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Can We Speculate Running Application With
Server Power Consumption Trace?
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Abstract—In this paper, we propose to detect the running
applications in a server by classifying the observed power
consumption series for the purpose of data center energy con-
sumption monitoring and analysis. Time series classification
problem has been extensively studied with various distance
measurements developed; also recently the deep learning-based
sequence models have been proved to be promising. In this paper,
we propose a novel distance measurement and build a time series
classification algorithm hybridizing nearest neighbor and long
short term memory (LSTM) neural network. More specifically,
first we propose a new distance measurement termed as local
time warping (LTW), which utilizes a user-specified index set
for local warping, and is designed to be noncommutative and
nondynamic programming. Second, we hybridize the 1-nearest
neighbor (1NN)-LTW and LSTM together. In particular, we com-
bine the prediction probability vector of 1NN-LTW and LSTM to
determine the label of the test cases. Finally, using the power con-
sumption data from a real data center, we show that the proposed
LTW can improve the classification accuracy of dynamic time
warping (DTW) from about 84% to 90%. Our experimental
results prove that the proposed LTW is competitive on our data
set compared with existed DTW variants and its noncommutative
feature is indeed beneficial. We also test a linear version of LTW
and find out that it can perform similar to state-of-the-art DTW-
based method while it runs as fast as the linear runtime lower
bound methods like LB_Keogh for our problem. With the hybrid
algorithm, for the power series classification task we achieve an
accuracy up to about 93%. Our research can inspire more stud-
ies on time series distance measurement and the hybrid of the
deep learning models with other traditional models.

Index Terms—Long short term memory (LSTM), recurrent
neural network (RNN), time series classification, time warping.

I. INTRODUCTION

NOWADAYS, a growing number of data centers have been
built to support complicated computation and massive
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storage required by various blooming applications [1]. Each
data center is typically equipped with hundreds of thousands
servers and requires many mega-watts electricity to power
its hosted servers and the auxiliary facilities [2]. An essen-
tial problem is to monitor such a large amount of servers for
energy saving and maintaining the business continuity, which
is critical to build green data center [3] and improve energy
efficiency [4].

Monitoring technologies [5] can be divided into two cat-
egories: 1) intrusive and 2) nonintrusive. Intrusive technolo-
gies require the install of certain monitoring software which
requires the administration role of the system. Compared to
the intrusive methods, nonintrusive methods are more flexi-
ble, which only require limited data for the monitoring and
analysis.

In this paper, for the purpose of energy consumption moni-
toring, we propose to detect the running program in a server by
analyzing the observed power consumption series. The power
data can be measured without the administration right of the
server, which can be useful in collecting the power related
information of the servers for the purpose of energy consump-
tion analysis. The proposed classification analysis can only
gain the type of the running program, avoiding any possibility
in accessing the privacy-related contents in the server.

The proposed program detecting problem falls into the field
of time series classification. As a time series classification
problem, the power data classification problem can be chal-
lenging as the power series collected in detection may be only
a small piece of the whole power series of a program, with
incomplete and limited information. For this problem, the key
is to design an accurate and fast classification algorithm.

Currently, there are a few similar works on classifying sig-
nals (like the power consumption signals studied here) such
as [6]–[8]. However, the technologies applied in these litera-
ture are based on common spectral or statistical features with
classifiers such as nearest neighbor or neural network. In a
more general aspect, the time series classification problem
has been extensively studied [9], among which the most pop-
ular method is 1-nearest neighbor (1NN) with dynamic time
warping (DTW). The major research line in time series classifi-
cation has been the developing of various DTW-based distance
measurements (variants such as [10] and enhancers [11]);
yet we find that even though these measurements can be
better than the original DTW by certain degree for certain
cases, these variants all have been designed to incorporate
the dynamic programming idea of DTW (except some lower
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bound methods like LB_Keogh [12]) and all designed to
be commutative. Another line of research has also become
notable recently, i.e., the long short term memory (LSTM)
neural network [13], [14], which shows great modeling ability
for sequential data. In this paper, we propose a novel classifier
with much higher accuracy and based on the great efforts in
the current literature.

In this paper, first, we propose a local time warping (LTW)
time series distance measurement, which is a light weight
DTW variant that does not need the dynamic programming
procedure and is designed to be noncommutative. LTW can
be set to a linear runtime algorithm which can perform almost
as good as the DTW on our data set. Second, instead of
further enhancing the distance measurement which can be
much more complicated and time consuming, we look into
a less expensive solution, which is to develop a hybrid algo-
rithm of the 1NN with LTW (1NN-LTW) and the recent deep
learning model for time sequential modeling. To do so, we
first utilize the state-of-the-art sequential data modeling neural
network LSTM to classify the power series. Then we propose
a new hybrid algorithm of the proposed 1NN-LTW and the
LSTM. This paper shows that both 1NN-LTW and LSTM
can outperform the 1NN-DTW with similar accuracy; how-
ever, these two algorithms have their unique different natures
and the accurately classified samples of these two algorithms
have significant differences. The hybrid algorithm of the two
classifiers, termed as LSTM/LTW, improves the classification
accuracy further easily.

The main contributions of this paper are summarized as
follows.

1) We propose a new distance measurement LTW. LTW has
two unique features which are different from the exist-
ing DTW variants: a) LTW is based on simple “local
warping”, no dynamic programming procedure is needed
and b) LTW is noncommutative and is flexible for the
nearest neighbor classifier for the time series classifi-
cation problem. Our experimental results show that for
our problem, the proposed LTW can perform better than
DTW and its several different variants. Also our experi-
ment shows that the noncommutative feature of LTW is
beneficial. Furthermore, the linear version of LTW can
perform almost as good as DTW on our data set. These
results show that for certain cases, a light weight local
warping distance measurement (such as the LTW) may
be good enough for the classification task; however, this
does not mean that the proposed LTW can work for all
kinds of time series data sets.

2) For the first time, we develop a hybrid algorithm of
1NN-DTW and LSTM termed as LSTM/LTW. The
hybrid algorithm is based on a well trained LSTM neural
network. Although the training procedure of the LSTM
can be time consuming, the classification process can be
fast in testing with the LTW distance.

3) Numerical experiments show that for the power data
classification problem, with the LTW distance measure-
ment, the accuracy of the 1NN-LTW classifier can be
improved from about 84% to about 90% compared to
the 1NN-DTW. With the hybrid algorithm LSTM/LTW,

we achieve the power consumption series classification
accuracy up to about 93%, which proves that using
the power consumption series to detect the type of the
running programs in a server can be very accurate.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the state-of-the-art time series
classification algorithms. In Section III, we introduce the
experimental data collection design and some preliminary
analysis on the data. In Section IV, we introduce the new
proposed algorithm and in Section V we show the numerical
evaluation results and the analysis. In Section VI, we conclude
the whole paper and introduce the future works.

II. RELATED WORKS

The power data classification problem studied in this paper
can be taken as a time series classification problem, which
has been studied extensively for the past decades. For this
problem, common classifiers like support vector machine
(SVM), k-nearest neighbor (KNN) with Euclidean distance
have been proved to be noncompetitive to the DTW distance
measurement-based method like 1NN-DTW [15]. Recently
there have been a lot of new methods which have been proved
to be as competitive as 1NN-DTW. On one hand, there are
many non-neural network-based methods like shapelet-based
method, dictionary-based methods, interval-based methods,
and ensembles of these methods. We will brief these methods
below. On the other hand, recently with the fast development
of deep learning [16] and its applications [17]–[19], LSTM
neural network has also been proved to hold high modeling
ability for sequential data. In the following we will briefly
introduce LSTM.

A. Non-Neural Network Approaches

The most popular non-neural network time series classi-
fiers are nearest neighbor-based method with various different
distance measurements. The most popular method is the 1NN-
DTW, which is a special KNN classifier with k = 1 and a
special DTW distance measurement. For the 1NN classifier,
the common standard procedure to label of a test sample given
a set of training samples is as follows. First, the distances of
the test sample to all the training samples are computed; then
the training sample that has the smallest distance to the test
sample is chosen and its label is assigned to the test sample
as the classification result. In the above procedure, the key is
to utilize a proper distance measurement. For 1NN-DTW, the
DTW distance is used, which has superior performance for
time series data.

The DTW calculates the distance of two sequences x and y
in a manner of finding the best match between them, as shown
in Fig. 1. The idea is that sequential data often contain similar
fluctuation patterns, however, a same pattern, when existed in
different sequences as subsequences, may be stretched, shrank
or delayed in the time axis. In this case, the DTW distance
measurement aims to warp the time axis nonlinearly and finds
the best match between the two samples such that when a
same pattern exists in both sequences, the distance is smaller.
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Fig. 1. Illustration of the DTW distance measurement. In computing the
DTW distance between samples x and y, the DTW algorithm finds the best
match (shown by the dashed lines) between the two series at different time
steps.

Mathematically, the DTW distance is computed by the fol-
lowing dynamic programming process. Denote D(i, j) as the
DTW distance between subsequences x[1 : j] and y[1 : j],
then the DTW distance between x and y can be computed by
the dynamic programming process with the following iterative
equation:

D(i, j) = min{D(i− 1, j− 1), D(i− 1, j), D(i, j− 1)}
+ ∣

∣xi − yj
∣
∣. (1)

The time complexity to compute the DTW distance is O(nm),
where n and m are the length of x and y, respectively. The
DTW distance measurement actually realign the time step
index pairs in the computing of the distance. In practice,
usually a threshold w is used to restrict the index offset
in the alignment, which can be critical to the classification
results [20]. Also there are many study [21] working on accel-
erating the computing speed of DTW, which results in the fast
DTW that can be computed in linear time of the length of the
sequences. In this paper, we follows the idea of DTW but
propose a new distance measurement, which can be computed
with a local warping index set without a dynamic program-
ming process and has a special noncommunicative nature that
can be helpful.

There are many DTW variants proposed. We name only a
few here for the space constraint; one can refer to [9] for a
more complete review and comparison of the existing meth-
ods. A popular line of research is the derivative DTW (DDTW)
proposed by Keogh and Pazzani [22], which utilizes derivative
of the raw series in computing the distance. Batista et al. [11]
proposed the complexity invariant distance (CID), which is a
weight modifier that can be used to enhance any kind of dis-
tance measurement, and is proved to be very useful when using
with DTW. In CID, the first order derivative of the raw series
is used in the computation of the modifier. The idea of using
the derivative series is further studied in [23], in which the dis-
tance is computed based on the combination of the raw series
and the derivative series. There are also other DTW variants,
such as the move-split-merge [10] method, which introduces
move and split operation to dynamic warping in DTW.

Besides DTW-based method, there have been many
new different methods for time series classification which
look into the pattern of the time series. For example,
Ye and Keogh et al. [24] proposed the Shapelet-based method,
which utilizes the subsequences that can differentiate different
classes to do the classification; recently similar work is done
in [25]. Lin et al. [26] proposed the dictionary-based method,

which transforms the series into discrete words in a dictio-
nary and then do the classification. Deng et al. [27] proposed
interval-based classifiers to extract the feature from intervals
in each time series for the classification. In this paper, we
focus on DTW-based methods and will not compare with these
methods, as proved by the through comparison experiments
done in [9], these methods perform similar with DTW-based
methods.

Beside the above listed works, ensemble method for
time series classification is another popular research direc-
tion [28], [29]. Ensemble method combines multiple different
classifiers to create a new classifier that can be better than any
single classifier. Recently, different ensemble methods based
on the above listed classifiers have been proposed and have
shown promising performance [29]. However, we have not
seen any work on ensemble method of the above methods
and deep neural network like LSTM. In this paper, we pro-
pose a simple hybrid algorithm of a nearest neighbor classifier
and LSTM. The LSTM neural network used in this paper is
introduced below.

B. LSTM

LSTM is first proposed by Mikolov et al. [30] as an upgrade
of the recurrent neural network (RNN). RNN is used to handle
sequential data with a special calculation process following the
time step increment, while traditional neural network simply
treats the sequence as a plain vector. With such nature, RNN
is suitable for modeling sequential data. However, it suffers
from a problem called diminishing gradient, which is caused
by the iterative process on the time axis and makes the gradient
used in the training process extremely small and causes train-
ing failure. To solve the problem, the LSTM is proposed and
it utilizes a memory core to avoid the diminishing gradient.
The details of the LSTM neural network will be introduced in
Section IV.

LSTM has shown great modeling power for sequential data
and has been successfully applied in various machine learn-
ing fields like image recognition [31], [32] (a simpler efficient
sequence modeling neural network than LSTM is proposed in
this paper), natural language process [33], video analysis [34],
etc. It is also noted that LSTM can be both discriminative and
generative. By discriminative, LSTM can be used for clas-
sification tasks while by generative, LSTM can be used to
generate similar sequences like the training samples [35]. In
this paper, we utilize the discriminative ability of LSTM for
our power data classification task.

III. POWER SERIES DATA COLLECTION

AND PRELIMINARY ANALYSIS

In this section, we present the power series data we collected
followed by some preliminary analysis on the data. We will
detail the simulation design rules for the data collection and the
data samples collected with some pretreatment. The proposed
preliminary analysis includes data visualization with different
dimension reduction methods, classification results with some
canonical classifiers, and feature study.
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TABLE I
COLLECTED POWER SEQUENCES OF DIFFERENT PROGRAMS.

MAPREDUCE AND WEB SERVER ARE THE TWO MAJOR CLASSES,
WHILE IN MAPREDUCE THERE ARE MANY SUBCLASSES.

IN TOTAL THERE ARE 13 CLASSES

A. Power Series Data Collection

We first introduce the designing rules of the simulation for
data set collection. As a data-driven study on the power series
classification methodology, we need to collect a set of sample
power data. The data collection should be designed carefully
to make sure that the classification problem is neither trivial
nor impossible to accomplish. In this sense, our guiding line
for power data collection is to collect “different” and “similar”
power series. By different, the power series must be generated
by different programs. By similar, the different programs can
have some similar features so that the classification algorithms
need to be really discriminative.

Follow the above guideline, we collected in total 13 classes
of power data as shown in Table I (for convenience they are
labeled as 0, 1, . . . , 12, respectively). These data fall into two
major categories.

1) Web Server Power Data: Usually fluctuate in a contin-
uous pattern.

2) Spark/Hadoop MapReduce Programs: Usually show
stage-pattern, e.g., the map stage and the reduce stage.

For the Hadoop/Spark category, we test different programs on
these platforms, some are the same for both platforms, such as
the “word count” program; some only exist on one platform,
for example, the “MLlib” programs on the Spark platform.
With such design, we can achieve the proposed different and
similar design goal.

Note that the collected data series are of different lengths
as the running duration can vary among different programs.
Although classification methods like 1NN-DTW can deal with
power series of different lengths, to apply other canonical
methods, in the following we cut the collected series into fixed
length sequences. It is also reasonable to label subsequences
instead of the complete power sequences of the programs as in
a blind test, we have no information about the start/end point
of a program. The detailed cutting method we utilize here is
as shown below.

The goal is to cut the power sequences into length 200
samples. To do so, first we discard sequences with length
smaller than 200 time slots (time unit: 3 s). The left num-
ber of sequences for each class is: [77, 31, 30, 35, 28, 7,
40, 14, 5, 100, 58, 36, 40]. Although some power data are
discarded, the total duration of the left sequences is about
199 h and with the time unit being 3 s, the amount of the

data are still adequate for the study. Then these sequences
are further cut into length 200 subsequences in the following
way. For each sequence q of length n, we cut it into multiple
sequences q[0 : 200], q[50 : 250], . . . , q[(n − 200) : n]. We
obtain 3200 test sequences in this cutting procedure, which are
used as the power data in our classification study. Note that
these sequences are overlapped, as indicated by the cutting
method.

Furthermore, for the purpose of multifold tests, we divide
these samples into fivefolds F0 − F4. Note that to avoid the
overlapping of the training data and the test data, the fold
partition is done before the sequence cutting. For each fold of
test, we use Fi, F(i+1)%5 as the test data, and the left folds as
the training data.

B. Preliminary Analysis

We do some preliminary analysis on the pretreated data. The
following analysis are meant to provide a basic understanding
of the power data in view of classification.

1) Basic Characteristic Analysis Based on Visualization:
We use various dimension reduction methods to visualize the
data, which can help to identify if the power series can be
successfully classified to a certain degree. We utilize eight dif-
ferent dimension reduction methods with scikit-learn [36] and
project the original fixed length power sequences into a 2-D
space. These dimension reduction methods are PCA, LDA,
LLE, modified LLE, isomap, MDS, spectral embedding, and
t-SNE, which are widely adopted dimension reduction meth-
ods. The 2-D codes of the power data generated by these
methods are shown in Fig. 2. We use different colors to show
samples from different classes.

From Fig. 2, we can observe that the power series data
are not easy to distinguish after the dimension reduction. This
may be due to the short length (2 here) of the embedding code;
however, it still shows that the power series classification task
cannot be easily done.

2) Tackling the Classification Problem With the Canonical
Classifiers: We test some canonical classifiers to tackle the
power series classification problem. The canonical classifiers
tested here are listed as follows: nearest neighbors, linear
SVM, RBF SVM, decision tree, random forest, AdaBoost,
naive Bayes, LDA, and QDA [36]. Parameter settings for these
classifiers are tuned manually. The classification results of
these methods are shown in Table II.

From the results, we can observe that for a 13-class clas-
sification problem, the highest accuracy achieved by these
methods are about 60% (by random forest). The classification
accuracy is not promising (when compared to the 1NN-DTW
shown below), which actually proves that our power series
labeling problem is a typical time series classification problem,
as stated in [15], for such problem, canonical Euclidean dis-
tance metric-based classifiers cannot achieve good results
usually.

3) Feature-Based Classification Study: In general, as a sig-
nal classification problem, the power series labeling problem
can be solved by first extracting certain features from the raw
power series and then carry out the classification with these
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Fig. 2. Projection results with different manifold learning methods. The power series samples (200-dimensional data) are projected into 2-D space for
visualization. The results show that the power series are difficult to discriminate.

TABLE II
CLASSIFICATION RESULTS OF THE CANONICAL CLASSIFIERS. THESE CLASSIFIERS CAN ACHIEVE ACCURACY UP TO ABOUT 60%

TABLE III
CLASSIFICATION RESULTS OF THE 1NN-DTW WITH THE

ORIGINAL SERIES AND WITH THE DFT FEATURE

features. In this section, we study such possibility and test
power series classification with the DFT [37] feature of the
original power sequences. With DFT, each power sequence
can be transformed into the spectrum space resulting a new
representation. The spectrum representation can be aligned as
a vector as the input to the classifiers. We test the classification
result of 1NN-DTW with the raw data compared to with the
DFT feature. The classification results are shown in Table III.
Note that for the 1NN-DTW, the maximum offset r is set to
15% of the sample length, which is manually tuned in the
experiment.

From Table III, we can observe that the DFT features are
not helping. The reason is that classification with the original
data can maximize the information used in classification, while
the DFT feature is less informative.

To summary, we find that the power series classification
problem is not easy to tackle especially with the canonical
classifiers and with some common used features. In the fol-
lowing, we will propose a new distance measurement inspired
from DTW and combine it with the state-of-the-art sequence
modeling neural network LSTM.

IV. PROPOSED POWER SERIES

CLASSIFICATION ALGORITHM

In this section, we present the proposed new power series
classification algorithm which hybridizes a nearest neigh-
bor classifier with a novel distance measurement and an
LSTM classifier. In the following, we first introduce the
two components, respectively, and then present the hybrid
algorithm.

A. Nearest Neighbor With the Local Time Warping

We propose a new classifier which utilize a novel distance
measurement to compute the distance between two sequences
which we termed as LTW as its warping computation for
each time step is done in a local window without a dynamic
programming procedure like DTW. The LTW is developed
to replace the DTW distance measurement in the 1NN-DTW
classifier.

Authorized licensed use limited to: Hanyang University. Downloaded on November 09,2023 at 07:14:15 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: CAN WE SPECULATE RUNNING APPLICATION WITH SERVER POWER CONSUMPTION TRACE? 1505

Algorithm 1 LTWG(x, y)

1: n = length(x)

2: r = 0
3: d0 = abs(x− y)

4: d1 = abs(x[1, .., n− 1]− y[2, . . . , n])
5: for k ∈ G do
6: dk = abs(x[1, .., n− k]− y[k + 1, . . . , n])
7: dk =∑n−k

i=k+1 min(d0[i], d1[i], dk[i])
8: r = r + dk

9: end for
10: Return r.

The idea behind LTW is as follows. Comparing the algo-
rithms of DTW and the Euclidean distance, the major differ-
ence in between is that there are a lot of “min” operators in
DTW. Such min operator actually is the key to the “warp-
ing” map between the two time series. Despite the warping
operation, DTW utilizes a dynamic programming procedure to
optimize the mapping. Note that dynamic programming is slow
and it is not directly optimizing the classification accuracy. In
this case, what if we do not use the dynamic programming
procedure? We may try some low cost warping operations; is
it possible that such a distance measurement can be as good
as DTW? Here we propose the LTW to answer this question.
Also, note that the DTW is computed by a beautiful symmetric
formula which makes it commutative for the two time series in
computing the distance. What if we do not need the distance
measurement to be commutative? Can it be better with the
noncommutative feature? Our proposed LTW will also answer
this problem. The detailed design is shown below.

The LTW distance measurement is computed in the follow-
ing way. Suppose we have two sequences x and y, both of
length n. We define the LTW distance between x and y as

dLTW
k (x, y) =

n−k
∑

i=k+1

min(|xi − yi|, |xi − yi+1|, |xi − yi+k|) (2)

LTWG(x, y) =
∑

k∈G

dLTW
k (x, y). (3)

As shown in (3), LTW works in the following manner. In
computing the distance between x and y (when we want to
find a nearest neighbor of x), we set x as the base sequence
and test the similarity of y to x in the following way: with
a warping index set G, for k ∈ G, for time step i in x, we
compute the minimum absolute distance between xi and one
of yi, yi+1, yi+k; then we add these distance measures for i =
k+ 1, . . . , n− k and for k ∈ G up, which is the LTW distance
from y to x with warping index G. Note that (2) is a linear
algorithm (only three items to compare no matter how large
k is). Detailed pseudo code to compute LTWG(x, y) is shown
in Algorithm 1.

Note that the LTWG(x, y) distance is noncommutative,
which means that LTWG(x, y) �= LTWG(y, x) can be true. We
use LTWG(x, y) to compute the nearest neighbor of sequence
x, in a sense that to find the best match of x among the other
samples such as y. For comparison, the DTW distance is obvi-
ously commutative. The noncommutative feature of LTW can

Fig. 3. Illustration of the LSTM neural network. It contains three layers: the
input layer, the LSTM layer, and the logistic regression layer. The output is a
13-dimensional vector which denotes the probability of the sample belonging
to each class.

be beneficial, as our target is to find the nearest neighbor for
each x. A noncommutative distance measurement is enough to
serve the purpose and can provide more flexibility by enforcing
less constraints to the distance measurement.

B. Long Short Term Memory Neural Network

We utilize the LSTM classifier following [38] for our power
series classification problem. The LSTM neural network con-
sists of an input layer, an LSTM layer and a logistic regression
layer as depicted in Fig. 3. The three layers function in the
following way, respectively.

1) Input Layer: The input data sample, which is a length
n vector x, is first discretized into range [0, S]. Such an
operation is a smoothing operation to the original power
series, which can affect the performance of the LSTM.
Then each time step xt, t = 1, . . . , n is enriched into a
m-dimensional vector xt which can ease the following
computation, i.e., xt = xt ·e, where e is a m-dimensional
vector with all entries equal to 1. After the above pro-
cess, the new sequence x1, x2, . . . , xn is used as the input
to the LSTM layer.

2) LSTM Layer: The LSTM layer contains n LSTM node,
where each LSTM node t can output an m dimensional
code ht. The operation inside the LSTM node is shown
below. First, for each time step xt, the LSTM node needs
to compute a new state denoted by Ct. To compute Ct,
a candidate state C′t is first computed as

C′t = tanh(Wcxt + Ucht−1 + bc). (4)

Then two gates, an input gate it and a forget gate ft are
computed to update the new state

it = σ(Wixt + Uiht−1 + bi) (5)

ft = σ
(

Wf xt + Uf ht−1 + bf
)

. (6)

Then the new state of the LSTM node is computed as

Ct = it · Ct + ft · C′t. (7)

With the node state, to further compute the output, an
output gate is first computed as

ot = σ(Woxt + Uoht−1 + bo). (8)
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Algorithm 2 LSTM Training Procedure
1: Divide the training data into a training set and a validation

set. Partition the training data set into batches.
2: Set Epoch = 0, best validation error Vbest = ∞; denot-

ing θ as the set of all control parameters of the LSTM;
randomly initialize θ ; set best LSTM parameter setting
θbest = ∅; initialize MaxEpoch.

3: //Training process:
4: while Epoch < MaxEpoch do
5: for Each batch of the training data do
6: Compute the loss function according to (13).
7: Update θ to reduce the loss.
8: end for
9: Compute the loss on the validation set, termed as Vc.

10: if Vc < Vbest then
11: Vbest ← Vc.
12: θbest ← θ .
13: end if
14: Epoch = Epoch+ 1.
15: end while
16: Output: The LSTM network with the best parameter

setting θbest.

Finally, the output of an LSTM node t is computed as

ht = ot · tanh(Ct). (9)

The output of all LSTM nodes are then added together
as the output of the LSTM layer

h =
n

∑

t=1

ht. (10)

3) Logistic Regression Layer: In this layer the output of the
LSTM layer is used to compute the label of the test sam-
ple in the following way. First, we use the softmax [39]
function to compute the probability vector P with its
each entry representing the probability of the test sample
belonging to a class

P = softmax(Wh+ b). (11)

Then the prediction ypred is the class which achieves the
largest probability

ypred = argmaxi(P). (12)

To train the LSTM classifier, the loss function is defined
as the negative log-likelihood function with the label of the
training data y

−L(θ, D) = −
|D|−1
∑

i=0

log
(

Py(i)

∣
∣x(i), θ

)

(13)

where θ is the set of all the weight and bias parameters in
the LSTM neural network (which are adjusted in the training
process) and D is a batch of training samples. Size of D can
be important for the performance of the classifier. The detailed
training algorithm is shown in Algorithm 2.

Algorithm 3 Hybridization of 1NN-LTW and LSTM
1: Train CLSTM with the training data according to

Algorithm 2.
2: For test time series x, compute the probability vector

pLTW(x) according to Algorithm 1 and pLSTM(x) with the
well trained CLSTM .

3: Classify the test time series x according to (15) and get
the label lhybrid(x).

4: Output: lhybrid(x), as the predicted label for sample x.

C. Hybridization of LSTM and 1NN-LTW

In this section, we propose to combine the 1NN-LTW clas-
sifier and the LSTM classifier. The underlying rational is that
both classifier can achieve high classification accuracy for our
problem but in very different manners: the 1NN-LTW is a
nearest neighbor classifier, which is a data-based classifier
without a training process; while LSTM is a training-based
classifier in which the training data are first used to build a
model and then the model is used to classify the test data.
In our experiments, both classifiers can perform promisingly
individually; however, our numerical simulation shows that the
accurately classified samples by the two classifiers have sig-
nificant differences. In such sense, we propose to combine the
two algorithms to construct a even stronger classifier.

The hybrid algorithm is designed in the following way.
Considering that in practice, the training of LSTM and the
computing of the distance matrix for 1NN-LTW can be both
time consuming, the hybrid algorithm is designed to be as
simple as possible. We first obtain the two individual classi-
fiers CLTW (the nearest neighbor classifier with CID enhanced
LTW) and CLSTM (the trained LSTM classifier). For each clas-
sifier, we obtain the probability vector when classifying some
test time series x: pLTW(x) and pLSTM(x), where pLTW(x) is
defined as

pLTW(x) =
∑m

i=1(m− i)vi

�
(14)

where vi is a all zero vector except its value at the index of
the class of the ith neighbor obtained from CLTW is to be 1.
� is a normalization vector which is used to make sure that
the summation of the obtained probability vector equal to 1.
pLSTM(x) is obtained in (11).

With this two probability vector, we simply add them up
and the test series will be classified to be the class index with
the maximum probability, that is

CLSTM/LTW(x) = argmax(pLTW(x)+ pLSTM(x)). (15)

The detailed algorithm is shown in Algorithm 3.

V. NUMERICAL EVALUATION AND ANALYSIS

In this section, we present the experimental results of the
above proposed algorithms and the analysis. We first conduct
experiments to investigate the proposed LTW and compared
it with various variants of DTW. Then we compare the clas-
sification accuracy of the proposed 1NN-LTW, LSTM, and
their hybrid algorithm LSTM/LTW with the baseline algo-
rithm 1NN-DTW. Test data and codes for the LTW tests are
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available at https://www.dropbox.com/sh/9iu6xg5eskq90g8/
AABz8kaFOUWNtBa5XRPg6D9ua?dl=0. In presenting the
classification results, for convenience, we will simply use test
fold i to denote the test with test samples in Fi and F(i+1)%5.

A. Experimental Study on LTW

In this section, we conduct experiments to prove that the
proposed LTW is indeed a different distance measurement
from the existed DTW variants, and prove that it works bet-
ter or nearly the same(for the linear version) to DTW and its
various state-of-the-art variants. We will also prove that the
noncommunicative feature is indeed beneficial. Note that we
will not try to use massive experimental data to prove that the
proposed LTW is superior than other DTW variants, which is
indeed not true not only because of the No Free Launch the-
ory, but also because these distance measurements are mostly
designed in a way without a training objective to directly opti-
mize the classification accuracy: for example, in DTW, the
dynamic programming process can optimize the match; how-
ever, such optimization goal is different from the classification
accuracy. In such sense, all these distance measurements can
suffer from model bias and when they are applied to differ-
ent data sets, their performance will definitely vary. As proved
in [9], only ensemble-based methods can significantly outper-
form 1NN-DTW by more than 3% on different data sets. In
this section, we will only conduct experiments on our data
set to compare LTW with the DTW with Manhattan distance
(DTWm), DTW with Euclidean distance (we will use this as
the default DTW in this paper, as it has better performance),
and DTW variants MSM, LB_Keogh, and the enhancer CID
as these methods performs good in general as shown in [9].
In the following experiments, we conduct pairwise Wilcoxon
signed rank test [40] to test whether a target algorithm per-
forms significantly different to the other algorithms or not. We
show the computed T value, where T = 0 means the compared
algorithms are significantly different to the target algorithm
at significance level 0.05 in our fivefold test, otherwise not.
Details are shown below.

First, we present the comparison of 1NN-LTW (G =
{1, 2, . . . , 10}) with 1NN-DTWm (warping window w = 20),
1NN-DTW (warping window w = 20), and MSM (with its
threshold parameter c = 1.0). These parameter settings are
manually tuned to achieve best performance in a threefold
internal cross validation of the training data. We will show
analysis on the affects of the warp set G in Section V-D. The
results are shown in Table IV. Clearly the performance of
1NN-LTW is better.

Second, we compare the fast linear LTW with G = {10}
with the linear runtime lower bound method LB_Keogh. We
test LB_Keogh with window size w = 5 and w = 10, respec-
tively. The reason we set the window size to 5 is that in
this case the warping set has a size of 10, which is of the
same size of 1NN-LTW (G = {1, 2, . . . , 10}), such that we
can show whether 1NN-LTW (G = {1, 2, . . . , 10}) is different
to LB_Keogh or not. For window size 10, we want to test
LB_Keogh with the same largest warp index offset as LTW
with G = {10}. The results are shown in Table V and LTW

TABLE IV
CLASSIFICATION ACCURACY OF 1NN-LTW (G = {1, 2, . . . , 10}) WITH

1NN-DTWM (w = 20), 1NN-DTW (w = 20), AND MSM (c = 1.0)

TABLE V
COMPARISON OF 1NN-LTW (G = {10}) WITH

1NN-LB_KEOGH (w = 5, 10)

TABLE VI
CLASSIFICATION RESULTS WITH CID ENHANCED

DISTANCE MEASUREMENT

with G = {10} outperforms LB_Keogh significantly on our
data set. This proves that the fast linear version of LTW can
still perform quite good and is different from the lower bound
method LB_Keogh.

Third, we present the classification results with the CID
enhanced distance measurement. We show the results of
CID(DTW) and CID(LTW) with G = {1, 2, . . . , 10} and
G = {10} in Table VI. Clearly, the CID can improve the
performance of both DTW and LTW for our data set. With
CID modifier, the LTW is still slightly better than DTW; how-
ever, the advantage of CID(LTW) over CID(DTW) becomes
smaller, we believe that it is reasonable as the accuracy is
upper bounded and it will be much more difficult to fur-
ther improve the accuracy when the algorithm is already very
accurate.

At last, we present the experimental results to show that
the noncommutative feature of LTW is indeed beneficial. To
do so, we implement a simple commutative version of LTW
defined as

LTWcom(x, y) = LTW(x, y)+ LTW(y, x). (16)

The experimental results compare the LTW with the LTWcom

is shown in Table VII. Clearly, LTW outperforms its commuta-
tive version significantly. This proves that the noncommutative
feature of LTW is indeed beneficial.

B. Classification Accuracy Rate Comparison

The fivefold classification accuracy results for the hybrid
algorithm LSTM/LTW are shown in Table VIII, compared
with the nonhybrid classifiers 1NN-DTW, 1NN-CID(LTW),
LSTM, and a recently proposed ensemble classifier ensemble
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Fig. 4. Classification response for different algorithms on fold 0. The ground truth/predicted labels of the test samples are plotted against the index of the
sample. Clearly the hybrid algorithm gains the advantage of both LSTM and 1NN-LTW.

TABLE VII
COMPARISON OF LTW AND THE LTWcom

TABLE VIII
CLASSIFICATION ACCURACY OF 1NN-LTW, LSTM, AND THE HYBRID

ALGORITHM LSTM/LTW COMPARED TO THE BASELINE ALGORITHM

1NN-DTW AND ENSEMBLE CLASSIFIER EETSC

of elastic distance measurements for time series classifica-
tion (EETSC) [28]. For the LSTM neural network, we set
the maximum number of epoch (MaxEpoch) to 50. For some
key parameters which can affect the performance of LSTM,
we give a detailed discussion in the following parameter set-
tings study. Results of LSTM and LSTM/LTW are based on
30 independent runs as the LSTM is trained by a stochas-
tic algorithm. For EETSC, as it has four different ensemble
methods, in the revised manuscript we only show the results of
the method which achieves the best performance, which is the
“Prop” method. Note that the code of EETSC is downloaded
from the website provided by the authors.

From Table VIII, we can observe the following.
1) The proposed LSTM classifier shows similar accuracy

compared to 1NN-LTW and it also outperforms 1NN-
DTW on our data set.

2) The hybrid algorithm LSTM/LTW can achieve higher
accuracy compared to 1NN-LTW and LSTM by an

increment of about 3%, which proves that the hybrid
algorithm can indeed improve the classification accu-
racy.

3) The performance of EETSC is not as good as the
proposed hybrid LSTM/LTW, and it is also weaker than
the CID(LTW). We noticed that the CID modifier is
not used in EETSC, which may be the reason that it
performs similarly to the 1NN-DTW and MSM.

For the first observation, we can see that LSTM, as a
neural network, can significantly outperform the other canon-
ical classifiers like SVM, which proves its strong modeling
ability for sequential data. Note that a common neural
network like multilayer perceptron cannot perform as good
as LSTM. The performance of LSTM can be seriously
affected by the training settings, which we will discuss
below.

For the second observation, we can see that the improve-
ment is small, which is reasonable as the baseline algorithms
already achieve a high accuracy individually, making it diffi-
cult to achieve large improvement for the hybrid algorithm.
The improvement caused by the hybrid algorithm will be
shown clearly in the following detailed analysis.

C. Analysis on the Accurately Classified Samples

In this section, we analyze the accurately classified samples
of the power series and study the difference between different
classifiers. In doing so we will be able to identify why and
how the hybrid algorithm works.

Fig. 4 shows the predicted labels for the test samples in
fold 0 of the 1NN-DTW, 1NN-LTW, LSTM and the hybrid
algorithm LSTM/LTW. Fig. 5 shows the accurately classi-
fied samples for each class and for each algorithm. From
Figs. 4 and 5, we can observe the following.

1) The proposed 1NN-LTW method performs similarly to
1NN-DTW, although 1NN-LTW can accurately predict
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Fig. 5. Accurately classified samples for the different algorithms on fold 0. Samples from the same class are drawn in the same subfigure. (a) 1NN-DTW.
(b) 1NN-LTW. (c) LSTM. (d) LSTM/LTW. LSTM cannot classify some classes while the hybrid algorithm gains the advantage of both LSTM and 1NN-LTW.

more test samples. This is reasonable as the two classi-
fiers are both nearest-neighbor classifiers and they have
similar measurement definition.

2) The proposed LSTM classifier shows certain degree of
difference compared to the other two nearest neighbor
classifiers. One example, the LSTM classifier cannot
predict any test samples from the Spark-MLlib-LR
(class label 5) and the Spark-MLlib-PCA (class label 8)
classes, while both 1NN-DTW and 1NN-LTW can;
however, LSTM performs better than the other algo-
rithms on classes Spark-MLlib-SVM (class label 6) and
Hadoop-WordCount (class label 9).

3) The proposed LSTM/LTW classifier can successfully
combine the advantages of LSTM and 1NN-LTW.
Such as for the Spark-MLlib-LR class and Hadoop-
WordCount classes, the hybrid algorithm achieve similar
performance to the better one of LSTM and 1NN-LTW.

4) All the classifiers can successfully classify the test sam-
ples of the Web server class, which is reasonable as the
Web server program is of a completely different kind
from the other MapReduce programs.

TABLE IX
UNION-ACCURACY OF THE 1NN-LTW AND THE LSTM

CLASSIFIERS IN THE FIVEFOLD TESTS

The above results show the difference of the 1NN-LTW
and the LSTM classifier which makes the hybrid algorithm
work. Although 1NN-LTW and the LSTM can achieve similar
accuracy, their accurately classified samples have significant
differences. To make this more clearly, we compute the union-
accuracy accunion of the two classifiers as follows:

accunion = |ALSTM ∪ A1NN−LTW|
N

(17)

where ALSTM and A1NN−LTW are the sets of the accurately clas-
sified samples by LSTM and 1NN-LTW, respectively and N is
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TABLE X
TEST RESULTS WITH DIFFERENT SETTINGS FOR THE

WARPING INDEX SET G IN 1NN-LTW

the total number of test samples in this test fold. The union-
accuracy of the fivefold tests are shown in Table IX. It can
be seen that the union-accuracy is between 94% and 96%. It
shows the potentiality of a hybrid algorithm of the two classi-
fiers. Note that the hybrid algorithm can only achieve accuracy
smaller than the union-accuracy, as the union-accuracy is
computed in an ideal manner.

D. Discussion on the Parameter Settings

In this section, we discuss the parameters settings in the
above algorithms. First we study the parameter used in the
LTW measurement, the warping index set G. The test results
with different G settings are shown in Table X. It can be seen
that a proper G setting is needed as a set G too small can dete-
riorate the performance. In our experiments we find that with
a larger set G, the performance of LTW is more stable. Note
that increasing the size of G can cause higher computing cost.

Second, we discuss the parameter settings for the LSTM
classifier. Tuning of the hyper-parameters of the LSTM
network is critical. In our experiments, we find that an
improper setting can result a bad performance with accuracy
lower than 50% for the LSTM. We find the following key set-
tings in the LSTM classifier, which we have tested and find
the proper setting, although detailed experimental results are
omitted here. The hyper-parameter settings: three parameters
are specially tuned in our experiments, which are the batch
size (we set to 60), the dimension of the LSTM node (we set
to 90), and the discretized range parameter S (we set to 100).
We also tested two more different implementation variations
of LSTM.

1) Adding a dropout layer, which is tested and not helpful
in our case.

2) More than one LSTM layers, which has been tested and
is also not helpful.

E. Discussion on the Time Cost

In this section, we analyze the time cost of the proposed
algorithm. First, we compare the time cost of the 1NN-
LTW(G = {1, . . . , 10}), 1NN-LTW(G = {10}), 1NN-DTW
(w = 20), LB_Keogh, and LSTM (decomposed into the train-
ing time cost and the test time cost). These algorithms are all
implemented in Python and tested on a Ubuntu server 14.04
with Intel Xeon CPU E5-2620 v2 @ 2.10 GHz. The codes are
implemented as single thread programs which can only utilize
one core. For the LSTM, we show both its training time cost
and its classification (test) time cost. The time cost data for
different algorithms on fold 0 are shown in Table XI.

TABLE XI
RUN TIME COST (SECONDS) OF DIFFERENT ALGORITHMS

From Table XI, we can observe the following.
1) The proposed LTW distance measurement is much faster

than DTW. The time cost of LTW(G = {10}) is similar
to LB_Keogh, which shows that the algorithm itself can
be very useful when the time cost matters.

2) The training time needed of LSTM is smaller than the
time cost of 1NN-DTW in our experiment.

However, it should to be noticed that the time cost of LSTM
is determined by the training epochs. The classification time
cost of LSTM is only 294 s, which is much faster when com-
pared with the other classifiers; this shows that after the neural
network is trained, it can be used in classification with high
time efficiency. Also note that as GPU-based neural network
training is widely used in practice, the time cost of LSTM can
be greatly reduced if GPU is used. We also note that the time
cost of EETSC is high (335 074 s in training and 25 335 s in
testing with code written in Java and runs with all CPU cores),
this is because in the training procedure, EETSC tests many
different parameter settings through internal cross validation
within the training data. The test time cost shows that as it is
ensemble of nine different classifiers, the time cost is high as
expected.

VI. CONCLUSION

In this paper, we study the server power consumption series
classification problem used as a nonintrusive method for data
center energy monitoring. First we propose a new time series
distance measurement termed as LTW and build a hybrid algo-
rithm of the 1NN with LTW and the LSTM neural network.
The proposed LTW distance measurement is designed to be a
light weight time series measurement with local warping oper-
ations within a predefined warping index set, and it is designed
to be noncommutative. LTW can be taken as the simplified ver-
sion of DTW with only the warping operation (a series of min
operations). The LTW is proved to be better than DTW on our
data set and its noncommutative feature is proved to be benefi-
cial. Also a linear version of LTW can perform almost as good
as the DTW on our data set. The proposed LTW shows that
for a certain time series classification problem, it is possible
to use some light weight time series distance measurement to
achieve quite good classification accuracy.

Second, we apply the state-of-the-art sequential data
modeling neural network LSTM to classify the power series.
Our study show that LSTM can perform well compared to
1NN-LTW with similar accuracy; however, these two algo-
rithms have their unique different natures and the accurately
classified samples of these two algorithms have significant dif-
ference. In this sense, we propose a hybrid algorithm of the
two classifiers termed as LSTM/LTW, which further improves
the accuracy. The proposed hybrid algorithm can achieve
classification accuracy as high as 93% in our experiments.
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For the future work, one interesting problem is to study
the case that the power series generated by multiple programs
thus with multiple labels. The problem is especially interesting
when we have the test data being the combination of different
programs [such as a pair of programs (A, B)] where this special
pair may not be seen in the training data, for example, the
training data may only contain samples generated by program
pairs like (B, C) and (A, C). In this case, the classifier should
be able to recognize the new pair (A, B). Also, one can try
more complicated ensemble algorithms with LSTM and other
existed time series classification algorithms.
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