Section II, there will be ANC

NS possible assignments. The
Taxi-Passenger Matching problem can be instantiated as a
permutation problem, which means to assign a passenger for
each taxi in practice.

During the ACS solution construction process, the details
about the initialization, transition rules, and updating the
pheromone are described as below.

1) Initialization
In the initialization phase, the ants are uniformly distributed

among the taxis sequence as their starting-point, and each of the
ants will traverse all taxis according to their serial number, and
allocate one of the suitable passengers to each of them. The
pheromone values, which indicate the probability of assigning a
given taxi with a specific passenger, are initialized to an
appropriate value τ0.

2) State Transition
Each time when an ant selects a passenger for taxi r, it

applies the following rule

s =

arg	max
u∈Jr

τ r,u · η r,u β , if q ≤ q0 (exploitation)

S, otherwise (biased exploration)
 (9)

where Jr is a set of passengers which can be chosen by the ant
on the current taxi r, making sure that none of NC passengers
have been chosen more than once; τ(r,u) and η(r,u) represent the
pheromone and heuristic information between taxi r and
passenger u respectively; β	>	0 is a parameter that determines
the relative importance of the pheromone versus the heuristic
[12]; q0 is a parameter in [0,1], which is used to control the ants’
behavior of exploitation and exploration. And if q, a random
value generated uniformly in [0,1], is smaller than q0, the best
passenger will be chosen, otherwise the passenger s will be
determined by a random variable S which is selected based on
the probability distribution as

p(r,s)	=

1	+	τ r,s 	·	 1	+	η r,s β∑ 1	+	τ r,u 	·	 1	+	η r,u β
u∈CANr

,	 if CANr ≠ ∅ ∧ s∈CANr

1	+	τ r,s 	·	 1	+	η r,s β∑ 1	+	τ r,u 	·	 1	+	η r,u β
u∈Jr

,		if CANr=∅	∧	s∈Jr

0, otherwise

 (10)

where CANr is a candidate list of taxi r and it contains the most
profitable passengers of taxi r. The quantity of passengers in the
candidate list is a constant number, and the list can be initialized
during initializing the profit pair between taxis and passengers.
If and only if the passengers in the candidate list have all been
chosen, the ant will choose the passenger in Jr.

In (9) and (10), η, which is called heuristic information in
ACS, represents the profit of each taxi, which is defined as

 η(r,u)	=	profitr,u (11)

3) Pheromone Update
In a general ACS process, both the local and global

pheromone update rules are performed. In the proposed
algorithm, the local update of pheromone is implemented when
any ant is scheduled with the taxi-passenger pair , while the
formula is given as

 	τ r,s 	←	 1	-	ρ 	⋅	τ r,s 	+	ρ	⋅	τ0 (12)

where ρ is the factor of local evaporation, τ0 is initial pheromone.
On the other hand, the global update of pheromone is only

conducted on the best solution so far. Only the taxi-passenger
pairs r,s , which appear in the best-so-far solution, are updated
as

 	τ r,s 	←	 1	-	α 	⋅	τ r,s 	+	α	⋅	Δτ (13)

where is the factor of global evaporation, Δ represents the
pheromone increment on the global best solution, and Δ is
calculated as

 Δτ = CDF
Pgb

NS
,	μ,	σ (14)

where function CDF is a cumulative distribution function; Pgb is

global highest profit; and
Pgb

NS
 is a dynamic parameter of CDF; μ

and σ are two parameters of CDF, namely, the mean and
variance.

With these two rules of updating pheromone, the search
behaviors of ants are guided. The local update of pheromone is
used to evaporate the pheromone of the matched pair by the
previous ants. It is beneficial to increase the diversity of the
population since the probability of choosing the matched pair is
reduced for the remaining ants. Conversely, the global update of
pheromone is used to strengthen the pheromone of the best
matched pairs so far, which will be beneficial to enhance the
convergence speed.

B. Parallel Framework

In real life, a city could be divided into several administrative
regions according to the geographical location. In the proposed
algorithm, dividing by geographical location is beneficial to
reduce the matching time for taxi, since we can deal with
separated regions in parallel.

With the region-dependent decomposition strategy, we
suppose a whole region has been divided into several subregions
uniformly, and the area between two or more adjacent
subregions is called critical region. Let κ be ratio of each critical
region to the corresponding subregion. Each passenger outside
the critical regions belong to the subregion where they currently
locate, while the passenger inside a critical region could belong
to one of its adjacent subregions. In this way, the taxi could pick
up not only the passenger in the local region but also the
passenger near the subregion border, which is more reasonable
and realistic.

In this paper, we adopt a master-slave model [15] with the
Message Passing Interface (MPI) as a parallel strategy to deal

962
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

with the subregions. In this strategy, the number of processors is
identical as the number of subregions. These processors, called
SLAVEs, take charge of matching the passengers for the taxis
in their responsible subregions. In the whole evolution process,
the SLAVEs should know which taxis and passengers they can
deal with. However, the passengers in critical region could be
evolved in both adjacent subregions. As illustrated in Fig. 1(a),
there are 4 taxis (TA~TD) and 4 passengers (P1~P4) in 4 the
subregions (A~D). Because P2~P4 are in critical region, P2 can
be picked up by TA and TB, P3 can be picked up by TA and TC,
P4 can be picked up by TA~TD. If one passenger is concurrently
evolved in two or more subregions, there is a probability that
this passenger is chosen by more than one taxi which will violate
the constraint in (8).

So we need a processor, called MASTER, to control the
assignment of passengers in critical regions. Initially, all
passengers will be assigned to a subregion by running a fast
matching process given in Algorithm 1 in MASTER. The
passengers that are matched to a certain taxi in the fast matching
process would be assigned to the same subregion with the taxi.
The other passengers that are not in critical region will be
assigned to the subregions they located. The remaining
passengers will be assigned to a subregion according to the
linear probability distribution of distance to each adjacent
subregion. Fig. 1(b) shows an example of possible assignments.
As a taxi can only choose the passengers who are assigned to the
same subregion with itself, TA can pick up either P1 or P2, TB
can pick up P4, and TC can pick up P3.

Moreover, at the end of each iteration, the SLAVEs send
their information of best solution to the MASTER, the
MASTER gather the evolution result from the SLAVEs to
calculate the sum of profit, and then send back the information
of the best summation so far to the SLAVEs. The SLAVEs
update their global pheromone according to the received the
information from the MASTER. After that, the MASTER
reallocates the attribution of the passengers in critical region and
broadcasts to all the SLAVEs. The next iteration will start after
the SLAVEs receive the new attribution of passengers.

For load balance, we allot the same number of ants to each
subregion. In this way, it is beneficial to not only have more
probability to get a better result, but it also increases the
scalability of dividing the region to finer granularity.

C. Integrated RDD-ACS-TPM Algorithm

The RDD-improved ACS algorithm for the TPM (RDD-
ACS-TPM) problem is integrated in this section. The flowchart
of the integrated RDD-ACS-TPM algorithm is given in Fig. 2.
Fig. 2(a) is the process of MASTER and Fig. 2(b) is the process
of SLAVEs. In general, it includes the following six steps.

Step 1: Initialization. Initialize parameters, pheromone, ants,
and all the profit pair between each taxi and passenger.

Step 2: The MASTER finds all the passengers who locate in
the critical region, unless they had matched in the fast matching
process.

Step 3: The MASTER randomly assigns passengers in the
critical regions to one of the adjacent subregions using a linear
probability distribution.

Step 4: The SLAVEs schedule the NS
loc taxis in local

subregions using ACS matching process according to (9) and
(10) by each ant.

Fig. 2. Flowchart of the RDD-ACS-TPM algorithm. (a) Flowchart of
MASTER process. (b) Flowchart of SLAVEs process.

(a) (b)

A

DC

B

P1 P4

P3

P2

TA TB

TC

TD

A

DC

B

P1 P4

P3

P2

TA TB

TC
TD

Fig. 1. Illustrations of the region division and passenger assignment.

Algorithm 1: Fast matching process:
procedure fast matching
1. Initialization
2. for each taxi i (i=1,2,..., NS)
3. match the most profit passenger from unmatched passenger set
4. remove the most profit passenger from unmatched passenger set
5. end for
end procedure

963
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

Step 5: The MASTER gathers all the results from SLAVEs,
calculate the global fitness value, and update the global
pheromone.

Step 6: Termination check. The MASTER and all the
SLAVEs stop the process if one of the termination conditions
are met: 1) Variable gen has reach the maximal generations; 2)
The increment of fitness value is smaller than ε in δ generations.
Otherwise, let gen = gen + 1 and go to Step 3 for the next
generation.

IV. EXPERIMENTS AND COMPARISONS

In this section, the results of experimental tests are carried
out. The RDD-ACS-TPM algorithm is compared with a Greedy
algorithm in terms of both accuracy and the running time. Note
that the Greedy algorithm is implemented over the global
perspective, i.e., the algorithm will choose the most profitable
pair of taxi-passenger every time, until all taxis are scheduled.
All the experiments are implemented in a Linux-based cluster
with 14 PCs and each PC has a Core i5-4590 CPU (4 cores) at
3.30GHz with 32 GB random access memory.

A. Test Cases and the Results

There are mainly 2 factors affect the quality of the RDD-
ACS-TPM algorithm, the quantity of taxis and passengers, and
the intersection number of the testing region. Case 1 is used to
investigate the performance of the RDD-ACS-TPM algorithm
in the same region, and Case 2 is used to investigate the effect
of enlarging the region.

In order to analyze the extensibility of the algorithm, RDD-
ACS-TPM is also tested in different granularities of region
division. As an extreme case, an ACS-TPM algorithm can be
regarded as the non-decomposed version of RDD-ACS-TPM. In
other words, ACS-TPM schedules all taxis in the whole region
by using ACS algorithm.

The configurations of the related parameters are given in
Table II, including the population size NP in each subregion, the
maximal generation number NG, the candidate list number CAN,
the ratio of critical region κ, the coefficient of the taxi fare ξ, the
coefficient of traverse fee ζ, and other ACS-related parameters.
The parameters of ACS-related are based on [12], except for q0,
which is suggested to be 0.90. The configuration of parameter
q0 is based on empirical study presented in Sections IV-C.

Note that all the test cases, which include the information of
taxis and passengers, are generated randomly in advance, and
each scale has at least three different cases to make sure the
reliability of the experiments. The information includes the
position of vacant taxis, position of passengers and destination
of passengers.

1) Case 1 and the Results
The map we adopt as experimental group is the center region

of Beijing, depicted in Fig. 3(a), with longitude from 116.34843
to 116.46 and latitude from 39.88 to 39.96. The spots, which
represent the taxi stands in practice, are intersections extracted

from the map. The result of Greedy and RDD-ACS-TPM
algorithm are presented and compared in Table III. In addition,
the results of different problem scales are shown in Fig. 4. The
points in the figure are drawn according to the average value of
three cases under the same scale. It is worth mentioning that the
region of RDD-ACS-TPM has been divided into 4 segments
both in longitude and latitude (i.e., a whole region is divided into
16 subregions).

From Table III, it can be observed that, overall, RDD-ACS-
TPM obtains both better solution and less time. Comparing the
mean profit, RDD-ACS-TPM performs better in all scale, and
the increment is increases with the problem scale. However,
there are a few special cases whose worst result is worse than
those of the Greedy algorithm, such as case 1 and 3 when the
passenger scale is 2100. They may due to the premature
convergence of RDD-ACS-TPM. Whenever the increment of
fitness value is smaller than ε in δ generations, the process will
consider the evolution has stopped. This mechanism is aimed at
reducing the running time when the evolution has completely
converged. However, there may be a few ‘unlucky’ situations
that the colony converges to a local optimum in the early period.
From the value of mean profit, we can see that this situation
seldom happens as the mean value is more close to the best value.

From Fig. 4(d) to (f), we can see that, as the number of
passengers grows, the Greedy algorithm requires longer running
time, while RDD-ACS-TPM has stable running time. It is
important to note that, according to Table III, the worse running
time of RDD-ACS-TPM algorithm is also half of Greedy’s best.

2) Case 2 and the Results
In this case, the map scale is twice of that in Case 1. Shown

in Fig. 3(b), its longitude is from 116.329538 to 116.48 and
latitude is from 39.86 to 39.98. Fig. 5(a) to (f) are drawn
according to the average value of three cases under the same
scale of Greedy and RDD-ACS-TPM algorithms results.

From Fig. 5, we can see that using a bigger map in Fig. 3(b)
barely impacts the effect of both two algorithms, as Fig. 5 is very
similar to Fig. 4.

B. Analysis of Speedup and Scalability

In this part, the scalability of RDD-ACS-TPM is tested, and
we present the speedup of RDD-ACS-TPM algorithm. We
carried out 30 independent runs for each case in the taxi scale of
4000 with different granularities of segmentation, while the

Fig. 3. Map of Beijing for experiments.
(a) Experimental group: longitude from 116.34843 to 116.46 and latitude from
39.88 to 39.96.
(b) Control group: longitude from 116.329538 to 116.48 and latitude from
39.86 to 39.98.

TABLE II.
PARAMETER CONFIGURATIONS FOR THE RDD-ACS-TPM ALGORITHM

Parameters configuration
NP NG CAN ρ α β τ0 q0 ε δ κ ξ ζ
NS

400
 1500 10 0.1 0.1 2.0 0.1 0.99 0.50 200 0.10 1.00 0.3077

964
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

other configurations are kept as the same as Section IV-A. The
mean results of each scale are plotted in Fig. 6.

 From Fig. 6(a) and (b), we can see that, as the number of
subregions increases, the running time overall presents a
decreasing tendency in each passenger scale, while the profit
gradually maintains on a certain level. The leftmost point of each
line in Fig. 6(a) also represents the profit of using ACS-TPM
which means scheduling all taxis in the whole region by using
ACS algorithm. We also present the speedup of RDD-ACS-
TPM algorithm in Fig. 6(c). The speedup is calculated as
speedup(N) = ACS-TPM / RDD-ACS-TPM(N) where N
represents the number of subregions (cores). From Fig. 6(c), it
can be observed that, as a whole, the speedup has an ascend
trend, but there is an ‘ebb’ when the number of subregions is 9.
It is due to a phenomenon of insufficient evolution. For example,
when the number of subregion is 4, there are about 1000 taxis in
each subregion, and the evolving process will be too slow. An
interrupt may perform in early phase to save the running time,
because the increment of fitness value is easily smaller than ε in

δ generations. On the contrary, when the number of subregions
is 9, the evolving process mostly stops when it meets the
maximal generations. From Fig. 6(a) and (b), running the
algorithm in 9 subregions has earned more profits but costed
more time than in 4 subregions. But overall, as the number of
subregions/cores increases, the running time of the parallel
algorithm has appeared a decreasing trend while profit value has
showed smooth and stable.

C. Parameter Investigation

In the RDD-ACS-TPM algorithm, q0 is a crucial parameter.
The investigation of parameter q0 is helpful to find a suitable
configuration for the algorithm as well as to improve the
performance. We set q0 equals to 0.90, 0.95, 0.98, 0.99, and 1.00
respectively (note that 0.90 is suggested in [12]). For each
configuration, the algorithm is used to optimize the preceding
test cases group whose taxi scale is 3000 in Case 1, and each test
case will carry out 30 independent runs. The results are
presented in Table IV and Fig. 7.

TABLE III
EXPERIMENTAL RESULT COMPARISONS IN CASE 1 WITH DIFFERENT SCALE OF TAXI

taxi
scale

passenger
scale

case

profit running time (sec)
 Mean Best Worst Mean Best Worst

Greedy
rdd-acs-
tpm (16

subregions)

rdd-acs-
tpm (16

subregions)

rdd-acs-
tpm (16

subregions)
Greedy

rdd-acs-
tpm (16

subregions)
Greedy

rdd-acs-
tpm (16

subregions)
Greedy

rdd-acs-
tpm (16

subregions)

2000

2100
(+5%)

1 1247.53 1256.74 1259.74 1247.05 22.4885 11.5861 22.1926 3.9627 24.4069 12.4391
2 1250.56 1264.34 1267.18 1255.24 22.1881 11.325 21.9314 4.3047 24.3329 13.2331
3 1226.6 1231.93 1238.23 1225.97 22.5484 8.76021 22.3117 2.67396 24.5279 13.6086

2200
(+10%)

1 1265.25 1281.94 1282.99 1280.3 23.6502 12.8832 23.4345 10.7821 25.7862 14.7588
2 1253.99 1268.46 1271.61 1264.07 23.6392 11.5947 23.4 6.76677 25.8183 12.5822
3 1264.78 1279.94 1281.04 1278.44 23.8543 12.1041 23.6204 9.73755 25.9418 13.3763

2300
(+15%)

1 1282.71 1292.44 1293.27 1291.27 25.0097 11.228 24.5601 8.57642 27.0843 13.3501
2 1278.06 1289.54 1291.22 1287.06 24.9706 12.7855 24.7272 10.054 27.1232 15.0468
3 1274.44 1285.77 1287.58 1282.51 24.9076 13.592 24.658 9.62677 27.1673 14.662

2400
(+20%)

1 1289.14 1299 1300.01 1297.76 25.5209 12.3902 25.2581 9.09614 27.96 15.7569
2 1293.6 1302.75 1303.82 1301.58 25.6781 11.2029 25.4273 8.64556 28.0886 14.0574
3 1293.58 1304.08 1304.84 1303.12 25.6783 11.181 25.4089 8.28082 28.078 13.47

3000

3150
(+5%)

1 1911.42 1925.65 1929.22 1915.82 76.5814 38.7763 75.9251 21.3053 82.9381 40.1469
2 1897.07 1918.44 1921.8 1910.51 76.9095 34.9685 76.203 17.1397 83.2099 36.9779
3 1897.31 1928.5 1931.74 1919.91 76.6263 33.3317 75.9182 16.4762 83.0529 35.471

3300
(+10%)

1 1926.96 1949.48 1950.99 1944.99 80.8535 39.3786 80.1094 29.8607 87.6955 40.8662
2 1936.33 1956.73 1958 1954.58 80.8413 36.0215 80.115 28.4382 87.6817 38.8449
3 1931.97 1954.5 1955.94 1951.38 81.8626 41.5364 81.0976 36.8272 88.45 42.5729

3450
(+15%)

1 1947.61 1967.63 1968.67 1966.47 84.2886 38.6078 83.5291 32.5057 91.6783 44.4536
2 1955.88 1976.2 1976.89 1974.36 84.4178 34.9348 83.6537 25.9661 91.7295 43.0266
3 1954.37 1972.23 1973.05 1970.08 84.8626 38.1238 84.122 32.1249 92.0272 44.1105

3600
(+20%)

1 1967.35 1979.97 1980.61 1979.25 87.5633 35.2581 86.8268 27.9104 95.2809 43.2914
2 1968.86 1983.65 1984.53 1981.65 88.7724 40.9418 87.9438 34.7791 96.3907 47.4262
3 1953.55 1969.07 1969.93 1967.65 87.9175 35.2181 87.0972 27.9608 95.5019 41.1761

4000

4200
(+5%)

1 2556.83 2593.84 2597.58 2588.36 184.213 95.9508 182.828 59.908 198.659 99.7557
2 2559.49 2570.51 2581.3 2559.23 184.299 74.7332 182.848 18.9259 198.583 95.5478
3 2566.46 2587.85 2595.75 2568.59 184.116 96.1397 182.652 20.6753 198.949 103.725

4400
(+10%)

1 2601.78 2626.34 2629.08 2623.95 192.117 104.992 190.459 99.0993 207.896 191.504
2 2588.87 2617.1 2621.49 2610.7 193.1 98.8697 191.548 57.1328 208.186 107.47
3 2599.55 2629.55 2630.58 2624.69 193.919 104.43 192.313 92.6316 209.286 107.409

4600
(+15%)

1 2623.31 2646.38 2647.42 2644.53 202.165 96.3396 200.475 80.2067 218.317 109.307
2 2623.73 2646.08 2646.87 2644.01 201.376 101.375 199.717 85.0373 218.543 107.047
3 2625.36 2649.99 2651.22 2647.6 201.292 93.0845 199.572 76.0958 217.75 103.882

4800
(+20%)

1 2648.32 2664.61 2665.21 2663.21 209.169 88.6413 207.459 66.8558 227.764 103.727
2 2640.81 2658.71 2659.24 2656.98 209.954 95.45 208.119 76.394 227.858 114.987
3 2643.44 2660.78 2661.63 2658.87 210.498 91.7538 208.681 74.6502 228.288 112.114

965
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

 From Fig. 7, it is obvious that the RDD-ACS-TPM
algorithm obtains the highest profit in every passenger scale
when the parameter q0 is set to 0.99. Although the profit value
is increasing from 0.90 to 0.99, q0 still can’t be set to 1.00.
Because it will make the algorithm lose the ability of exploration
and get bad results with this configuration.

V. CONCLUSION

In this paper, we have modeled the Taxi-Passenger Matching
(TPM) problem and proposed a new parallel framework to solve
the TPM problem. The Ant Colony System (ACS) algorithm has
been developed by incorporating a Region-Dependent

Fig. 4. Average experimental result in case 1 with different scale of taxi. (a)~(c) Average optimal profit. (d)~(f) Average running time.

Fig. 5. Average experimental result in case 2 with different scale of taxi. (a)~(c) Average optimal profit. (d)~(f) Average running time.

966
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

Decomposition (RDD) strategy for divide-and-conquer. Further,
the algorithm is parallelized by applying the MPI to coordinate
the different regions. With the help of critical region strategy,
the proposed algorithm solves the TPM problem effectively at
the global level. From the experimental results, RDD-ACS-
TPM outperforms the traditional Greedy algorithm in terms of
both optimal value and running time. From the speedup analysis,
the algorithm shows a good scalability and stability.

The future research work includes the following aspects: 1)
extending the algorithm to a dynamical version; 2) taking quality
of service measure from the passenger perspective into
consideration; and 3) applying the algorithm to tackle the real
data from a practical taxi company.

REFERENCES
[1] B. Leng, H. Du, J. Wang, L. Li and Z. Xiong, "Analysis of Taxi Drivers'

Behaviors Within a Battle Between Two Taxi Apps," in IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 1, pp. 296-300, Jan.
2016.

[2] K. T. Seow and D. H. Lee, "Performance of Multiagent Taxi Dispatch on
Extended-Runtime Taxi Availability: A Simulation Study," in IEEE
Transactions on Intelligent Transportation Systems, vol. 11, no. 1, pp. 231-
236, March 2010.

[3] K. T. Seow, N. H. Dang and D. H. Lee, "A Collaborative Multiagent Taxi-
Dispatch System," in IEEE Transactions on Automation Science and
Engineering, vol. 7, no. 3, pp. 607-616, July 2010.

[4] M. Maciejewski, J. Bischoff and K. Nagel, "An Assignment-Based
Approach to Efficient Real-Time City-Scale Taxi Dispatching," in IEEE
Intelligent Systems, vol. 31, no. 1, pp. 68-77, Jan.-Feb. 2016.

[5] Z. Liao, "Taxi dispatching via Global Positioning Systems," in IEEE
Transactions on Engineering Management, vol. 48, no. 3, pp. 342-347,
Aug 2001.

[6] J. Yuan, Y. Zheng, X. Xie and G. Sun, "T-Drive: Enhancing Driving
Directions with Taxi Drivers' Intelligence," in IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 1, pp. 220-232, Jan. 2013.

[7] X. Xu, J. Zhou, Y. Liu, Z. Xu and X. Zhao, "Taxi-RS: Taxi-Hunting
Recommendation System Based on Taxi GPS Data," in IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 4, pp. 1716-1727, Aug.
2015.

[8] N. J. Yuan, Y. Zheng, L. Zhang and X. Xie, "T-Finder: A Recommender
System for Finding Passengers and Vacant Taxis," in IEEE Transactions
on Knowledge and Data Engineering, vol. 25, no. 10, pp. 2390-2403, Oct.
2013.

[9] D. Zhang et al., "Understanding Taxi Service Strategies From Taxi GPS
Traces," in IEEE Transactions on Intelligent Transportation Systems, vol.
16, no. 1, pp. 123-135, Feb. 2015.

[10] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira and L.
Damas, "Predicting Taxi–Passenger Demand Using Streaming Data," in
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp. 1393-1402, Sept. 2013.

[11] F. Miao et al., "Taxi Dispatch With Real-Time Sensing Data in
Metropolitan Areas: A Receding Horizon Control Approach," in IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 2, pp.
463-478, April 2016.

[12] M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative
learning approach to the traveling salesman problem," in IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66, Apr
1997.

[13] Z. H. Zhan et al., "An Efficient Ant Colony System Based on Receding
Horizon Control for the Aircraft Arrival Sequencing and Scheduling
Problem," in IEEE Transactions on Intelligent Transportation Systems,
vol. 11, no. 2, pp. 399-412, June 2010.

[14] W. N. Chen and J. Zhang, "An Ant Colony Optimization Approach to a
Grid Workflow Scheduling Problem With Various QoS Requirements," in
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 39, no. 1, pp. 29-43, Jan. 2009.

[15] Y. J. Gong et al. , "Distributed evolutionary algorithms and their models,"
in Applied Soft Computing, vol. 34, no. 1, pp. 286-300, Sep. 2015.

TABLE IV EXPERIMENTAL RESULT COMPARISONS OF DIFFERENT q0 ON

RDD-ACS-TPM

Taxi
scale

Passenger
scale

Value of parameter q0
0.90 0.95 0.98 0.99 1.00

3000

3150 1894.98 1897.63 1909.97 1924.20 1902.04
3300 1925.13 1927.57 1945.15 1953.57 1931.58
3450 1947.93 1950.24 1966.24 1972.02 1953.33
3600 1956.27 1958.62 1972.40 1977.56 1961.51

Fig. 7. Influence of the parameter q0 on RDD-ACS-TPM

Fig. 6. Influence of the number of subregions and CPU cores on RDD-ACS-TPM in the taxi scale of 4000. (a) Average optimal profit. (b) Average running
time. (c) Speedup of RDD-ACS-TPM.	

967
Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

