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Abstract—Cooperative coevolution framework is an effective 
strategy to deal with large scale optimization problems. However, 
most studies on cooperative coevolution framework utilize the 
same optimizer for all subcomponents, which may not be 
effective enough. In this paper, we propose a novel multi-
optimizer cooperative coevolution method for large scale 
optimization problems which randomly chooses an optimization 
strategy for each subcomponent independently. Four extensively 
used differential evolution algorithms are utilized as candidate 
optimizers. Two of them have good exploration properties while 
the other two have good exploitation properties. Experimental 
results utilizing differential grouping algorithm as decomposition 
strategy of the cooperative coevolution framework show that this 
multi-optimizer CC method performs better on most of the 
CEC’2010 large-scale global optimization (LSGO) benchmark 
functions than each single-optimizer CC framework where all of 
the subcomponents use the same optimizer. What is more, 
experimental results also show that this multi-optimizer CC 
method is suitable for not only fixed decomposition strategy (DG, 
XDG, and GDG) but also dynamic decomposition strategy (Delta 
Grouping). 

Keywords—multi-optimizer; cooperative coevolution; large 
scale optimization; differential evolution 

I. INTRODUCTION  

Large scale optimization problem has become increasingly 
popular in the recent years for a large amount of real world 
problems can be abstracted as large scale optimization problem. 
However, solving large scale optimization problem is a 
challenging task due to the deterioration of the performances of 
evolutionary algorithms (EAs) as the dimensions increase. 

To settle this problem, two kinds of solutions have been 
proposed. One is to decompose the large scale problem into 
several  smaller ones and the other is to apply hybridization 
method. 

Cooperative coevolution framework [1], which utilizes a 
divide-and-conquer technique is the most important approach 
to solve large scale optimization problems. It divides a high 
dimensional problem into several lower dimensional sub-
components and then evolves each subcomponent separately 

and finally implements coevolution to gain interdependencies 
between different subcomponents. This CC framework has 
been shown to be attractive for solving large scale complex 
optimization problems. Since there are plenty of candidate EAs 
for the optimization process and the coadaptation process is 
embedded in fitness evaluation operations, the decomposition 
process becomes a vital process. Thus, dozens of papers have 
studied the grouping methods of CC framework. 

The original papers only applied simple decomposition 
mechanisms such as one-dimensional based strategy [2], 
splitting-in-half strategy [3], and random grouping strategy [4], 
as time goes by, more and more complicated strategies have 
been proposed, such as multilevel cooperative coevolution 
(MLCC) [5], delta grouping [6], differential grouping (DG) [7] 
and so on. 

Although a lot of researches have been made on the 
decomposition strategies of CC framework, most of them 
utilize the same algorithm to optimize all of the subcomponents 
so far. It may not be effective enough to use the same optimizer 
to evolve subcomponents in different stages, for some of them 
may in the early stage of optimization and need to use 
strategies with good exploitation properties to speed up the 
pace of convergence while the others may be in the later stage 
of optimization that have already converged and need to use 
strategies with good exploration properties to increase the 
diversity of the population and search more spaces to avoid 
stagnation in the local optima. 

This paper pays attention to the difference of the 
subcomponents and proposes a new multi-optimizer CC 
method which randomly chooses an optimization strategy from 
the candidate optimizers for each subcomponent. Four widely 
used differential evolution algorithms [8] are utilized as the 
candidate optimizers in the proposed multi-optimizer CC 
method, two of them can speed up the pace of convergence 
(“DE/current-to-best/1/bin” and “DE/current-to-best/2/bin”) 
and the other two can increase the diversity of the population 
(“DE/rand/1/bin” and “DE/rand/2/bin”). The parameters in the 
DEs are set based on individual-dependent parameter (IDP) 
setting strategy which is proposed in [9].  

The rest of the paper is organized as follows. In Section II, 
a review of the differential evolution, the cooperative 
coevolution framework and some of the decomposition 
strategies are given. Section III elaborates the proposed multi- 
optimizer CC method utilizing different strategies in different 
subcomponents. Section IV presents the experiment results to 
prove the effectiveness of the proposed multi-optimizer CC 
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method and shows that this method is suitable for differential 
grouping (DG), extended differential grouping (XDG), global 
differential grouping (GDG) and delta grouping. Finally, the 
conclusions and summaries of the whole paper are provided in 
Section V. 

II. RELATED WORK 

A. Cooperative Coevolution Framework 

The cooperative coevolution (CC) framework [1] was first 
proposed to improve the performance of genetic algorithms 
(GAs) [10] in the optimization of the high-dimensional 
problems and has received great success. In recent years, 
efforts have been made to apply CC framework to DE 
algorithm [11]. The main idea of  CC framework is to divide a 
complicated problem into several smaller ones to make it easier 
to deal with and then conquer them separately. The detailed 
information is concluded as follows. 

1) Decomposition: Suppose the dimension of the given 
problem is n, which is an extremely huge number. The 
decomposition process is executed to divide it into m smaller 
groups. Initial works on cooperative coevolution framework 
utilized simple strategies in this step, such as one-dimensional 
based strategy [2], where m = n, splitting-in-half strategy [3], 
where m = 2 and random grouping strategy [4], where m is a 
factor of n. One-dimensional based strategy, dividing the n-
dimensional vector into n independent variables, is effective 
when dealing with separable problems, but meets with reverse 
when dealing with nonseparable problems. Splitting-in-half 
strategy decompose the n-dimensional vector into two n/2-
dimensional ones, which are still complicated when n is large. 
Random grouping strategy divides the n-dimensional vector 
into m smaller groups of the same size randomly, where a large 
amount of work is needed to find the suitable value of m since 
it varies from problem to problem. Nowadays, a huge number 
of improved decomposition strategies have been proposed [5-
7]. They can be divided into two categories: the ones which 
decompose the problem into fixed subcomponents during the 
whole iterations and the ones whose subcomponents keep 
changing during the iterations, the detailed information of these 
strategies will be discussed in the following subsection.  

2)   Optimization: After decomposition, each sub-
component evolves separately. EAs [12, 13], which have a 
strong global search capability, can effectively optimize each 
sub-component. EAs such as particle swarm optimization 
(PSO) [14-16], genetic algorithm (GA) [10], ant colony 
optimization (ACO) [17], the estimation of distribution 
algorithms (EDA) [18] and differential evolution algorithm 
(DE) [8] have been widely used in this step. In the multi-
optimizer CC method proposed by this paper, DE algorithms 
are utilized as the optimization strategies due to its 
effectiveness in global optimization. The particular 
information about DE algorithm will be elaborated later. 

3)    Coadaptation: Since the vectors have been divided, 
the fitness value cannot be calculated by using each single 
subcomponent exclusively in the optimization process. 
Therefore, the individual with the best fitness value of each 
subcomponent is recorded and utilized to calculate the fitness 
value together with each subcomponent. That is, noted the 
individual with the global fitness value as Xbest = (X1

best, 
X2

best,… Xm
best ), where Xa

best, a = 1,2,…m is the individual 
with the best fitness value up to the current generation in 
subcomponent a. When optimizing the  subcomponent in the 
gth generation,  X = (X1

best,…,Xa-1
best, Xa,g, Xa+1

best ,…,Xm
best ) is 

used to compute the fitness value. 

B. Decomposition Strategies 

1) Fixed Decomposition Strategies: Differential grouping 
algorithm (DG) [7] is the most vital fixed decomposition 
algorithm, it is an algorithm extensively applied as the 
decomposition strategy of CC framework due to its 
effectiveness for both separable and nonseparable problems 
and its ability to get the number of subgroups automatically.  

Although DG algorithm has been proven to be effective, 
there are also many drawbacks, therefore, studies have been 
made to further improve its performance:  

Extended Differential Grouping (XDG) [19]: addresses the 
limitation of DG that can only identify the direct interaction 
between variables. 

Global Differential Grouping (GDG) [20]: increases the 
accuracy of DG by maintaining global information.  

2) Dynamic Decomposition Strategies: Multilevel Cooper-
ative Coevolution (MLCC) [5], which can choose the proper 
size of the subcomponent self-adaptively and Delta Grouping 
[6], which uses delta value (the amount of changes in each of 
the decision variables in every iterations) to identify interact-
ing variables and divides subcomponents according to it, are 
two important dynamic decomposition strategies.  

Apart from these two algorithms, there are also other 
dynamic decomposition algorithms such as EACC-G [21], 
which applies an adaptive weighting mechanism in the 
coadaptation steps; CCEA-AVP [22], which partitions the 
variables based on the correlation coefficient; DECC-ML [23], 
which improves the performance of MLCC by grouping more 
frequently; DECC-CIG [24], which proposes a new method 
named symmetrical uncertainty to identify the interaction 
between variables. 

C. Differential Evolution 

DE algorithm was proposed by Storn and Price in 1997 [8], 
like other evolutionary algorithms, it randomly generates the 
initial population Xi,0 = (xi,1,0, xi,2,0,…xi,n,0), xi,j,0∈[xj

l, xj
u], i = 

1,2,…NP with uniform distribution, where NP is the 
population size, n is the dimension of the given problem,  xj

l 
and xj

u are the lower bounds and upper bounds of the jth 
dimension. And then get into the iterations of evolution process 
which consists of mutation, crossover and selection. 
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Fig. 1. The diversity of each subgroup of Single-group Shifted and 50-
rotated Rastrigin’s Function 

 
Fig. 2. The diversity of each subgroup of 10-group Shifted 50-
dimensional Schwefel’s Problem 1.2 

1) Mutation: At each generation g, for each individual Xi,g, 
the mutant vector is denoted as Vi,g and the learning strategies 
of DE are usually denoted by DE/x/y/z, where x indicates the 
vector to be mutated while y indicates the number of 
difference vectors used and z stands for the crossover 
mechanism. The mutation strategies with the largest utilization 
ratio are the following three: 

DE/rand/1: 
1 2 3, , , , ,( )i g r g i g r g r gV X F X X     

DE/current-to-best/1: 

1 2, , , , , , , ,( ) ( )i g i g i g best g i g i g r g r gV X F X X F X X        

DE/best/1: 
1 2, , , , ,( )i g best g i g r g r gV X F X X     

where Fi,g is the mutation vector of the ith individual in 
generation g which lies in [0,2]; r1, r2, r3 are three random and 
mutually exclusive integers uniformly chosen from the range 
[1,NP]\{i}; Xbest,g is the individual with the best fitness value 
in generation g. 

2) Crossover: After mutation, crossover operation is 
applied. In this process, the binomial crossover operation is 
executed to each pair of mutant vector Vi,g and Xi,g to get the 
trail vector Ui,g , where 
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CRi,g is the crossover rate of the ith individual in generation g 
which lies in [0,1]; U(0,1) is an uniform random number on 
the interval [0,1];  jrand is an integer randomly chosen from 
[1,n]. 

3) Selection: Finally, the selection operation is utilized to 
compare the fitness value of the trail vector Ui,g with the 
parent vector Xi,g and choose the better one as the parent 
vector Xi,g+1 of the next generation. 
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f (Ui,g) and f (Xi,g) are the fitness value of Ui,g and Xi,g. 

III. MULTI-OPTIMIZER CC METHOD 

A. Experiment Analysis of Each Subgroup 

It has been acknowledged that apply different strategies in 
different stages of optimization process can enhance the 

performance of the algorithm and there have already been 
researches based on this idea [9]. But the discrepancy of each 
group is always ignored and almost all of the proposed 
algorithms utilize the same strategy to optimize all of the 
subgroups although many researches have been made on CC 
framework and plenty of decomposition strategies have been 
proposed to divide the vector into several groups. 

Figs. 1 and 2 shows the diversity of each subgroup of 
Single-group Shifted and 50-rotated Rastrigin’s Function and 
10-group Shifted 50-dimensional Schwefel’s Problem 1.2. It 
can easily discover from Fig. 1-2 that the characteristic of 
each group are totally different for these two problems. Some 
of the groups are in the early stage of the optimization and 
need to utilize strategies with a good convergence property to 
speed up the convergence rate while the others are in the later 
stage of the optimization and need to utilize strategies with 
good diversity to search more spaces to avoid stopping in the 
local optima. 

B. Parameter Settings in DEs 

Although a large amount of self-adaptive parameter setting 
strategies of DE algorithm have been proposed and proven to 
be effective, most of them need to use the historical 
information of the former iterations [9, 25-30], which is not 
suitable for our new CC method. For most of the 
decomposition strategies we utilized, the iteration time of each 
subcomponent is set to be 1 so that there is no history 
information that can be gained. A subcomponent may use 
different optimization strategies in different iterations and it is 
unreasonable to apply the information of an optimizer to the 
others. Therefore, we use a parameter setting strategy that 
merely needs to use the information of the current population, 
which is proposed in [9]. 

The value of Fi,g and CRi,g are set based on the rank of Xi,g: 
reindex all individuals in the current population in ascending 
order of their fitness values, i.e., individual Xi,g is the ith 
superior one. So that Fi,g and CRi,g can be set as 

, ,i g i g

i
F CR

NP
   

However, superior individuals are not always close to the 
global best individual because many local minima spread all 
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 Fig. 3. The flow chart of multi-optimizer CC method 

over the searching space and confuse the search. Based on this 
observation, we randomize the parameters using a normal 
distribution with the mean specified to the original value and 
the standard deviation specified to 0.1. Then, the parameter 
settings can be modified as 

, ,' ( ,0.1)i g i gF N F  

, ,' ( ,0.1)i g i gCR N CR  

C. Multi-Optimizer CC Method 

Base on the discovery that the subgroups in CC framework 
have different characteristic, this paper proposes a multi-
optimizer CC method randomly choose an optimization 
strategy for each group. 

We select four learning strategies as candidates: “DE/rand/ 
1/bin”, “DE/rand/2/bin”, “DE/current-to-best/1/bin”, “DE/ 
current-to-best/2/bin”, which have been extensively used in 
global optimization, the probability of choosing each of them 
to the ath subgroup is set to be  pa,1= pa,2 = pa,3= pa,4 = 0.5, a = 
1,2,…m. 

Among the four candidate strategies, “DE/rand/1/bin” and 
“DE/rand/2/bin” shows good exploration properties while DE/ 
current-to-best/1/bin” and “DE/ current-to-best/2/bin” shows 
good exploitation properties.  

The flow chart of the new proposed multi-optimizer CC 
method is given in Fig. 3. 

Firstly, the initial population is randomly generated with 
the given bound and the variables are decomposed using a 
certain decomposition strategy. Then computes the fitness 
value of each individual to get the global best one and begins 
to cycle until the halting criteria are satisfied. For each group, 

generate a uniform random number on interval [0,1]. If it is in 
the range [0,0.25), DE/current to best/1 is used to optimize it; 
if it is in the range [0.25,0.5), DE/current to best/2 is used to 
optimize it; if it is in the range [0.5,0.75), DE/rand/1 is used to 
optimize it; if it is in the range [0.75,1], DE/rand/2/ is used to 
optimize it.  

IV. EXPERIMENT RESULTS 

A. Benchmark Function 

To evaluate the performance of the new proposed algorithm, 
benchmark functions for the CEC’2010 special session and 
competition on large-scale global optimization [31] is utilized. 
It consists of 20 benchmark functions with dimension n = 1000, 
the number of variables in each group l = 50  and it includes 
three separable functions (f1 – f3), five single-group l-non-
separable functions (f4 – f8), five n/2l-group l-nonseparable 
functions (f9 – f13), five n/l-group l-nonseparable functions (f14 – 
f18) and two nonseparable functions (f19,  f20). 

B. Parameter Settings 

For each function, each algorithm is run 30 runs and 
FES=3e6. The population size NP is set to be 50 and the 
iteration time of each subcomponent is set to be 1 as suggested 
in [6, 7, 19, 20]. 310  in DG as suggested in [7]; 110  in 
XDG as suggested in [19] and 1010  in GDG as suggest in 
[20]. 

C. Comparison with DECC-DGs 

The Comparison of the multi-optimizer algorithm with 
single-optimizer algorithms using each candidate DE 
individually and SaNSDE, which is the optimization strategy 
the original work of DECC-DG uses, is given and all of them 
use DG algorithm as the decomposition strategy. Table I 
shows the mean value, the standard deviation of the multi-
optimizer CC and each single-optimizer CC, and the p-value 
of Wilcoxon rank sum test of each single optimizer CC with 
multi-optimizer CC. 

Table I shows that the new multi-optimizer CC method 
outperforms the single-optimizer CC methods that use 
optimizer SaNSDE, DE/current-to-best/1/bin, DE/current-to-
best/2/bin, DE/rand/1/bin, DE/rand/2/bin individually in 8, 12,  
16, 11, 14 out of 20 functions. Therefore, we can come to a 
conclusion that the multi-optimizer CC method cooperates 
well with DG. 

D. Comparison with Other DECCs 

It has been shown that this multi-optimizer CC method 
suits DG algorithm well, this subsection is to discuss whether 
it is suitable for XDG, GDG and Delta Grouping as well. We 
still compare the multi-optimizer DECCs with CC-SaNSDEs. 
The mean value, the standard deviation and the p-value of 
Wilcoxon rank sum test of the new multi-optimizer DECCs 
and the original DECCs with SaNSDE are shown in Table II. 

Table II shows that the multi-optimizer DECC_XDG 
outperforms the original DECC_XDG with SaNSDE in 8 out 
of 20 functions, the multi-optimizer DECC_GDG outperforms 
the DECC_GDG with SaNSDE in 9 out of 20 functions and 
the multi-optimizer DECC_D outperforms the DECC_D with 
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SaNSDE in 9 out of 20 functions. Consequently, this multi-
optimizer CC method is suitable for XDG, GDG and Delta 
Grouping as well. The results seem not good enough for the 
multi-optimizer DECCs outperform the original DECCs with 
SaNSDE in less than half of the benchmark functions for each 
decomposition strategy. However, we can discover from Table 
II that only 3 out of 20 functions underperform the original 
DECCs with SaNSDE for each decomposition strategy. The 
rest of them behave almost the same for the multi-optimizer 
CC method uses a random strategy for choosing optimizer, 
which makes the results have a great randomness. Since the 
multi-optimizer CC method underperform the single-optimizer 
CC framework in just few of the benchmark functions, we can 
draw a conclusion that this multi-optimizer CC method is 
suitable for XDG, GDG and Delta Grouping as well. 

V. CONCLUSION 

In this paper, we propose a new multi-optimizer CC 
method which randomly choose an optimization algorithm for 
each subcomponent. Experimental results show that this multi-
optimizer CC method outperforms the single-optimizer CC 
methods in most of the CEC’2010 large-scale global 
optimization benchmark functions and this multi-optimizer 
CC method is suitable for fixed decomposition strategies such 
as DG, XDG and GDG as well as dynamic decomposition 
strategy such as Delta Grouping. Moreover, other optimization 
strategies can be also applied as the candidate optimizers in 
this algorithm and the number of candidates can increase or 
decrease as required. However, it seems that this method 
meets with the failure when cooperate with some of the 
dynamic decomposition strategies such as MLCC, which 
remains a problem to be solved. 
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TABLE I.  COMPARISON OF THE MULTI-OPTIMIZER DECC-DG WITH DECC-DG WITH SANSDE AND SINGLE-OPTIMIZER DECC-DGS  

 
DG 

    Multi optimizer SaNSDE current to best/1 current to best/2 rand/1 rand/2 

Function 1 
Mean 6.5493E+03 2.392E+03 1.5820E+07 7.8314E+04 7.2968E-01 4.3901E+02 
Std 1.6065E+04 4.058E+03 9.0601E+06 4.1554E+05 1.2929E+00 1.1841E+03 

p-value - 6.952E-01 3.0199E-11+ 2.2658E-03+ 3.0199E-11- 1.4298E-05- 

Function 2 
Mean 4.1170E+03 4.429E+03 7.4058E+03 7.6327E+03 1.5795E+03 1.6425E+03 
Std 3.2375E+02 1.121E+02 2.6166E+02 8.6720E+02 1.3249E+02 9.7337E+01 

p-value - 2.388E-04+ 3.0199E-11+ 3.0199E-11+ 3.0199E-11- 3.0199E-11- 

Function 3 
Mean 1.6391E+01 1.670E+01 1.9458E+01 1.6091E+01 5.8154E+00 4.7031E+00 
Std 3.1249E-01 4.042E-01 1.3834E-01 1.8521E+00 4.1293E-01 4.6399E-01 

p-value - 9.031E-04+ 3.0199E-11+ 3.1466E-02- 3.0199E-11- 3.0199E-11- 

Function 4 
Mean 8.9690E+12 5.240E+12 1.9026E+12 1.8484E+13 1.1554E+14 1.2816E+14 
Std 3.7613E+12 1.457E+12 7.3794E+11 4.9761E+12 2.3207E+13 3.1410E+13 

p-value - 1.019E-05- 3.0199E-11- 6.5183E-09+ 3.0199E-11+ 3.0199E-11+ 

Function 5 
Mean 9.6216E+07 1.484E+08 1.4432E+08 1.2977E+08 1.1477E+08 1.2517E+08 
Std 1.8169E+07 2.210E+07 2.8289E+07 1.7031E+07 1.8249E+07 1.7588E+07 

p-value - 1.612E-10+ 7.1152E-09+ 6.0079E-08+ 4.7129E-04+ 9.5299E-07+ 

Function 6 
Mean 1.6047E+01 1.630E+01 1.7405E+06 1.5553E+01 5.4412E+00 4.5045E+00 
Std 4.7979E-01 3.369E-01 7.0714E+05 1.8267E+00 4.8181E-01 3.7994E-01 

p-value - 5.188E-02 2.9860E-11+ 1.6798E-03- 3.0199E-11- 3.0199E-11- 

Function 7 
Mean 1.5841E+04 1.027E+04 2.9636E+03 8.9516E+05 6.2188E+08 3.8474E+09 
Std 1.8286E+04 8.511E+03 7.6470E+03 1.0923E+05 1.8962E+08 9.8731E+08 

p-value - 7.618E-01 2.7829E-07- 3.0199E-11+ 3.0199E-11+ 3.0199E-11+ 

Function 8 
Mean 5.5508E+06 3.331E+07 7.9735E+05 6.4698E+06 5.7077E+07 5.1104E+07 
Std 4.3243E+06 2.719E+07 1.6219E+06 4.7645E+06 2.7132E+07 2.9687E+07 

p-value - 4.200E-10+ 3.3228E-08- 3.1830E-01 3.0199E-11+ 3.0199E-11+ 

Function 9 
Mean 9.2259E+07 5.586E+07 3.5385E+07 1.7424E+08 1.0030E+09 1.0898E+09 
Std 7.9389E+06 7.019E+06 1.1201E+07 1.4562E+07 5.0675E+07 8.9721E+07 

p-value - 3.020E-11- 3.3384E-11- 3.0199E-11+ 3.0199E-11+ 3.0199E-11+ 

Function 10 
Mean 3.3639E+03 4.550E+03 4.7292E+03 5.8988E+03 3.1899E+03 4.4511E+03 
Std 2.2012E+02 1.249E+02 1.6241E+02 3.1330E+02 1.9647E+02 2.2203E+02 

p-value - 3.020E-11+ 3.0199E-11+ 3.0199E-11+ 5.8282E-03- 3.0199E-11+ 

Function 11 
Mean 1.0692E+01 1.020E+01 3.7484E+01 8.2833E+00 2.2941E+00 3.6372E+00 
Std 8.9005E-01 8.778E-01 2.0647E+00 1.4151E+00 4.5082E-01 3.8277E-01 

p-value - 4.515E-02- 3.0199E-11+ 5.5329E-08- 3.0199E-11- 3.0199E-11- 

Function 12 
Mean 2.3389E+03 2.803E+03 1.1492E+04 8.5738E+03 2.8752E+05 3.8822E+05 
Std 4.8567E+02 9.205E+02 6.1795E+03 8.3287E+02 1.9599E+04 2.0796E+04 

p-value - 2.151E-02+ 3.6897E-11+ 3.0199E-11+ 3.0199E-11+ 3.0199E-11+ 

Function 13 
Mean 5.1251E+03 5.081E+03 8.5640E+03 1.0935E+04 4.0351E+03 1.0408E+05 
Std 3.2128E+03 3.459E+03 4.0711E+03 4.6067E+03 2.6216E+03 3.3407E+04 

p-value - 8.766E-01 9.5207E-04+ 1.3853E-06+ 1.8090E-01 3.0199E-11+ 

Function 14 
Mean 3.7814E+08 3.413E+08 7.9230E+07 5.6933E+08 2.8601E+09 2.9648E+09 
Std 2.4956E+07 2.522E+07 7.4440E+06 2.7128E+07 1.5463E+08 1.6052E+08 

p-value - 4.744E-06- 3.0199E-11- 3.0199E-11+ 3.0199E-11+ 3.0199E-11+ 

Function 15 
Mean 3.1117E+03 5.858E+03 2.8469E+03 3.4036E+03 5.3612E+03 5.7949E+03 
Std 1.2830E+02 7.669E+01 1.4284E+02 1.7158E+02 1.5953E+02 2.0166E+02 

p-value - 3.020E-11+ 3.6459E-08- 1.8500E-08+ 3.0199E-11+ 3.0199E-11+ 

Function 16 
Mean 2.9302E-02 7.854E-13 3.5895E+01 2.0477E-09 1.4899E-09 5.2340E-04 
Std 1.6049E-01 7.854E-14 4.0588E+00 2.2811E-10 1.4296E-10 6.4441E-05 

p-value - 5.449E-10- 2.9506E-11+ 5.4608E-10- 5.4608E-10- 5.4608E-10- 

Function 17 
Mean 3.7225E+04 4.036E+04 1.2189E+02 8.2180E+04 8.0258E+05 1.0102E+06 
Std 3.5008E+03 2.627E+03 2.4827E+01 4.7476E+03 3.5993E+04 2.8669E+04 

p-value - 4.218E-04+ 3.0199E-11- 3.0199E-11+ 3.0199E-11+ 3.0199E-11+ 

Function 18 
Mean 1.3019E+10 1.422E+10 3.1141E+10 2.2909E+10 3.1642E+09 1.7228E+10 
Std 2.0613E+09 2.147E+09 4.9082E+09 3.4440E+09 7.8626E+08 2.0347E+09 

p-value - 5.012E-02 3.0199E-11+ 1.4643E-10+ 3.0199E-11- 1.1023E-08+ 

Function 19 
Mean 2.0981E+06 1.744E+06 1.5661E+06 2.6572E+06 1.3669E+07 1.6446E+07 
Std 1.6202E+05 7.731E+04 1.2314E+05 1.6195E+05 3.2640E+06 1.5925E+06 

p-value - 3.020E-11- 3.0199E-11- 1.6132E-10+ 3.0199E-11+ 3.0199E-11+ 

Function 20 
Mean 4.9609E+10 4.593E+10 6.6937E+10 8.4712E+10 5.9734E+10 1.1979E+11 
Std 8.8147E+09 6.369E+09 1.1512E+10 1.1222E+10 6.7087E+09 1.3007E+10 

p-value - 6.787E-02 2.3768E-07+ 3.6897E-11+ 1.9963E-05+ 3.0199E-11+ 
b/e/w   8/6/6 12/0/8 16/1/3 11/1/8 14/0/6 
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TABLE II.  COMPARISON OF THE MULTI-OPTIMIZER DECC WITH CC-SANSDE USING XDG, GDG, DELTA GROUPING AS DECOMPOSITION STRATEGY 

 
    XDG GDG Delta Grouping 
    Multi optimizer  SaNSDE Multi optimizer  SaNSDE Multi optimizer  SaNSDE 

Function 1 
Mean 3.672E+04 3.427E+03 3.813E+01 4.192E+03 0.000E+00 1.549E-24 
Std 1.866E+05 8.006E+03 6.936E+01 2.267E+04 0.000E+00 8.484E-24 

p-value - 1.715E-01 - 8.236E-02 - 8.152E-02 

Function 2 
Mean 4.246E+03 4.469E+03 4.158E+03 4.402E+03 2.598E+02 2.939E+02 
Std 3.773E+02 1.234E+02 2.646E+02 1.504E+02 5.787E+01 2.507E+01 

p-value - 7.617E-03+ - 2.531E-04+ - 1.055E-01 

Function 3 
Mean 1.639E+01 1.666E+01 1.628E+01 1.663E+01 1.235E-13 1.260E-13 
Std 3.353E-01 3.640E-01 3.281E-01 3.697E-01 5.877E-15 4.545E-15 

p-value - 3.501E-03+ - 2.006E-04+ - 7.033E-02 

Function 4 
Mean 2.848E+11 7.213E+11 8.942E+11 8.576E+11 2.610E+12 3.641E+12 
Std 1.252E+11 1.794E+11 3.601E+11 3.250E+11 8.785E+11 1.415E+12 

p-value - 1.613E-10+ - 7.958E-01 - 3.183E-03+ 

Function 5 
Mean 1.004E+08 1.550E+08 9.580E+07 1.390E+08 2.407E+08 2.465E+08 
Std 1.674E+07 2.125E+07 2.114E+07 2.040E+07 5.708E+07 5.846E+07 

p-value - 8.153E-11+ - 9.260E-09+ - 6.952E-01 

Function 6 
Mean 1.614E+01 1.629E+01 1.607E+01 1.626E+01 3.908E-09 5.329E-09 
Std 3.697E-01 3.273E-01 4.144E-01 3.590E-01 1.084E-09 1.807E-09 

p-value - 1.055E-01 - 4.515E-02+ - 1.030E-03+ 

Function 7 
Mean 1.197E+03 9.826E+02 8.060E+01 2.103E+02 4.770E+08 4.332E+08 
Std 1.619E+03 1.284E+03 1.099E+02 7.250E+02 2.327E+08 2.483E+08 

p-value - 8.073E-01 - 3.042E-01 - 3.183E-01 

Function 8 
Mean 3.987E+05 3.987E+05 5.321E+05 6.646E+05 4.483E+07 1.093E+08 
Std 1.216E+06 1.216E+06 1.378E+06 1.511E+06 5.089E+07 8.779E+07 

p-value - 2.921E-02- - 5.395E-01 - 4.353E-05+ 

Function 9 
Mean 1.352E+08 1.116E+08 1.039E+08 6.949E+07 5.562E+07 5.936E+07 
Std 1.625E+07 1.117E+07 1.266E+07 7.284E+06 6.102E+06 6.269E+06 

p-value - 4.444E-07- - 3.690E-11- - 2.151E-02+ 

Function 10 
Mean 3.954E+03 5.256E+03 3.455E+03 4.682E+03 1.238E+04 1.307E+04 
Std 2.147E+02 1.480E+02 2.096E+02 1.124E+02 3.137E+02 2.221E+02 

p-value - 3.020E-11+ - 3.020E-11+ - 5.072E-10+ 

Function 11 
Mean 1.082E+01 1.067E+01 1.033E+01 1.062E+01 5.860E-02 1.508E-13 
Std 7.858E-01 7.932E-01 1.061E+00 7.279E-01 2.230E-01 9.362E-15 

p-value - 6.204E-01 - 1.297E-01 - 2.587E-03- 

Function 12 
Mean 1.212E+04 1.276E+04 4.333E+03 4.252E+03 3.967E+06 4.281E+06 
Std 2.775E+03 1.771E+03 1.398E+03 9.452E+02 2.325E+05 2.337E+05 

p-value - 8.771E-02 - 6.520E-01 - 3.157E-05+ 

Function 13 
Mean 3.489E+03 3.297E+03 1.201E+03 1.366E+03 1.444E+03 1.230E+03 
Std 1.594E+03 1.254E+03 7.338E+02 7.496E+02 7.436E+02 4.906E+02 

p-value - 8.534E-01 - 2.009E-01 - 2.707E-01 

Function 14 
Mean 5.751E+08 5.870E+08 4.566E+08 4.552E+08 1.879E+08 2.012E+08 
Std 3.900E+07 3.626E+07 2.927E+07 2.500E+07 1.096E+07 1.553E+07 

p-value - 2.519E-01 - 9.470E-01 - 8.120E-04+ 

Function 15 
Mean 3.639E+03 6.351E+03 3.327E+03 6.077E+03 1.482E+04 1.595E+04 
Std 1.532E+02 9.595E+01 1.150E+02 8.087E+01 3.026E+02 3.073E+02 

p-value - 3.020E-11+ - 3.020E-11+ - 3.020E-11+ 

Function 16 
Mean 3.724E-09 1.778E-08 2.930E-02 5.379E-11 7.656E-02 2.217E-13 
Std 4.265E-10 1.540E-09 1.605E-01 5.383E-12 2.931E-01 1.521E-14 

p-value - 3.020E-11+ - 5.573E-10- - 6.230E-08- 

Function 17 
Mean 1.130E+05 1.277E+05 6.551E+04 7.363E+04 6.383E+06 7.450E+06 
Std 6.260E+03 5.085E+03 4.441E+03 4.102E+03 3.512E+05 3.258E+05 

p-value - 6.121E-10+ - 3.081E-08+ - 8.993E-11+ 

Function 18 
Mean 1.299E+03 1.359E+03 1.085E+03 1.250E+03 2.161E+03 1.990E+03 
Std 1.627E+02 1.371E+02 1.577E+02 1.220E+02 5.567E+02 6.487E+02 

p-value - 1.624E-01 - 4.943E-05+ - 1.154E-01 

Function 19 
Mean 2.116E+06 1.731E+06 2.293E+06 1.880E+06 1.854E+07 1.884E+07 
Std 1.388E+05 1.048E+05 1.909E+05 1.084E+05 1.558E+06 1.197E+06 

p-value - 7.389E-11- - 8.993E-11- - 5.201E-01 

Function 20 
Mean 1.441E+05 1.051E+07 8.229E+03 1.413E+04 1.243E+03 1.176E+03 
Std 3.779E+05 5.590E+07 1.041E+04 3.038E+04 1.165E+02 8.566E+01 

p-value - 2.399E-01 - 1.809E-01 - 1.273E-02- 
b/e/w  8/9/3 8/9/3 9/8/3 
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