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Abstract—Recently, partitional clustering approaches based 
on Evolutionary Algorithms (EAs) have shown promising in 
solving the data clustering problems. However, with the 
nearest prototype (NP) rule as the method for decoding, most 
of them are only suitable for clustering datasets with convex 
(e.g. hyperspherical) clusters. In this paper, we propose an 
automatic clustering approach using particle swarm 
optimization (PSO). A new encoding scheme with a novel 
decoding method, named the nearest multiple prototypes 
(NMP) rule,  is applied to the PSO-based clustering algorithm 
to automatically determine an appropriate number of clusters 
in the procedure of clustering and partition datasets with 
arbitrary shaped clusters. The algorithm is experimentally 
validated on both synthetic and real datasets. The results show 
that the proposed PSO-based approach is very competitive 
when comparing with two popular clustering algorithms. 
Keywords—Partitional clustering, evolutionary algorithm, 

particle swarm optimization (PSO), prototype-based encoding, 
multiple prototypes

I. INTRODUCTION

Clustering analysis, also known as unsupervised 
classification or exploratory data analysis, is aimed at 
abstracting the underlying structure of data by partitioning a 
finite unlabeled data set into groups or clusters of similar 
objects [1], [2], [3]. Clustering techniques are subdivided 
into hierarchical clustering and partitional clustering based 
on the type of structure imposed on the data [1], [2]. 

Partitional clustering can be regard as a non-deterministic 
polynomial hard (NP-hard) combinational optimization 

problem [4]. As the problem is complex, traditional deter-
ministic local search algorithms, e.g. K-means [5], are easily 
stuck in local minima and their results are heavily influenced 
by the initial choice of cluster centers [6]. Therefore, more 
powerful search methods such as evolutionary algorithms 
(EAs) [7], [8] and tabu search (TS) [9], known as general-
purpose metaheuristics, are applied to explore the clustering 
solution space more efficiently [10]-[12]. Among them, EAs 
have shown to be promising alternatives mainly because they 
have been proven to be an effective way to find solutions 
close to the global optimum and are less dependent upon the 
initial conditions. Especially, it has been shown to perform 
more promisingly and more efficiently than traditional 
randomized approaches (e.g., multiple runs of K-means) in 
clustering problems [13]. Recently, some clustering methods 
using EAs [16], [17] can evolve the optimal number of 
clusters in the clustering procedure without a priori 
knowledge of actual number of clusters, which is usually 
unavailable in most real-life applications. This feature makes 
EAs more practical and effective for clustering problems.  

In partitional clustering algorithm based on EAs, there 
are three major representation schemes to present a 
clustering solution (partition): label-based, medoid-based and 
centroid-based representations [14], which have different 
decoding method from individual (genotype) to partition 
(phenotype). Centroid-based [16] and medoid-based [15] 
representations belong to prototype-based representation, 
which encode the prototypes, feature vectors used to 
represents given clusters, into a given genotype. We have 
concentrated on prototype-based representation for the 
reason that the prototype-based encoding is more scalable 
than label-based representation in most cases [14]. The 
partition can be derived by the nearest prototype (NP) rule 
that for a given set of cluster prototypes, any data object can 
be optimally classified by assigning it to the cluster whose 
prototype is most similar to the data object. The similarity 
can be measured by some criteria such as Euclidean distance. 
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Such encoding scheme are popularly used in clustering 
algorithms based on EAs [14], [16]. However, these 
algorithms are usually biased toward the discovery of convex 
(e.g. hyperspherical or hyperelliptic) clusters which clearly 
will be inappropriate in many applications where the natural 
clusters for the data are non-convex. 

In order to discover clusters of more complex (e.g., 
nonconvex) shapes and perform automatic clustering at the 
same time, a novel clustering approach using PSO is 
proposed, we refer to it as the automatic clustering PSO 
(ACPSO) algorithm. In this approach, we proposed a new 
encoding method which combines the particle representation 
scheme proposed by Das et al. [16], which both encodes 
activation thresholds and cluster centroids into particle, with 
a novel cluster-recovering rule as decoding method, named 
nearest multiple prototypes (NMP) rule. The proposed rule 
distinguish itself from the nearest prototype rule mainly 
based on three aspects as below. 

 1) In the NP rule, there is only one prototype in each 
cluster leading to the central gathering phenomenon, 
whilst in the NMP rule, multiple prototypes strategy is 
adopted to avoid this phenomenon. 

2) In the NP rule, the distance between a data object and 
a cluster is defined as the distance of  this data object 
to the only  one prototype of the cluster, whilst in the 
NMP rule, corresponding to multiple prototypes 
strategy, a new distance measuring method is used 
which takes all prototypes of a cluster into account and 
selects the one nearest to the data object as reference 
substance when measuring object-cluster distance.  

3) In the NP rule, each data object is assigned independ-
ently, whilst in the NMP rule, the assignment of each 
data object is relevant and the procedure of assignment 
is iterative and dynamic.  

In addition to that, we propose a new population 
initialization method to weed out the weakness of the 
original particle representation scheme.  

The rest of this paper is organized as follows. Section II 
briefly describes standard local version PSO algorithm 
cluster validity indexes. Section III develops the ACPSO 
algorithm in detail. Experimental results on fifteen synthetic 
and three real data sets are displayed in Section IV . Finally, 
conclusion is given in Section V. 

II. BACKGROUND

A. Particle Swarm Optimization 
Particle swarm optimization (PSO) is a stochastic search 

algorithm using a population of potential solution to search 
the search space [19] and [20]. The algorithm models the 
social behavior of a bird flock. Each particle of the 
population (called swarm) flies like a bird to locate an 
optimal location (solution) in the search space and adjusts its 
own velocity according to the information shared in the 
swarm while searching. 

In the literature, there have been a lot of PSO variants 
proposed so far [19]-[25] when it is first introduced by 

Eberhart and Kennedy. In our experiments, we use the local 
version PSO [21]. It can be stated mathematically as follows. 

Let 1 2 2X ( , ,  ..., )i i i ix x x=  and 1 2V ( , ,  ..., )i i i idv v v=  be the 
position and velocity d-dimensional vectors of particle i. The 
algorithm uses the predefined fitness function, which is 
problem-dependent, to evaluate the position. The best 
previous position, representing the best function value, of the
i-th particle is denoted as

2i1( ,  ... ), i idip = . The soc-
ial sharing of information is based on two best locations 
during the evolution process: one is the particle’s own 
previous best position, the other is the best position in the 
neighborhood denoted by the index l. Here, the neighbor-
hood is defined by the ring topological structure. Using the 
above notation, the PSO velocity and position equations are 
calculated as 

1 1

2 2

V ( 1) V ( X ( ))
                         ( X ( ))

ij ij i ij

l ij

t w c rand p t
c rand p t

+ = +
+         (1) 

X ( 1) X ( ) V ( 1)ij ij ijt t t+ = + +          (2) 

where t is the generation, w is the inertia weight which play 
an important role of balancing global exploration and local 
exploitation for different problems, c1 and c2 are two positive 
acceleration constants, known as the cognitive and social 
components responsible for degree of information conside-
ration of personal and swarm memory respectively; rand1
and rand2 are the uniformly distributed variables in the range 
of [0, 1]. The velocity of each particle is clamped to a 
maximum velocity Vmax. Vmax is often set to about 10%–20% 
of the dynamic range of the variable on each dimension. 

B. Cluster Validity Indexes 
Cluster validity indexes are statistics used to evaluate the 

quality of clustering structures in a quantitative and objective 
way [1]. Abundant indexes with different characteristics and 
properties exist in the literature, such as the Cali´nski-
Harabasz (CH) index [17], the Davies-Bouldin (DB) index 
[26], the Dunn index [18], and the silhouette statistic (SIL)
index [27]. Any index that is non-monotonic with the 
number of clusters can be potentially used as a fitness 
function for EAs to optimize the number of clusters and 
locate the corresponding best partition simultaneously. In the 
following, two validity measures employed in our study will 
be described in detail. 

1) CH Index: The CH index [17] outperforms other 29 
indices in Milligan and Cooper’s comparative study. N data 
objects X which is defined as

 ( 1)
 ( )

trace B kCH
trace W n k

=          (3) 

where n and k are the total number of objects and the number 
of clusters in the partition, respectively; B and W are the 
between-cluster and the pooled within-cluster sums of square 
(covariance) matrices, respectively. A large value of CH 
indicates the occurrence of the best clustering partition. 

2) Dunn Index: The Dunn index [18] is designed to 
identify clusters that are compact and well separated. Let Ci
and Cj be two nonempty clusters. The distance between Ci
and Cj is defined as  
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,
( , ) min ( , )

i j
i j x C y C

D C C d x y=                        (4) 

where d(x, y) is the distance between data objects x and y.
The diameter of cluster Ci is defined as 

,
( ) max ( , )

i
i x y C

C d x y=                                      (5) 

Then, the Dunn index can be constructed as 

1,..., 1,...,
1,...

( , )
min min

max ( )
i j

i K j K
kj i k K

D C C
Dunn

C= =
=

=                  (6)

where K is the number of clusters. Larger values of Dunn
Index correspond to better clusters. 

III. PSO-BASED AUTOMATIC CLUSTERING

A. The Novel Cluster-recovering Rule 
In this part, we describe a new cluster-recovering rule, 

nearest multiple prototype (NMP) rule, developed recently 
by the authors. Distance measure is used as similarity 
measure and the distance of two elements (data object or 
cluster) a and b is defined as D (a, b). The distance between 
data object Oi and cluster Ch is given by

( , ) min{ ( , ), ( , ) | }i h i j i h j hD O C D O O D O m O C=         (7) 

where mh is the centroid of cluster Ch. First, every object is 
allocated to the cluster closest to it and all of the objects 
allocated to the same cluster make up a set called the 
candidate objects set. Here, we call this cluster an 
undetermined cluster of these objects. Then, for each cluster, 
choose the object nearest to it from its candidate objects set 
and then gather these objects of all undetermined clusters 
into a set called the nearest objects set. Finally, in the nearest 
objects set, the object whose distance to its undetermined 

cluster is shortest of all is assigned to its undetermined 
cluster. Repeat the steps above until every object is assigned 
to cluster. The procedure of our novel rule is described 
formally as follow. 

 Let there be n data objects, O1, O2,…,On. K prototypes P
= {m1,m2,…,mk}, k = 1,2,…,K, are abstracted from particle p.
The distance between every two objects D (Oi, Oj) is 
calculated before using the rule.  A candidate data objects set 
Sh is relative to Ch. The nearest objects set is denoted as T.

Step 1: Calculate the distance between unassigned object 
Oi and cluster Ch, D( Oi,Ch ), i = 1,2,…,n, h=1,2,…,K.

Step 2:  For each unassigned object Oi, if D(Oi,Ch) = 
min{ D(Oi,Cb) | b = 1,…,Kmax } , add Oi to Set Sh and Ch
becomes its undetermined cluster named Ui.

Step 3: For each cluster Ch, h = 1,2,…,K, if D(Oi,Ch) = 
min{ D(Oc, Ch) | Oc Sh , then put object Oi of Sh into T.

Step 4: In set T, the object Oi whose distance to the 
prototype of its undetermined cluster D(Oi,Ui) is shortest of 
all is assigned to Ui.

Step 5: Repeat steps 2 to step 4 until every object is 
assigned to cluster. 

The nearest prototype (NP) rule adopts one prototype per 
class and the objects cluster around it. That is the main 
reason why the algorithms with NP rule usually generate 
hyperspherical or hyperelliptic clusters. Our novel rule 
adopts a strategy named multiple prototypes to avoid this 
tendency. At first, the cluster centers extracted from a 
genotype become prototypes of each cluster. Then when a 
new object is assigned to a cluster, it becomes one of the 
prototype of this cluster for other unsigned objects. With this 
multiple prototype strategy and modified definition of 
distance between objects and clusters (7), the process of 
assignment of data objects is dynamic and flexible.  The data 
points does not rely on only one center to gather around it 
and the generation of cluster can extend in arbitrary direction 
from the starting point so that it can discover clusters of not 
only hyperspherical shape in a more data-driven way rather 
than impose a specific type of structure (like spherical 
clusters) to the data.

It's worth noting that in this rule, the cluster centers 
extracted from a genotype are often not the centers of 
clusters geometrically but the starting point of the procedure 
of generation of clusters. Besides, they determine the number 
of clusters at the beginning of the assignment procedure, 
which makes the clusters not the hierarchical structure. For 
these reasons, each of the cluster centers is the special 
prototype in its cluster and is of great importance in the 
partitional procedure of our rule. 

B. Particle Encoding and Population Initialization 
In our experiment, we adopt the centroid-based particle 

representation scheme proposed by Das et al [16], which can 
determine automatically the optimal number of clusters 
while searching for their corresponding partitions. The 
particle is encoded as a Kmax + Kmax * d real numbers vector 
Zi = (Ti1,Ti2,…,TiKmax, mi1,mi2,…,miKmax), where d is the 
dimension of data for clustering; Kmax is a user-specified 
maximum number of clusters; mij is a cluster center 

TABLE I 
DESCRIPTION OF THE DATA SETS AND PARAMETER SETUP OF THE 

DBSCAN

Dataset 
Number
of data 
objects

Number
of

clusters

Data
dimension MinPts 

Four-
GussianClusters 1500 4 2 0.11 52 

Three-
rectangles 350 3 2 0.09 1 

Two-rings 250 2 2 0.09 3 
Half-rings 500 2 2 0.11 1 

Ring-
GaussianCluster 300 2 2 0.12 11 

2d4c 1078 4 2 0.08 22 
2d10c 3073 10 2 0.07 75 
2d20c 1517 20 2 0.03 7 
10d4c 958 4 10 0.30 35 

10d10c 2729 10 10 0.21 9 
10d20c 1316 20 10 0.26 20 
50d4c 683 4 50 0.54 17 

50d10c 2242 10 50 0.34 47 
100d4c 629 4 100 0.72 9 

100d10c 2103 10 100 0.50 32 
Iris 150 3 4 0.09 4 

Wine 178 3 13 0.37 8 
Breast cancer 683 2 9 0.52 7 
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coordinate vector; Tij, j = 1…Kmax, is activation threshold 
restricted in the interval [0,1] to govern the extraction of the 
centroids. If Tij is greater than 0.5, the cluster centroid mij is 
active (is chosen); otherwise, the cluster centroid is inactive 
(is not chosen).  

For the initial population, in original version [16], the 
activation thresholds are randomly set within [0, 1]. The 
cluster centers are also randomly initialized in each 
dimension in a reasonable range according to the feature of 
the experimental data. However, the randomly initialization 
of the activations will lead to the uneven dispersion of the 
particles from perspective of the number of activated cluster 
centers. To be specific, obviously the potential number of 
activated cluster centers, denoted as X, obeys a binomial 
distribution, the probability of which is  

maxmax
max

1( ) ( ) , 0,1,...,
2

KK
P X k k K

k
= = =         (8) 

Therefore, the number of particles will decrease from the 
middle to the sides in distribution, which means the particles 
with X near ½ Kmax are much more than that with X near 0 or 
Kmax. As a result, the degree of difficulty to search different 
numbers of clusters for the clustering algorithm is of big 
difference and the algorithm with this random initialization 
method will tend to locate the partitions with near ½ Kmax
number clusters. When the actual number far away from ½
Kmax, this tendentiousness to the number of clusters caused 
by the initial populations will waste evolution time to move 
particles to optimal location and it is undesirable for 
automatic clustering.  

Here, we propose a new initialization method to make the 
tendentiousness vanish and speed up the automatic clustering 
algorithm. The random initialization of cluster centroids is 
still adopted as the original version. For the uniform 
distribution of the particles, the number of activated cluster 

centers is set properly instead of being randomly initialized. 
Concretely, in each particle, we can indicate specific number 
of the activation thresholds, which are randomly chosen, to 
be randomly set in the range of (0.5, 1] and the left to be 
randomly set in the range of [0, 0.5] so that the numbers of 
activated centroids of all particles make up an arithmetic 
progression. As an example, consider the setting that Kmax is 
5, Kmin is 2, and the number of particles is 8. The sequence of 
numbers of activated centroids for 8 particles can be [2 3 4 5 
2 3 4 5]. Other permutations of these 8 number are also 
possible settings. As a result, every value of X, (2, 3, 4, 5), is 
associated with the same number 2 of particles, which 
ensures particles uniformly distributed so that the trend to the 
number of clusters will not exist.   

C. Fitness Function 
In EAs-based clustering algorithm, the clustering validity 

indexes are usually used as fitness functions (criterion 
functions) to evaluate the clustering performance. Each 
cluster validity index has its bias and come with its own 
advantages and disadvantages [33], [34]. For evaluating the 
performance of the proposed algorithm objectively, in our 
comparative trial, after testing every indexes among the CH
index [17], the DB index [26], the SIL index [27], the Dunn
index [18], we have chosen CH index and Dunn index which 
are shown more suitable for our experimental data than 
others and have been introduced in section II (B).

Both of two indexes are larger when the clustering result 
is better. Therefore, the object of optimization is to maximize 
the validity index for achieving proper clustering. The fitness 
function for particle i is defined as 

( ) ( )i if P index P=                        (9) 

where Pi is the phenotype of particle. 

(a)                                                       (b)                                                         (c)                                               (d) 

                            (e)                                                          (f)                         (g)                                                      (h) 
Fig. 1.  Synthetic datasets. (a) Four-GussianClusters. (b) Three-rectangles. (c) Two-rings. (d) Half-rings. (e) Ring-GaussianCluster. (f) 2d4c. (g) 10d10c 
(projected in two dimensions). (h) 100d10c (projected in two dimensions) 
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D. Procedure of ACPSO 
The procedure of ACPSO algorithm is summarized 

below:

Step 1:     Initialize Kmax activation thresholds of each particle 
in range [0, 1] in a specific way that is described in 
detail in Part B. to make sure that particles obey 
uniform distribution from point of the number of 
activated cluster centers. Kmax cluster centroids are 
randomly initialized. 

Step 2:   Initialize the velocity of each particle randomly in 
around 10%–20% of the dynamic range of the 
variable on each dimension. 

Step 3:    For each particle in the population 

1)   The clusters centers encoded in it are 
extracted.

2)   Perform clustering by assigning each object 
to the particular cluster center by means of the 
NMP rule. 

3)   Compute fitness. 

Step 4: Update the global best and local best positions. 
Then update the velocities and positions of 
particles using (1) and (2). 

Step 5: Loop to step 3 until the maximum number of 
iterations is reached by when the cluster partition 
obtained from the global best is the final solution.  

IV. EMPIRICAL RESULTS AND DISCUSSION

In this section, we compare performance of the ACPSO 
algorithm with the density-based clustering algorithm, 
DBSCAN [28] and the PSO-based clustering algorithm using 
the NP rule, which uses the same particle representation 
scheme and fitness function as the ACPSO. Moreover, the 
efficiency of the new population initialization method was 
validated.

A. Experimental Settings 
Fifteen synthetic and three real data sets were used in our 

experiment, summarized in Table I and shown in Fig. 1. The 
synthetic data sets used in this study are handcrafted (Four-
GussianClusters, Three-rectangles, Two-rings, Half-rings 
and Ring Gaussian Cluster) or randomly generated (2d4c, 
2d10c, 2d20c, 10d4c, 10d10c,10d20c, 50d4c, 5010c, 100d4c 
and 100d10c) from two cluster generators invented by Handl 
and Knowles [29], downloaded from the website http://pers-
onalpage.manchester.ac.uk/mbs/Julia.Handl/gener-ators.html. 
The three real data sets (Iris, Wine, Breast Cancer) can be 
downloaded from the UCI Machine Learning Repository at 
http://archive.ics.uci.edu/ml/index.-html [30].  

The parameters settings for ACPSO and PSO-based 
clustering algorithm using NP rule are the same. The swarm 
size is 40 and each particle has two neighbors. The inertia 
weight w is set 0.75. The legal velocity range Vmax is set to 
20% of the search range. The c1 and c2 are both assigned 2 
recommended by [21]. The minimum and maximum number 
of clusters are set 2 and 30 respectively for all datasets. 
When comparing two initialization methods, the range of 

TABLE II
CLUSTERING QUALITY OF ACPSO ALGORITHMS, DBSCAN AND PSO-BASED CLUSTERING, USING THE DUNN INDEX AS THE FITNESS FUNCTION FOR THE 

LATTER TWO ALGORITHMS , IN TERMS OF THE RAND AND ADJUST RAND INDEXES. GIVEN ARE THE MEAN AND STANDARD DEVIATION BASED ON 40 RUNS.
THE BEST RESULTS IN TERM OF MEAN VALUES FOR EACH DATA SET IS HIGHLIGHTED IN BOLD

Data Set ACPSO DBSCAN PSO-based Clustering 
R AR A AR R AR 

Three-rectangles 1.0000±0.0000 1.0000±0.0000 0.9992±0.0000 0.9984±0.0000 0.8384±0.1625 0.6376±0.3653
Two-rings 1.0000±0.0000 1.0000±0.0000 0.9941±0.0000 0.9865±0.0000 0.3868±0.0100 0.0606±0.0101
Half-rings 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.6630±0.1694 0.3037±0.1922

Ring Gaussian Cluster 1.0000±0.0000 1.0000±0.0000 0.9740±0.0000 0.9478±0.0000 0.5793±0.0398 0.2004±0.1114

TABLE III
CLUSTERING QUALITY OF ACPSO ALGORITHMS, DBSCAN AND PSO-BASED CLUSTERING, USING THE CH INDEX AS THE FITNESS FUNCTION FOR THE 

LATTER TWO ALGORITHMS , IN TERMS OF THE RAND AND ADJUST RAND INDEXES. GIVEN ARE THE MEAN AND STANDARD DEVIATION BASED ON 40 RUNS.
THE BEST RESULTS IN TERM OF MEAN VALUES FOR EACH DATA SET IS HIGHLIGHTED IN BOLD

Data Set ACPSO DBSCAN PSO-based Clustering
R AR R AR R AR 

2d4c 0.9896±0.0002 0.9756±0.0004 0.9943±0.0000 0.9866±0.0000 0.9930±0.0000 0.9835±0.0000
2d10c 0.9823±0.0013 0.9125±0.0073 0.9909±0.0006 0.9570±0.0030 0.9586±0.0096 0.7731±0.0612
2d20c 0.9975±0.0012 0.9758±0.0121 0.9929±0.0000 0.9311±0.0000 0.9919±0.0223 0.9190±0.0233
10d4c 0.9942±0.0036 0.9858±0.0088 0.9446±0.0007 0.8625±0.0018 0.9953±0.0084 0.9885±0.0195 

10d10c 0.9550±0.0001 0.8352±0.0004 0.8924±0.0003 0.6216±0.0011 0.8700±0.0882 0.6022±0.0055
10d20c 0.9998±0.0007 0.9979±0.0064 0.9774±0.0001 0.8133±0.0009 0.9621±0.0661 0.7826±0.1289
50d4c 0.9557±0.0040 0.9113±0.0080 0.9492±0.0008 0.8985±0.0016 0.7113±0.0024 0.4228±0.0047

50d10c 0.9943±0.0012 0.9736±0.0051 0.8955±0.0000 0.6019±0.0003 0.8558±0.0189 0.4205±0.0372
100d4c 0.9585±0.0195 0.9058±0.0411 0.9505±0.0000 0.8878±0.0000 0.7568±0.0030 0.4223±0.0066

100d10c 0.9808±0.0086 0.9155±0.0351 0.8984±0.0000 0.5645±0.0003 0.7693±0.0175 0.2913±0.0242
Iris 0.8912±0.0064 0.7567±0.0141 0.8945±0.0034 0.7488±0.0082 0.8737±0.0000 0.7163±0.0000 

Wine 0.8213±0.1043 0.6357±0.1895 0.7268±0.0000 0.4234±0.0000 0.6810±0.0000 0.3702±0.0000
Breast Cancer 0.9214±0.0080 0.8414±0.0613 0.8650±0.0018 0.7301±0.0037 0.9240±0.0000 0.8465±0.0000

Four-GussianClusters 1.0000±0.0000 1.0000±0.0000 0.9983±0.0005 0.9963±0.0011 1.0000±0.0000 1.0000±0.0000 
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number of clusters for each dataset is set as the Table VII 
shows. The terminal condition is 2000 iteration times. Table 
I summarizes the settings for the DBSCAN, we choose an 
optimal set of parameters (neighborhood’s radius  and a 
minimum number of neighborhood’s objects MinPts) for 
each dataset after testing many possibilities settings in term 
of CH index or Dunn index.  

The clustering quality is judged by external criteria in our 
experiment, which can be regarded as objective evaluation 
[1]. The Rand (R) Index [31] and the Adjusted Rand (AR)
Index [32] are chosen. Large value of R or AR Index means 
close agreement between the two partitions.  

All the results are based on 40 dependent runs of the 
clustering algorithm and have been reported in terms of the 
averages and standard deviations over all simulations. The 
best results in term of mean value are shown in bold. 

B. Experimental Results and Discussions 
The clustering quality of three clustering algorithms by 

Dunn index are illustrated in Table II and by CH index is 
illustrated in Table III. Besides, the two-sided and non-
parametric Wilcoxon rank sum tests are conducted, as 
summarized in Table IV. Table V and Table VI summarizes 
the number of clusters found by three algorithms with Dunn
index and CH index respectively.  

On handcrafted datasets, as Table II, III, V and VI show, 
since DBSCAN is well known for its ability to discover 
clusters of arbitrary shape, it is not surprising to observe that 
it can find exactly correct number of clusters with high 
clustering quality. A strong performance of the PSO-based 
clustering algorithm on the Four-GussianClusters can be 
expected, because NP rule usually generate hyperspherical or 
hyperelliptic clusters as we have analyzed in III. A. 
Therefore, it also can be expected that its performance breaks
down drastically on other handcrafted datasets with 
nonconvex shaped clusters, especially on dataset Two-rings. 
In contrast, the ACPSO has found out the true partitions 
without any misclassification. The advantage of the ACPSO 
that it can well partition datasets of not only hyperspherical- 
or hyperelliptic-shaped clusters is supported by these 
experimental results and comparisons.

On randomly generated datasets, they are all elliptic, 
elongated and have different number of dimensions and 
clusters with different degrees of overlap. Therefore, we 
focus on comparing the algorithms in terms of the ability in 
partitioning convex, elongated-shaped and overlapped 
clusters and the scalability when the dimensions and number 
of clusters increase. As the Tables II and IV clearly indicate, 
the proposed ACPSO performs extremely significantly better 
than DBSCAN and PSO-based clustering algorithm using 
NP rule on most randomly generated data sets except 2d4c, 
2d10c, 10d4c in terms of clustering quality, at a 5% 
significance level.  

On real data sets, used for test robustness of our 
algorithm to noise and overlap of data, Table III reveals that 
the ACPSO outperforms other two algorithms on dataset Iris 
and Table IV testifies that the differences are extremely 
significant. Table VI indicates that all algorithms yield three 
clusters of dataset Iris on each run even though the two of 
three clusters are considerably overlapping. On dataset Wine, 
it can be observed from Table III and VI that the ACPSO 
also stands out in terms of both clustering quality and 
number of clusters found.  ACPSO and PSO-based clustering 
algorithm achieve nearly the same value of AR index on 
dataset Breast Cancer. DBSCAN performs worse on this 
dataset and all the differences are statistically significant as 
Table IV shown.

TABLE IV
COMPARISON OF CLUSTERING QUALITY OF DBSCAN AGAINST PSO-BASED
CLUSTERING AND ACPSO ALGORITHMS WITH WILCOXON RAN SUM TEST.

THE ANALYSIS IS BASED ON THE RESULTS IN TABLE III AND TABLE IV
USING THE ADJUSTED RAND INDEX

Data Set 

ACPSO vs 
DBSCAN PSO-based Clustering 

p-value Signi-
ficance p-value Signi-

ficance
Four-

Gussian
Clusters

3.8683×10-17 ES – – 

Three-
rectangles 6.5292×10-17 ES 4.2899×10-7 ES

Two-
rings 6.5292×10-19 ES 1.9649× 10-16 ES

Half-
rings – – 9.5412× 10-17 ES

Ring-
Gaussian
Cluster

6.5292×10-19 ES 1.9353× 10-16 ES

2d4c 5.1824× 10-18 ES 5.1824× 10-18 ES
2d10c 1.1441×10-14 ES 1.4050× 10-14 ES
2d20c 1.9514×10-16 ES 4.7003× 10-14 ES
10d4c 1.5283×10-15 ES 0.1172 NS 

10d10c 7.3561× 10-16 ES 2.2095× 10-15 ES
10d20c 1.5462× 10-16 ES 7.0345× 10-16 ES 
50d4c 3.5435× 10-10 ES 1.4638× 10-15 ES 

50d10c 6.3577× 10-17 ES 2.8028× 10-16 ES 
100d4c 3.9082× 10-11 ES 1.1331× 10-14 ES 

100d10c 1.0596× 10-14 ES 8.4181× 10-15 ES 
Iris 4.4423×10-08 ES 3.5286×10-17 ES 

Wine 0.0135 S 1.5863× 10-16 ES 
Breast
Cancer 1.4035×10-15 ES 0.0394 S 

NS: No Significant S: Significant ES: Extremely Significant 

TABLE V
NUMBER OF CLUSTERS FOUND BY ACPSO ALGORITHMS, DBSCAN AND 

PSO-BASED CLUSTERING, USING THE DUNN INDEX AS THE FITNESS
FUNCTION FOR THE LATTER TWO ALGORITHMS. GIVEN ARE THE MEAN AND 

STANDARD DEVIATION BASED ON 40 RUNS.

Data Set 

Actual  
Number

of
Clusters

ACPSO DBSCA
N

PSO-based
Clustering

Three-
rectangles 3 3.0000

±0.0000
3.0000

±0.0000
10.2000
±8.3102

Two-
rings 2 2.0000

±0.0000
2.0000

±0.0000
19.1250
±3.6687

Half-
rings 2 2.0000

±0.0000
2.0000

±0.0000
6.7750

±6.5821
Ring

Gaussian
Cluster

2 2.0000
±0.0000

2.0000
±0.0000

10.875
±5.05068
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To investigate the effect of the new population 
initialization method, we have compare the ACPSO using 
the original and the new population initialization methods. 
We run two versions of ACPSO algorithms on some of 
datasets and stop as soon as the algorithm find the proper 
number of cluster, as well as the preset threshold fitness 
value. The setting of minimum and maximum number of 
clusters and results on eight randomly generated data sets are 
summarized in Table VII. From the results, we can observe 
that the ACPSO with the proposed initialization method was 
able to reach the cutoff fitness value and cluster number 
within fewer number of iterations than the original method 
on all test datasets. 

V. CONCLUSION

In this paper, in the field of partitional clustering 
algorithms based on EAs, we presented a novel clustering 
approach using PSO, named the automatic clustering PSO 
(ACPSO) algorithm. It was able to automatically find an 
appropriate number of clusters in the procedure of clustering 
and partition datasets with not only convex but also 
nonconvex shaped clusters. A new decoding method named 
the nearest multiple prototype (NMP) rule is used, which is 
designed by applying multiple prototypes strategy in 
traditional nearest prototypes (NP) rule. Besides, we 
improve the particle initialization method proposed by Das 

et al to avoid its tendentiousness of locating the partitions 
with near ½ Kmax number clusters. The experimental results 
demonstrate that the proposed ACPSO is able to outperform 
the DBSCAN and PSO-based clustering algorithm with the 
traditional NP rule in a statistically meaningful way over a 
majority of the benchmark data sets tested contributing to 
higher solution accuracy, more accurate estimated number 
of clusters. The good scalability of ACPSO is also be 
demonstrated by the experimental results. Besides, we can 
observe that the new initialization method exactly accele-
rates the proposed clustering algorithm.  

REFERENCES

[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Englewood Cliffs, NJ: Prentice-Hall, 1998. 

[2] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster 
analysis and display of genome-wide expression patterns,” Proc.
Nat.Acad. Sci. USA, vol. 95, no. 25, pp. 14 863–14 868, Dec. 1998. 

[3] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data—An 
Introduction to Cluster Analysis. Series in Probability and 
Mathematical Statistics. New York: Wiley, 1990. 

[4] E. Falkenauer, Genetic Algorithms and Grouping Problems.
Chichester, U.K.: Wiley, 1998. 

[5] E. Forgy, “Cluster analysis of multivariate data: Efficiency vs. 
interpretability of classifications,” Biometrics, vol. 21, no. 3, pp. 768–
780, 1965.

[6] D. Steinley, “K-means clustering: A half-century synthesis,” Brit. J. 
Math. Stat. Psychol., vol. 59, pp. 1–34, May 2006. 

[7] D. Fogel, “An introduction to simulated evolutionary optimization,” 
IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 3–14, Jan. 1994. F. 
Glover, “Tabu search, part I,” ORSA J. Comput., vol. 1, no. 3, pp. 
190–206, 1989. 

[8] W. N. Chen, J. Zhang, H.S.H. Chung, W. L. Zhong, W. G. Wu and Y. 
H. Shi, “A novel set-based particle swarm optimization method for 

TABLE VI
NUMBER OF CLUSTERS FOUND BY ACPSO ALGORITHMS, DBSCAN AND 

PSO-BASED CLUSTERING, USING THE CH INDEX AS THE FITNESS FUNCTION
FOR THE LATTER TWO ALGORITHMS. GIVEN ARE THE MEAN AND 

STANDARD DEVIATION BASED ON 40 RUNS.

Data Set 

Actual
Number

of
Clusters

ACPSO DBSCAN PSO-based
Clustering

2d4c 4 4.0000
±0.0000

3.0000
±0.0000

4.0000
±0.0000

2d10c 10 11.4500
±0.5454

9.0000
±0.0000

16.8500
±1.7965

2d20c 20 20.9750
±0.7902

19.0000
±0.0000

21.9250
±1.9543

10d4c 4 4.0000
±0.0000

3.0000
±0.0000

3.9750
±0.1561

10d10c 10 6.0000
±0.0000

7.0000
±0.0000

4.0250
±0.3527

10d20c 20 19.9000
±0.3000

16.0000
±0.0000

13.7000
±2.5219

50d4c 4 4.0000
±0.0000

3.0000
±0.0000

5.0000
±0.0000

50d10c 10 8.9750
±0.15612

6.0000
±0.0000

10.0250
±1.1289

100d4c 4 5.5500
±0.7730

4.0000
±0.0000

5.0000
±0.0000

100d10
c 10 8.5500

±0.5895
13.0000
±0.0000

7.3250
±0.4684

Iris 3 3.0000
±0.0000

3.0000
±0.0000

3.0000
±0.0000

Wine 3 2.6000
±0.4899

2.0000
±0.0000

2.0000
±0.0000

Breast
Cancer 2 2.0000±

0.0000
2.0000

±0.0000
2.0000

±0.0000
Four-

Gussian
Clusters

4 4.0000
±0.0000

4.0000
±0.0000

4.0000
±0.0000

TABLE VII
MEAN AND STANDARD DEVIATION OF THE NUMBER OF ITERATIONS

REQUIRED AND NUMBER OF FAILURE OVER 40 RUNS FOR ACPSO AND 
PSO-BASED CLUSTERING ALGORITHMS TO REACH A PREDEFINED 
CUTOFF FITNESS VALUE AND A CUT OFF RANGE OF NUMBER OF 

CLUSTERS. GIVEN ARE THE MEAN AND STANDARD DEVIATION BASED
ON 40 RUNS. THE BEST RESULTS IN TERM OF MEAN VALUES FOR EACH

DATA SET IS HIGHLIGHTED IN BOLD

Data Set Kmin Kmax

Cut
off

Fitness
Value

Cut off 
Cluster
Number

ACPSO PSO-
based

2d4c 2 30 4800 4 74.1740
±95.0352

123.7500
±69.2090

2d10c 2 60 10000 8-12 408.9250
±362.0265

1742.2250
±452.9313

10d4c 2 30 490 4 15.8000
±8.4770

50.5250
±19.82043

10d10c 2 60 580 6-14 150.2500
±108.1059

534.7000
±348.0321

50d4c 2 30 480 4 119.5500
±136.2571

180.1500
±240.7958

50d10c 2 60 650 8-12 657.7250
±528.8392

1077.9000
±757.5246

100d4c 2 30 380 3-6 277.6750
±379.5610

406.1750
±501.2074

100d10c 2 60 550 8-12 824.1250
±591.3673

1279.7500
±778.3124

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:05:52 UTC from IEEE Xplore.  Restrictions apply. 



discrete optimization problem,” IEEE Trans. Evol. Comput., vol. 14, 
no. 2, pp. 278-300, 2010. 

[9] F. Glover, “Tabu search: Part II,” ORSA J. Comput., vol. 2, no. 1, pp. 
4–32, 1990. 

[10] G. Phanendra Babu and M. Narasima Murty, “Clustering with 
evolution strategies,” Pattern Recognit., vol. 27, no. 2, pp. 321–329, 
1994.

[11] U. Maulik and I. Saha, “Automatic fuzzy clustering using modified 
differential evolution for image classification,” IEEE Trans. Geosci. 
Remote Sens., vol. 48, no. 9, pp. 3503–3510, Sep. 2010. 

[12] K. S. Al-Sultan, “A tabu search approach to the clustering problem,” 
Pattern Recognit., vol. 28, no. 9, pp. 1443–1451, 1995. 

[13] P. C. H. Ma, K. C. C. Chan, X. Yao, and D. K. Y. Chiu, “An 
evolutionary clustering algorithm for gene expression microarray data 
analysis,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 296–314, 
Jun. 2006.

[14] E. Hruschka, R. Campello, A. Freitas, and A. Carvalho, “A survey of 
evolutionary algorithms for clustering,” IEEE Trans. Syst., Man, 
Cybern.C, Appl. Rev., vol. 39, no. 2, pp. 133–155, Mar. 2009. 

[15] L. I. Kuncheva and J. C. Bezdek, “Selection of cluster prototypes 
from data by a genetic algorithm,” in Proc. 5th Eur. Congr. Intell. 
Tech. Soft Comput., 1997, pp. 1683–1688. 

[16] S. Das, A. Abraham, and A. Konar, “Automatic kernel clustering with 
a multi-elitist particle swarm optimization algorithm,” Pattern
Recognit. Lett., vol. 29, no. 5, pp. 688–699, Apr. 2008. 

[17] R. Cali´nski and J. Harabasz, “A dendrite method for cluster analysis,” 
Commun. Stat., vol. 3, no. 1, pp. 1–27, 1974. 

[18] J. Dunn, “A fuzzy relative of the ISODATA process and its use in 
detecting compact well separated clusters,” J. Cybern., vol. 3, no. 3, 
pp. 32–57, 1974. 

[19] R. C. Eberhart and J. Kennedy, “A new optimizer using particle 
swarm theory,” in Proc. 6th Int. Symp. Micromachine Hum. Sci.,
1995, pp. 39–43. 

[20] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in 
Proc. IEEE Int. Conf. Neural Netw., Nov.–Dec. 1995, pp. 1942–1948. 

[21] J. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence. San Diego,
CA: Academic, 2001. 

[22] W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z. H. Zhan, H. Chung, Y. Li, 
and Y. H. Shi, “Particle swarm optimization with an aging leader and 
challengers,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241–258, 
Apr. 2013. 

[23] Q. Yang, W. N. Chen, T. Gu, H. Zhang, J. D. Deng, Y. Li and J. 
Zhang. “Segment-Based Predominant Learning Swarm Optimizer for 
Large-Scale Optimization,” IEEE Trans. Cybern., in press, 2016 

[24] M. Shen, Z. Zhan, W. Chen, Y. J. Gong, J. Zhang, Y. Li, “Bi-
Velocity Discrete Particle Swarm Optimization and Its Application to 
Multicast Routing Problem in Communication Networks,” IEEE
Trans. Ind. Electron., vol. 61, no. 12, Dec. 2014 

[25] Y. J. Gong, J. Zhang, H. S. H. Chung, W. N. Chen, Z. H. Zhan, Y. Li, 
and Y. H. Shi, “An Efficient Resource Allocation Scheme Using 
Particle Swarm Optimization,” IEEE Trans. Evol. Comput.,  vol. 16, 
no. 6, Dec. 2012 

[26] D. Davies and D. Bouldin, “A cluster separation measure,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, pp. 224–227, 
Apr. 1979. 

[27] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An 
Introduction to Cluster Analysis. New York: Wiley, 1990. 

[28] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based 
algorithm for discovering clusters in large spatial databases with 
noise,” in Proc. 2nd Int. Conf. Knowledge Discovery and Data 
Mining (KDD’96), 1996, pp. 226–231. 

[29] J. Handl and J. Knowles, “Improving the scalability of multiobjective 
clustering,” in Proc. Congr. Evol. Comput., 2005, vol. 3, pp. 2372–
2379.

[30] A. Asuncion and J. Newman, UCI Machine Learning Repository,
Irvine, CA, School Inf. Comput. Sci., Univ. California, 2007. 
[Online].Available:http://www.ics.uci.edu/~mlearn/MLRepository.ht
ml  

[31] W. Rand, “Objective criteria for the evaluation of clustering methods,” 
J. Amer. Statist. Assoc., vol. 66, no. 336, pp. 846–850, 1971. 

[32] A. Hubert, “Comparing partitions,” J. Classification, vol. 2, pp. 193–
198, 1985. 

[33] J. Xu, D. C. Wunsch, “A comparison study of validity indices on 
swarm-intelligence-based clustering”, IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 42 (2012) 1243-1256.

[34] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Cluster validity 
methods: Part I,” ACM SIGMOD Rec., vol. 31, no. 2, pp. 40–45, Jun. 
2002.

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 01:05:52 UTC from IEEE Xplore.  Restrictions apply. 


