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ABSTRACT

The time-varying property and wideband nature are con-
sidered as the most difficult challenges of the underwater
acoustic channels. Due to the low propagation speed of the
sound, the relative motion between the transmitter and re-
ceiver can result in serious Doppler effect. Even if both of
the platforms stay still, the multipath signals along different
eigenrays vary in angles of arrival, hence the radial veloci-
ties. Such Doppler velocities brings different time compres-
sions or dilations to the multipath signals. In addition, as
the signal bandwidth is usually comparable to the center fre-
quency, it is more appropriate for the underwater acoustic
channels to be modeled as wideband channels. In this paper,
the parameter estimation of the wideband time-varying un-
derwater acoustic channels is investigated. Linear frequency
modulation signals are used as the training sequences, and
the fractional Fourier transform is the key of the estima-
tion algorithm. The communication scenario, with a fixed
transmitter and a moving receiver, is built by the Bellhop
software. The generated channel impulse response shows
obvious time-varying property, as well as sparsity, in the
multipath amplitudes and delays. The estimation result re-
covers the channel impulse response very well, thus confirms
the effectiveness of the proposed method.
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1. INTRODUCTION

The underwater acoustic (UWA) channels are character-
ized by time-frequency double dispersion and considered as
perhaps the most complicated wireless channels [1-4]. The
low propagation speed of acoustic wave and multiple scat-
terers result in large multipath delay spread, and such multi-
path propagation leads the UWA channels to perform severe
multiplicative effects on the transmit signal in the frequency
domain. Hence, the UWA channels are frequency-selective.
In addition, the relative motion can cause the Doppler effec-
t, which leads to time-varying (TV) multiplicative effects on
the transmit signal in the time domain, so the UWA chan-
nels are also time-selective.

Since angles of arrival and the relative velocities linked
with the received multipath components are typically dif-
ferent, the individual components will be stretched or com-
pressed in time. In frequency domain, accordingly, the spec-
trums will be stretched compressed or stretched by Doppler
scaling factors [5]. In narrowband systems, such Doppler s-
cales can be approximated as Doppler shifts. However, more
and more attention has been paid to the wideband nature
of the UWA channels in literatures, e.g. [5-10]. For many
acoustic signals, the fractional bandwidth (ratio of band-
width over carrier frequency) and the time-bandwidth prod-
uct are usually so large that the narrowband condition does
not hold. Thus, to describe the Doppler effect of the UWA
channels more suitably, the Doppler scaling factor should be
employed.

There are several factors which produce the relative mo-
tion between the transmitter and the receiver for commu-
nication application, or between the sonar and the target
for detection application. The active factor is the vehicu-
lar motion of the platforms [7], and the passive factors in-
cludes the reflections from the moving surface [5] [7] [11],
unintentional ocean internal waves [12], and the varying
depth(pressure, temperature and salinity)-dependent sound
speed [13]. These types of motion will together generate a
relative radial velocity, which will influence the Doppler s-
caling factor of each multipath. The Doppler spread will se-
riously affect the reliability of communication performance.

For UWA communication applications, to capture the o-
riginal information accurately, parameter estimation for such
multiscale-multilag (MSML) channels is required. Since the
scaling changes involve resampling process at the receiver,
most existing channel estimation methods only consider and
compensate one dominant scale factor [14-16]. Although
it simplifies the receiver structure, such scale compensation
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mechanism leaves residual sampling errors for other scaled
components, and ignores the potential diversity which could
be exploited in a time-scale channel characterization to in-
crease communication performance [17]. The channel im-
pulse response (CIR) is always the object of the parameter
estimation, since it has important roles in the target probing,
source localization, timing synchronization, and the channel
equalization. Training-based estimation methods are com-
monly used in wireless communication applications. The fre-
quently used training sequences include the m-sequence [18],
Zadoff—Chu sequence [19], etc. For wideband channels, the
frequency modulation (FM) signal is good choices to be
the channel training sequences because it has large time-
bandwidth product and good autocorrelation characteris-
tic [6] [7]. In the field of target detection, the linear frequen-
cy modulation (LFM) signal and the hyperbolic frequency
modulation (HFM) signal are frequently used [20]. Although
the HFM signal is Doppler-invariant, the Doppler scaling
will cause a time shift to its main pulse of the matched filter
output. By comparison, the LFM signal can be compressed
by the matched filter and forms a narrower main pulse than
the HFM does, but it is not Doppler-invariant [21]. When a
Doppler scaling change occurs, the main pulse will be broad-
ened and sidelobe levels will be increased.

In previous research on the parameter estimation of the
MSML UWA channels, a matched filter bank scheme is pro-
posed in [8], and the matching pursuit (MP) decomposition
algorithm is used in [9]. Essentially, both of these two meth-
ods calculate the correlation between the received signal and
the scaled-delayed versions of the original training sequence.
The Doppler scale spread and delay spread should be known
beforehand for both of these methods. When the Doppler s-
cale spread is large and fine time-scale resolution is required,
a huge number of filters are needed for the method in [§],
while a super large signal dictionary should be built for the
MP decomposition algorithm in [9].

The fractional Fourier transform (FRFT) is a generaliza-
tion of the classical Fourier transform, and can be inter-
preted as a rotation in the time-frequency plane [22,23]. In
the FRFT domain, an LFM signal can be represented as
an impulse at an appropriate time-frequency rotation angle.
In [24], the FRFT is used to compensate a known single
Doppler scale of the LFM echoes. For the LFM signal with
an unknown scale factor, the key to estimate the scale factor
is to find the optimal fractional order of the signal’s FRFT,
or the rotation angle at which the transformed signal reaches
a maximum amplitude and forms an impulse. A coarse-to-
fine method is proposed to estimate the compact fractional
domain in [25]. However, accurate estimation methods for
the MSML UWA channels still lack of further study. In
this paper, selecting the LFM signal as training sequence,
an FRFT-based parameter estimation method for the wide-
band time-varying UWA channel is proposed. It can ob-
tain the MSML coefficients without knowing the Doppler
scale spread beforehand nor any resampling operation, and
can safely ignore the time-varying depth-dependent sound
speed and other relative motion types mentioned above. The
CIR estimation performance of the proposed method exceed-
s those of the matched filter with single resampling rate [16]
and MP decomposition method [9].

The remainder of this paper is organized as follows. Sec-
tion II reviews the system model, and briefly introduces the
FRFT. In Section III, an efficient and accurate FRFT-based

parameter estimation method for the wideband time-varying
UWA channel is proposed. Computer simulation is given in
Section IV, and finally conclusions are drawn in Section V.

2. SYSTEM MODEL
2.1 Wideband TV UWA channel model

Assuming there are L dominant multipaths, the time-
varying UWA CIR is defined as [15] [16]

h(t,7)=>_ Ai(t)s (=7 () (1)
=1

where A; (t) and 7 (t) denote the time varying I-th path
delay and amplitude, respectively. The time variation of the
path delay 7; can be approximated to change linearly with
t as

n(t)=7—(u—1)t (2)

where o; € R denotes the Doppler scale of the I-th path, and
is directly related to the radial velocity v; of the scatterer
and the velocity c¢ of the signal in the propagation medium
according to the relationship oy = (¢—v;)/(c+v;). Further,
the path amplitudes can be assumed constant A;(t) ~ A,
over the duration of the signal transmission, since the chan-
nel coherence time is usually on the order of seconds [14].
Then a path-based channel model is given as

h(t,T) = ;Ala(T - (n — (ou — l)t)) (3)

This channel is the so-called MSML channels if the Doppler
scales and path delays can be distinguished from each other.
Denoting the transmitted signal as s(t), we have the received
signal as

r(t) = /00 h(t,7)s(t —7)dr +w(t)

—oo

= Z Als(alt — Tl) + w(t) (4)

=1

where w(t) denotes the additive noise.

In some other places, the effect of the wideband chan-
nel on the transmitted signal can also be described by the
delay-scale spreading function (DSSF), which is a continu-
ous function defined in the delay-scale plane [5] [10] [17].
The DSSF can be represented as

M N

Fy (a,7) = Z Z Aﬁ{,n& (@ —am)d (T — ) (5)

m=1n=0

where m = Qmin + MAQ, 7 = AT, M = (Qmax —
Qmin)/Aa, N = Tmax/AT, With &min, Omax, Tmax, A and
A7 denote the minimum Doppler scale, maximum Doppler
scale, maximum delay, the uniform scale sampling interval
and delay sampling interval, respectively. Aﬁ,n is the sam-
pling amplitude of the (m, n)-th grid of the discretized DSS-
F.

2.2 LFM Signal as the Training Sequence

We consider an LFM signal defined on the passband as
the channel training sequence s(t), which is

s(t) =Re [rect (t) exp (5 (27 fot + nkt® + Lpo))] (6)
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Figure 1: The WAAF of an LFM signal over the
Doppler scale range a € [0.98,1.02] and the delay
range 7 € [—5,5] x 10~ %s.

where fo, k and o are the starting frequency, modulation
slope and initial phase, respectively. The stopping frequency
is fi1 = fo + kT, where T is the duration of the signal. The
function rect(¢) denotes the normalized rectangular window,
i.e. rect(t) = 1/T for t € [0,T] and zero otherwise.

For the LFM signal, if there is not any relative motion,
the output of the matched filter at the receiver forms a se-
ries of pulses which space corresponding to the multipath
delays. When Doppler scales exist due to the relative mo-
tion, the correlation pulses could be severely broaden. Such
mismatch can be explained and analyzed by the wideband
ambiguity function (WAF), which is a function defined by
the parameters o and 7. The wideband auto ambiguity func-
tion (WAAF) [26] of s(¢) is

WBss(a,T):\/m/s(t)s* (at—md  (7)

For any probe signal s(t), its WAAF magnitude reaches a
maximum at («,7) = (1,0). The WAAF, over a range of
interest in the delay-scale plane, of an LFM signal is illus-
trated as Fig. 1. Along with the scale factor changes away
from 1, the main pulse of the correlation output is broaden
along the delay axis, and the magnitude is weakened.
When the scale factors of the received multipath signals
are identical but not equal to 1, a good time-delay corre-
lation output can be obtained by resampling the received
signal with the identical scale factor. However, if the scale
factors are different with each other, the output of the time-
delay correlation, with a single resampling factor, will be
blurred by the WAAF's of other multicomponents. In this
case, a single resampling factor is not particularly helpful.

2.3 FREFT of the LFM signals

The FRFT of a function z(t), with a fractional order p
and a rotation angle ¢ = pr/2, is defined as [22] [23] [27]

o]

PP = X, (u) = / (K (t,u) dt (8)
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Figure 2: The discrete FRFT of a sampled LFM sig-
nal at the ORA ¢,.. The LFM signal, with duration
50ms, sweeps the frequency from 5KHz to 15KHz,
and is sampled as a sequence with length 4096. Its
discrete FRFT, X, (u), is a complex vector with the
same length, and the magnitude peaks at u,.

where K (t, u) is the transformation kernel, which is defined
as

2
0 (t —u), for ¢ =2nmw
0(t+u), forp=02n+ )

A¢,exp<j12+“2 cot ¢—jut csc qS),for ¢ # nw
K¢ (t, u) =

where the complex amplitude factor Ay = /=42,

For an LFM signal, there exists an optimal rotation angle
(ORA) ¢,, which gathers the LEM signal energy at u,. The
X4, (u) forms an impulse function in the FRFT domain,
and the maximum value appears as X4, (ux), as shown in
Fig.2. The relationship between the ORA and the LFM
signal modulation slope is given as [28]

k = —cot (¢). (9)

3. FRFT-BASED PARAMETER ESTIMATION
3.1 Single Path Channel

When a complex channel attenuation A, a temporal scal-
ing o and a delay 7 happen to the LFM signal, the passband
received signal is

r(t) = Re[A]s (a (t — 7)) — Im[A]sT (a (t — 7))
= Re [A -rect (o (t — 7)) exp (j (27 fot + k't + cpf]))]

(10)
with
0 = afo—ka’r
K = ka? (11)
vy = wka*r*=27mfoar + o

where sT = H(s) is the Hilbert transform of s(t).
We can see that the received signal r(t) is still an LFM
signal, but the modulation slope changes to k' = ko?.



Figure 3: FRFTs of s(t) and s(a(t —7)). For a LFM
signal, there exists an ORA ¢,, which gathers the
signal energy at a certain value on the rotated u-
axis, see the dense dotted frame of axes in blue color.
Once a time delay and a Doppler scale happen, the
ORA switches to ¢,, and the signal forms a new
impulse function in the u’-v’ FRFT domain, see the
loose dotted frame of axes in red color.

Accordingly, the transformed LFM signal forms an im-
pulse function at a new ORA ¢, as shown in Fig.3. Com-
bining (9) and (11), we have the following relationship

ka® = k' = — cot (¢.) (12)

Hence, once the degree of the new ORA ¢, is known, the
scaling change estimate, @, can be obtained since the slope k
is known beforehand at the receiver. Then the time delay 7
and attenuation A can be estimated through search for the
peak of the correlation between r(t) and sz (t), where s5(t)
is the resampled s(t) with & as the resampling factor.

Searching for the ORA ¢/, in (12) needs many times FRFT
computations and comparisons to be done. In [29], a fast
digital computation of the FRFT is given. It reduces any
fractional order to a general interval (0.5,1.5). Like FFT,
this fast computational algorithm gives samples of the con-
tinuous time FRFT of a signal in terms of the same amount
of samples of the original signal. Assuming a discrete LFM
has N samples under the sampling rate fs, the frequency
resolution Af = f;/N and the time resolution is At = 1/ fs.
According to [28], the modulation slope of the sampled LEM
signal is

_Af /2

k= AL cot (¢y) = -N cot () (13)

Since the LFM signal forms an impulse at the ORA, search-
ing for the ORA is equivalent to scanning the fractional
Fourier amplitude spectrum for the maximum value. We use
a coarse-to-fine scanning method proposed in [25], which can
iteratively calculate the ORA corresponding the the maxi-
mum FRFT value. Since such coarse-to-fine scanning re-
quires dozens times of FRFT operations and the fast discrete

FRFT only requires O(N log N) computation [29], the com-
putational complexity of the scanning can be low enough.

3.2 Multipath Channels

In this part, we propose an iterative matching algorithm
to estimate the parameters for the MSML channels. For
each multicomponent, the estimation is a planar searching
process in the scale-delay plane.

Assuming that the analytic signal vector of the trans-
mitted LFM sequence is syx1 and the real received sig-
nal vector is rn,x1, first we generate the analytic signal
r. = r + j - Hilbert(r) and denote is as the residual signal.
Scan the FRFT domain to obtain the ORA of the entire
signal r., denoted as ¢’, hence obtain a crude scale factor
estimate of the most dominant path

a = +/—cot (¢,) f2/ (kN,) (14)

Secondly, generate the scaled signal vector sz with @ as the
resampling factor, and find the delay index, denoted as d,
by operating a cross correlation between s; and re, i.e.

(15)

d = max Z re[m]si[m + nj
Next, rescan the FRFT domain to obtain the ORA of the
partitioned signal re[d : d + N; — 1], where N; = [aN] is
the length of s;z. Denote the new ORA as ¢/, we have the
refined scale estimate

& = +/—cot (¢7) 2/ (kN;) (16)

Due to different scanning length, the two estimates & and o’
may be different, so we generate a new scaled signal vector
and repeat (15) and (16) until the scale estimate does not
change anymore. This operation makes the width of the
FRFT window dynamically change to adjust the length of
the scaled multipath signal, and makes the algorithm return
finer estimates of the actual parameters.

Once the scale estimate & stabilizes, the delay and ampli-
tude of the related path can be computed by

T=d/fs (17)

A= rclmlsslm +dl/llsall3 (18)

Finally, update the received signal vector by removing ss
reld:d+ N; —1) < refd:d+ Ni— 1] — Asg (19)

Then the multicomponent with the highest energy is elimi-
nated from the residual signal.

The parameters of the second most dominant path will
be estimated in the same way with the updated r.. The
iteration stops when the number of estimated paths reach a
set number, or the ratio of the signal energy to the residual
energy reaches the SNR, if known.

The simple structure of the receiver, which using the above
proposed algorithm, is a noteworthy advantage. As men-
tioned in Section 1, the matched filter bank scheme [8] re-
quires multiple filters and multiple sampling rates, of which
the number controls the resolution in both the scale and
time domain. While the MP decomposition method [9] re-
quires a complete signal-transformed dictionary to be built
in advance, whose atoms should cover all possible combina-
tions of the discrete delays and scales. Unlike these methods,



the receiver structure using the proposed algorithm does not
need extra hardware overhead or huge signal dictionaries. In
addition, other information, such as the vehicle speed and
the Doppler scale spread, is not required beforehand since
the ORA scanning process can rapidly figure out the scale
factor in the whole range for each path.

4. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed FRFT-based parameter estimation algorithm. In the
first part, a simple sparse MSML channel is artificially cre-
ated, and the accuracy of the estimation is quantitatively
analyzed. In the second part, time-varying channels for a
moving receiver scenario are generated by the BELLHOP
software. The time-varying CIR over a period of one minute
is estimated by using the proposed method.

4.1 Simple Sparse Multipath Channels

First, we assign the parameters of the transmitted LFM
training signal. The bandwidth and time duration are set
to be B = 10KHz and 7' = 50ms, thus the modulation slope
is k = B/T = 2 x 10°. The starting frequency, stopping
frequency and initial phase are fo = 5KHz, fi = 15KHz, and
wo = 0, respectively. To obtain a fine scale resolution, the
sampling rate fs is set 8 times of the bandwidth. Second, we
hypothesize an sparse MSML channel based on the following
assumptions:

1) only 8 multipaths are dominant in energy;

2) all the multipaths are time-compressed and the scale
factors are uniformly distributed within o € [1,1.02], with
an accuracy to three decimal places (Note that the maximum
scale 1.02 corresponds to a relative velocity about 30 knots,
which is relatively high for underwater movement);

3) all the multipaths arrive at the receiver within one sig-
nal duration T" (significantly overlap case), and the time de-
lays follow uniformly distribution.

With the generated parameters subjected to these as-
sumptions, the received signal can be obtained by using
(4). Next we quantitatively analyze the proposed method
accuracy from the performance of the power delay profile
estimation and the Doppler scale estimation.

4.1.1 Power Delay Profile (PDP)

The PDP contains information about how much power
arrives at the receiver with a particular delay, irrespective
of possible Doppler scales. It can be obtained by integrating
the DSSF (5) over the scale dimension, and also can be
obtained from the complex CIR as

1 T
Pu(r) = lim — / |h(t, 7)|? dt (20)
T — o0 _T
We use the normalized mean squared error (NMSE) as the
performance indicator of the PDP estimation, given as
~ 2
ffooo ‘Ph(r) — Ph(T)) dr

NMSEp, = 21
o I 1Pu(r) P dr )

where ﬁh(T) is the estimate of original channel PDP Py (7).

As a comparison, the performance of the single resam-
pling method [16] and the MP decomposition method [9]
are also evaluated. For the training sequences of the MP de-
composition method, the LFM sequence, m-sequence, and
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LTETE T T

2 I |

DI
3
.

—— Exact PDP
SR correlator with LFM
A\ MP with LFM E
v MP with m-sequence
> MP with Zadoff-Chu sequence
O Proposed method with LFM

0 5 10 15 20 25 30 35
Delay (ms)

Figure 5: PDP estimates at SNR=20dB (one trial)

10 ———
—2&— MP with LFM
» —5— MP with m-sequence
10 —PpP— MP with Zadoff-Chu sequence|
—#&— Proposed method with LFM
-2
10
7 -3
2 10
z
1WeEEX L L B> > >
107
1076 L L

-10-8 6 4 2 0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Figure 6: NMSEs of the scale factor estimates of the
dominant multipaths versus SNR



Surface

Tx (0,10)

o
Rx (400,20)

[/ .
range 5
depth

Bottom

Figure 7: A scenario with a stationary transmitter
and a moving receiver.

Zadoff—Chu sequence are simulated respectively. The N-
MSE is averaged over the results of 200 trials for each estima-
tion method. It can be seen that the proposed method out-
performs the others from the NMSE results, which are drawn
in Fig.4. More clearly, the PDP NMSEs at SNR=20dB in
one trial is illustrated in Fig.5. The amplitudes and delay
positions, estimated by the proposed method, are closer to
the original channel. Although some redundant estimates
exist, the values are so tiny that can be ignored.

4.1.2 Doppler Scale Factor
Since the Doppler scale factor is involved in the parameter
estimation, its estimation accuracy should be investigated.
Also, we consider the NMSEs of the scale factor estimates
of the dominant multipaths as the indicator, i.e.
L |~ 2
a —«
NMSE, = M (22)
2ol |l

and show the results in Fig.6. The proposed method obtains
more accurate scale estimates than MP-based method when
SNR surpasses —2dB, while the MP-based method is barely
affected by the noise.

4.2 TV-CIR Generated by BELLHOP

In this part of simulation, we use the Bellhop software
to generate a scenario with a moving receiver, and test the
proposed method in the time-varying channel. The scenario
is illustrated in Fig.7. We assume the maximum depth of
water is 100m, and use the coordinates (r, z) to denote the
position of horizontal range r and depth z. The transmit-
ter is stationary at (0,10), while the receiver at (400, 20)
starts moving away at velocity 5m/s with a declination an-
gle @ = 0.05 from the horizontal line. Since the depth of the
receiver changes with time, we define the sound speed pro-
file as shown in Fig.8. For the receiver at a specific position,
the Bellhop output data contains the amplitude-delay infor-
mation, and the scale-delay information can be obtained ac-
cording to [30]. Considering the surface is silence, i.e., there
is no surface motion, the amplitude and scale versus path
delay at the beginning position (400, 20) is shown in Fig.9.
As the receiver position changes, we draw the time-varying
CIR over 240s in Fig.10.

The LFM signal, with duration 7" = 20ms and spans the
frequency from 5KHz to 10KHz, is sent every other second.
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Figure 8: SSP of the scenario.
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Figure 12: Time-varying CIR and its estimate for the sinusoid surface at SNR=0dB.

The original time-varying CIR and its estimation by the
proposed method at SNR=0dB, are shown in Fig.11. Note
that for each geographic time, we normalize the amplitudes
along the delay axis, and standardize the first arrival delay
as Oms.

Further, let us consider the case for a slightly compli-
cated environment with a moving surface. Sometimes the
surface motion is reasonable to modeled to move up and
down vertically and the displacement varies sinusoidally in
time [3] [7]. Thus, we consider a slow sinusoidally fluctuat-
ing surface with the sinusoid amplitude 2m and frequency
0.0625Hz, and estimate the time-varying parameters under
the same condition as in the silence surface case. The orig-
inal CIR and the its estimation at SNR=0dB are shown in
Fig.12.

From Fig.11 and Fig.12, we can see that the proposed
method can estimate the parameters of the dominant paths
very well. This proves that the method can capture the time-
varying property of the channel under noisy environment.

5.  CONCLUSIONS

In the UWA applications, the relative motion can cause
serious Doppler effect. Like the amplitudes and time delays,
the Doppler scale factors of the multipaths are time-varying,
which makes the channels more complicated. A parameter
estimation method based on FRFT, for the wideband time-
varying UWA channels, is proposed in this paper. It simpli-
fies the receiver structure since extra hardware cost and stor-
age are not required. Through simulation, we proves that
the proposed method can obtain better performance than
the single resampling method and the MP decomposition
method, and is able to capture the time-varying property of
the UWA channels under noisy environment.
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