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Abstract—The aim of multimodal optimization is to locate 
multiple optima of a given problem. Evolutionary algorithms 
(EAs) are one of the most promising candidates for multimodal 
optimization. However, due to the use of greedy selection 
operators, the population of an EA will generally converge to one 
region of attraction. By incorporating a well-designed selection 
operator that can facilitate the formation of different species, 
EAs will be able to allow multiple convergence. Following this 
research avenue, we propose a novel selection operator, namely, 
queueing selection (QS) and integrate it with one of the most 
promising DE variants, called composite differential evolution 
(CoDE). The integrated algorithm (denoted by CoDE-QS) 
inherits the strong global search ability of CoDE and is capable 
of finding and maintaining multiple optima. It has been tested on 
the CEC2013 benchmark functions. Experimental results show 
that CoDE-QS is very competitive. 

Keywords—differential evolution; multimodal optimization; 
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I. INTRODUCTION 
Many optimization problems contain multiple satisfactory 

solutions. When solving such kind of problems, we are often 
interested in finding multiple good solutions simultaneously 
instead of a single solution. The motivation is that multiple 
good solutions can provide better understanding of the problem 
landscape. On the other hand, when a solution cannot be 
realized due to the physical constraints, we can quickly switch 
to other solutions without causing significant performance loss.  

Evolutionary algorithms (EAs) are population-based 
metaheuristic search algorithms. They have been shown to be 
very effective in solving various kinds of optimization 
problems [1][2]. However, EAs are originally designed to 
locate a single global optimum of a given problem regardless 
of the problem landscape. The population of an EA will finally 
converge to one region of attraction. The solutions 
(individuals) in the final population will be identical or very 
similar. This is adverse to the intention of finding multiple 

optima. To make EAs suitable for multimodal optimization, a 
number of techniques commonly known as “niching” have 
been proposed [3]. Niching techniques are designed to prevent 
the population of an EA converges to a single optimum. By 
applying the niching techniques, multiple species are formed 
around different basins of attractions. If the species are 
maintained throughout the running process, the algorithm will 
be able to provide multiple distinct solutions. Some famous 
niching techniques include: fitness sharing [4], crowding [5], 
speciation [6], and clearing [7]. 

A. Fitness sharing 
Fitness sharing is one of the earliest niching techniques. It 

is proposed by Holland [8] and later extended by Goldberg and 
Richardson [4]. The concept is that there are only limited 
resources in each region of the search space. Individuals within 
a same region have to share the limited resources with one 
another. In an EA, sharing was implemented by scaling the 
fitness of an individual based on the number of ‘similar’ 
individuals in the population. A threshold value called sharing 
radius share is used to determine whether two individuals are 
similar. The shared fitness of the ith individual is calculated as 
follows: 
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dij is the distance between individuals i and j. NP is the 
population size and  is a constant called sharing level. The 
shared fitness of individual i is greatly reduced if there are 
highly similar individuals in the population. 

B. Crowding 
Crowding is a simple niching technique introduced by De 

Jong [9]. The method tries to maintain the population diversity 
by limiting the competition to similar individuals. The 
similarity of two individuals is generally measured by their 
Euclidean distance. This approach compares an offspring with 
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a number of sampled individuals from the current population. 
The most similar individual will be replaced if the offspring 
has a better fitness value. The number of sampled individuals is 
controlled by a parameter called crowding factor CF. The 
drawback of crowding is the occurrence of replacement error 
that dissimilar individuals are sampled and replaced while 
using a relatively small CF. A simple way to fix the problem is 
by setting CF to NP. The complexity of crowding goes up 
when this modification is applied.  

C. Speciation 
Speciation [6] is another commonly used niching technique. 

It divides the population into a number of species. The update 
operations (e.g. crossover and mutation) are then performed in 
each species instead of the whole population. Like fitness 
sharing, a radius parameter rs needs to be specified before the 
division of individuals. The individuals are first sorted 
according to their fitness values. The best individual is marked 
as the species seed of a newly generated species. All other 
individuals fall within the niche radius of the species seed is 
identified as the same species. Then, individuals belong to the 
species are removed and the above steps are repeated to 
generate new species. The repeated process is terminated when 
all individuals have been removed. In this way, the whole 
population is divided into groups according to their similarity.  

D. Clearing 
The original clearing [7] is applied after the fitness 

evaluation of individuals and before the selection operator. 
Like sharing and speciation, it also depends on a radius 
parameter called clearing radius. Clearing first divides the 
population into a number of species by using a procedure 
similar to the speciation. Then the fitness of the dominate 
individual is preserved while the fitness of other individuals in 
the same species is set to 0. Clearing maintains the population 
diversity by inhibiting the growth of similar individuals and 
giving more resources for individuals that are distinct. 

From the above description, it can be observed that the 
techniques have one thing in common. They modify the 
original greedy selection operator to a more restricted one to 
support the formation of multiple species. This indicates that 
the selection operator plays a very important role in EA-based 
multimodal optimization algorithms. Over the past decades, a 
number of promising EA variants have been proposed [10]-
[13] to tackle complex problems. This paper tries to exploit the 
potential of using these algorithms to handle multimodal 
problems by incorporating a less greedy selection operator. To 
this end, we propose a queueing selection (QS) operator. The 
operator is designed to facilitate the maintenance of multiple 
good solutions, and to preserve the search ability of EAs. It 
divides the individuals into a number of species. The offspring 
population is generated by picking individuals from different 
species. QS is integrated with a recently proposed differential 
evolution (DE) variant (called CoDE [12]) to make a 
competitive multimodal algorithm. Effectiveness of the 
integrated algorithm (CoDE-QS) has been demonstrated by 
comparing its performance with a number of state-of-the-art 
multimodal algorithms over the CEC2013 multimodal test 
suite.  

The rest of the paper is organized as follows. Section II 
gives a brief review of the literature on population-based 
multimodal algorithms and introduces the CoDE algorithm. 
The proposed queueing selection operator and its integration 
with CoDE are detailed in section III. Experiments on the 
CEC2013 test suite are carried out in Section IV, with thorough 
analysis of the experimental results. Concluding remarks and 
future research directions are given in Section V. 

II. RELATED WORK 

A. Differential Evolution  for Multimodal Optimization 
Differential evolution (DE), proposed by Storn and Price 

[14] in 1995, is one of the most popular EAs. It is a simple yet 
powerful global optimization technique. In the literature, it has 
been adapted to solve multimodal optimization problems 
[5],[15]-[17]. Thomsen [5] applied the concepts of fitness 
sharing and crowding to DE, respectively, and obtained the 
sharing DE (ShDE) and crowding DE (CDE) algorithms. To 
eliminate replacement error, CF is set to the population size in 
CDE. When an offspring is generated, it is compared with the 
nearest individual in the current population, the individual will 
be replaced if the offspring has a better fitness value. 

Species-based DE (SDE), proposed by Li [15], is another 
famous DE-based multimodal algorithm. It adopts the concept 
of speciation. Each species is formed around a species seed. If 
the number of individuals in a species is less than m, then local 
random individuals are generated around the species seed. 
Crossover and mutation are thereafter performed in each 
species.  

B. Particle Swarm Optimization for Multimodal Algorithms 
Particle swarm optimization (PSO) [18][19] is a 

population-based optimization technique inspired by the social 
behavior of animals. This subsection introduces three state-of-
the-art PSO-based multimodal algorithms compared in this 
paper. Note that most of existing multimodal algorithms 
introduce one or more control parameters, which are very 
difficult to set without prior knowledge of a problem. To 
remove the need of these niching parameters, Li [20] 
introduced a quantity called fitness Euclidean-distance Ratio 
(FER) and proposed FERPSO. In FERPSO, each particle 
moves towards its pbest and best neighbor. The best neighbor 
of a particle is chosen according to FER. By using the 
neighborhood best instead of gbest, multiple niches are 
naturally formed around multiple optima. In [21], PSO using a 
ring topology (rpso) is recommended to tackle multimodal 
problems. The rpso does not require any niching parameters 
and is very simple. Particles are arranged in a circle and each 
particle only interacts with its direct neighbors. The ring 
topology PSO is found to be able to form multiple stable niches. 
Experimental results reported in [21] show that rpso is very 
promising in solving multimodal problems. To avoid all 
particles converge to a single optimum, Qu et al. [22] 
presented a distance-based locally informed particle swarm 
(LIPS) optimizer. LIPS eliminates the need for niching 
parameters and enhance the fine search ability of PSO. The 
search behavior of a particle is guided by the local information 
of its nearest neighbors.  
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C. Composite Differential Evolution 
DE uses mutation, crossover, and selection at each 

generation to move its population toward the global optimum. 
The performance of DE depends on two of its components, i.e., 
trial vector generation strategy (mutation and crossover) and 
setting of control parameters (scaling factor F, crossover rate 
Cr, and population size NP). In most DE variants, only one 
trial vector generation strategy and one control parameter 
setting are employed at each generation. However, recent 
research indicates that the ensemble of multiple strategies is 
very promising [23]-[24]. Motivated by the finding that DE’s 
performance can be improved by combining several effective 
trial vector generation strategies with some suitable control 
parameter settings, Wang et al. [12] proposed a novel method 
called composite DE (CoDE). CoDE randomly combines three 
trial vector generation strategies and three control parameter 
settings. The idea of CoDE is illustrated in Fig. 1.   

The trial vector generation strategies and control parameter 
settings of CoDE are chosen in a way that they have distinct 
advantages. Therefore, their combination can be effective in 
solving different kind of problems. The three trial vector 
generation strategies are: 

1) rand/1/bin 
2) rand/2/bin 
3) current-to-rand/1 

The strategies are shown in equations at the bottom of this 
page. In the equations, xi,j represents the jth dimension of the 
ith individual. r1, r2, r3, r4, and r5 are distinct integers 
randomly chosen from the range [1, NP] and are different from 
i. jrand is a random integer in [1, D], where D is the dimension 
of the problem being solved. The three control parameter 
settings are: 

1) [F=1.0, Cr=0.1] 
2) [F=1.0, Cr=0.9] 
3) [F=0.8, Cr=0.2] 

The features of the trial vector generation strategies are as 
follows. “rand/1/bin” is a commonly used strategy in the 
literature. In “rand/1/bin”, all vectors for mutation are selected 
from the population at random. Therefore, there is no bias 
towards any search direction. In “rand/2/bin”, two differential 
vectors are added to the based vector instead of one. This 
strategy can generate more different trial vectors than 
“rand/1/bin”. “current-to-rand/1” uses the arithmetic crossover 
rather than the binomial crossover [25]. It is a rotation-
invariant strategy and suitable for rotated problems. Similarly, 
the control parameter settings have distinct features. [F=1.0, 
Cr=0.1] is suitable for dealing with separable problems. 
[F=1.0, Cr=0.9] is used to maintain the population diversity 
and to make the three strategies more powerful in global 
exploration. [F=0.8, Cr=0.2] encourages the exploitation of the 
three strategies in the search space and accelerates the 
convergence speed of the population. 

For each individual, the three strategies are used to create 
three trial vectors with control parameter settings randomly 
chosen from the parameter candidate pool. The best of the 
three trial vectors will enter the next generation if it is better 
than the individual. The experimental results reported in [12] 
show that CoDE is superior to a number of state-of-the-art DE 
algorithms when solving complex problems. 

III. CODE WITH QUEUEING SELECTION 
The selection operator of CoDE is based on simple 

competitions between individuals and their corresponding trial 
vectors (offspring). It is suitable for finding a single global 
optimum. However, on the other hand, it limits the capability 
of CoDE of tracing and maintaining multiple optima. To make 
CoDE an eligible multimodal algorithm, we introduce a 
queueing selection (QS) operator and integrate it into CoDE. 
The resulting algorithm is called CoDE-QS, which is detailed 
in the rest of this section. 

A. Queueing Selection 
The clearing procedure proposed by Pétrowski[7] is 

conducted before the selection operator. Individuals are 
divided into species according to their similarity. For each 
species, the clearing procedure preserves the fitness of the 
dominant individual (species seed) and resets the fitness of all 
other individuals to 0. In this way, the computational resource 

Trial vector generation strategy 1
rand/1/bin

Control parameter setting 1
F=1.0, Cr=0.1

Control parameter setting 2
F=1.0, Cr=0.9

Control parameter setting 3
F=0.8, Cr=0.2

Trial vector generation strategy 2
rand/2/bin

Trial vector generation strategy 3
current-to-rand/1

 
Fig. 1.  Illustration of combining trial vector generation strategies with
control parameter settings 
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is allocated to the dominant individual. This favors the 
maintenance of population diversity. However, note that the 
search ability of an EA owes much to the cooperation of 
individuals, the mechanism also weakens the local search 
ability. It is possible to generalize the clearing procedure by 
accepting  survivors in each species. The drawback is that it 
introduces an additional parameter . The proposed queueing 
selection operator is an adaptation of the clearing procedure 
that tries to eliminate the above problems. During the selection 
process, we maintain a species list. Each species is 
implemented as a queue of individuals. The procedure of 
queueing selection is as follows: 

Step 1. Create an empty list of species LS and a list of 
individuals LI. Append the individuals in the current 
population and their offspring (trial vectors) to LI. Sort LI 
in decreasing order according to the individuals’ fitness 
values.  

Step 2. Create a new species Qi. Pick the first individual X0 
from LI and append it to Qi. Go through the rest of LI. For 
each individual X in LI, calculate the distance d between 
X0 and X. If d is less than a threshold value 

, X is removed from LI and appended to Qi.  

Step 3. Append Qi to LS. 

Step 4. Repeat Step 2 and Step 3 until LI is empty. 

Step 5. Go through the list of species LS. For a nonempty 
species Qi, remove the individual Xh at the head and add 
Xh to the population of the next generation.  

Step 6. Repeat Step 5 until there are NP individuals selected. 

Fig. 2 illustrates the queueing selection process. Each 
rectangle represents a species. The circles filled with patterns 
are used to denote the individuals. The chain of arrow lines 
gives the directions of picking individuals. It successively 
picks individuals from the species instead of only extracting 
the species seeds. There are two advantages of queueing 
selection to solve multimodal problems. (1)Allow several 
individuals to survive in each species without introducing 
additional parameters. (2)Strike a balance between the ability 
for diversity maintenance and the ability for local search and 
fine-tuning. The population diversity is preserved by picking 
individuals from different species. Moreover, the quality of 
selected individuals is guaranteed by choosing top-ranking 
individuals in each species (note that individuals in each 
species have been arranged in order of decreasing fitness 
because of the sorting of LI in Step 1). 

B. CoDE with Queueing Selection 
The queueing selection is integrated with CoDE to make a 

competitive multimodal algorithm. The resulting algorithm is 
called CoDE-QS. For each individual in the population, CoDE-
QS generates three trial vectors using the three complementary 
strategies. Queueing selection is conducted after all the trial 
vectors have been generated. First, individuals in the current 
population and their corresponding trial vectors are added to LI. 
Then CoDE-QS goes through the queueing selection steps to 
obtain the population for the next generation. The pseudo of 
CoDE-QS is given in Algorithm 1. 

The complexity of generating trial vectors is O(D NP), 
where NP is the population size, D is the encoding length of 
individuals. The complexity of the selection process is 
composed of several parts. In step 1, sort the individuals in LI 
takes O(NPlogNP) time. The complexity of steps 2-4 can be 
estimated by the number of distance calculations, which is 
approximately O(D NP2). Lastly, steps 5-6 take O(NP) time. 
Therefore, the overall complexity of CoDE-QS is O(D NP2), 
which is similar to that of SDE, CDE and ShDE.  

IV. EXPERIMENTS 
In this section, we carry out experiments to investigate the 

performance of the proposed algorithm. Specially, CoDE-QS is 
tested on a recently proposed benchmark function set and 
compared with some state-of-the-art multimodal algorithms.  

Species  1 
(Q1)

Species  2
(Q2)

Species 3
(Q3)

Species n-1
(Qn-1)

Species  n
(Qn)

LS

 
 
Fig. 2.  Illustration of queueing selection. 
 

Algorithm 1 CoDE-QS 
1:  G=0; 
2:  Generate an initial population P0={X1, X2, …, XNP} by 
randomly sampling from the search space; 
3:  evaluate the fitness values of the individuals; 
4:  FEs=NP; 
5:  while FEs<MaxFEs do 
6:    UG= ; 
7:    for Xi in PG do 
8:     Use the three trial vector generation strategies, each 
with a control parameter setting randomly selected from 
the parameter candidate pool, to generate three trial 
vectors: Ui,1, Ui,2, Ui,3 
9:       evaluate the fitness values of the trial vectors; 
10:     FEs=FEs+3; 
11:     UG= UG {Ui,1, Ui,2, Ui,3}; 
12:   end for 
13:  Use queueing selection to obtain PG+1 from PG UG; 
14:   G=G+1; 
15: end while 
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A. Experimental Setup 
1) Test Functions 

The benchmark function set [26] for CEC’2013 
competition on niching methods is adopted in the experiment 
to compare the performance of different multimodal 
algorithms. The function set contains 12 multimodal functions 
with different characteristics. They are tabulated in table I. All 
the functions are formulated as maximization problems. F1-F8 
are well-known, widely used functions. In this subset, F1-F5 are 
non-scalable 1D or 2D multimodal functions. F6-F8 are 
scalable multimodal functions. The number of optima of F6 
and F7 is determined by the dimension D. F9-F12 are scalable, 
non-symmetric multimodal functions constructed by 
combining several basic functions. F9 and F10 are separable 
while F11 and F12 are not. More detailed descriptions of the 
multimodal functions can be found in [26].  

2) Algorithms Conpared and Parameter Settings 
CoDE-QS is compared with the following multimodal 

optimization algorithms: 

1) crowding DE (CDE) [5] 
2) fitness sharing DE (ShDE) [5] 
3) speciation-based DE (SDE) [15] 

4) fitness-Euclidean distance ratio PSO (FERPSO) [20] 
5) ring topology PSO (r2pso, r3pso)  [21] 
6) locally informed PSO (LIPS) [22] 

All the algorithms are implemented using C++ and 
executed on a computer with an Intel(R) Core(TM) i3-3240 
CPU and 4GB of memory. The parameters of the algorithms 
are set according to the corresponding papers. The default 
population size setting used in [26] is adopted. That is, the 
population sizes of the algorithms are fixed at 100 (NP=100). 
The settings of niche radius of SDE, ShDE, CoDE-QS are 
listed in the last column of table I. All algorithms terminate 
after reaching the maximum number of function evaluations 
(MaxFEs). The settings of MaxFEs for the test functions are 
given in table II. 

3) Performance Measures 
Two commonly used measures, peak ratio (PR) and 

success rate (SR), are adopted to evaluate the performance of 
the multimodal algorithms. PR is the percentage of 
successfully located optima. SR is the percentage of runs in 
which all optima are successfully located. To compute PR and 
SR, an accuracy level needs to be specified. If the difference 
from a computed solution to a known global optimum is below 
, the optimum is considered to have been found. For simple 

low dimensional function (F1-F8),  is set to 0.0001. For 
complex composition functions (F9-F12), is set to 0.1. After 
given the accuracy level, PR and SR are calculated according 
to (6) and (7) respectively.  

 1
NR

ii NPF
PR

NKP NR
==

⋅
  (6) 

 NSR
SR

NR
=   (7) 

where NPFi is the number of optima located in ith run. NKP is 
the total number of optima. In (7), NSR is the number of runs in 
which all optima are successfully located. NR is the number of 
runs. In the experiment, each algorithm is run 50 times for each 
test function (NR=50). 

B. Overall Performance 
The experimental results of the algorithms are tabulated in 

Table III. The best results are marked in boldface. From the 
table, it can be observed that CoDE-QS performs very well on 
most of the test functions in terms of both PR and SR. The 
performance of CoDE-QS comes from the search ability of 
CoDE and the ability of diversity maintenance of queueing 
selection. To demonstrate the CoDE-QS’s capability of 
locating multiple optima, we visualize the results on F6(2D) 
and F7(2D). F6 and F7 are functions with many optima. The 
global optima of F6 can be divided into nine groups. Each 
group contains two optima that are very close to each other. F7 
has peaks that are of different shapes and sizes. The peaks are 
spread unevenly over the search space. Fig. 3 shows the 
landscape of F6(2D) and F7(2D). They are very challenging 
multimodal problems. The final population of CoDE-QS is 
depicted in Fig. 4. It can be seen that CoDE-QS can not only 
locate all the global optima, but also local optima. For F7(2D), 
CoDE-QS also successfully locates all optima.  

TABLE I 
TEST FUNCTIONS 

Function Name Dim #global optima r 

F1 Five-Uneven-Peak Trap 1 2 0.01 

F2 Equal Maxima 1 5 0.01 

F3 
Uneven Decreasing 
Maxima 1 1 0.01 

F4 Himmelblau 2 4 0.01 

F5 Six-hump Camel Back 2 2 0.5 

F6 Shubert 2 18 0.5 

F7 Vincent 2 36 0.2 

F6 Shubert 3 81 0.5 

F7 Vincent 3 216 0.2 

F8 Modified Rastrigin 2 12 0.01 

F9 Composition Function 1 2 6 0.01 

F10 Composition Function 2 2 8 0.01 

F11 Composition Function 3 2 6 0.01 

F11 Composition Function 3 3 6 0.01 

F12 Composition Function 4 3 8 0.01 

F11 Composition Function 3 5 6 0.01 

F12 Composition Function 4 5 8 0.01 

F11 Composition Function 3 10 6 0.01 

F12 Composition Function 4 10 8 0.01 

F12 Composition Function 4 20 8 0.01 
 

TABLE II 
MAXFES USED FOR 3 RANGES OF TEST FUNCTIONS 

Range of functions MaxFEs 

F1 to F5 (1D or 2D) 5.00E+04 

F6 to F11 (2D) 2.00E+05 

F6 to F12 (3D or higher) 4.00E+05 
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C. Convergence Speed 
In this part, we compare the convergence speed of the 

algorithms. The convergence speed of an algorithm is 
measured by the number of function evaluations (FEs) required 
to locate all optima. To obtain statistically reliable results, the 
required FEs is averaged over NR runs: 

 1 .
NR

ii FEs
MeanFEs

NR
==   (8) 

In (8), FEsi denotes the number of FEs consumed in the ith run. 
If the algorithm cannot locate all optima by MaxFEs, then 
MaxFEs is counted as the required FEs. The accuracy level  is 

fixed at 0.0001 and NR is set to 50. Noting that CoDE-QS is 
the only algorithm that can obtain non-zero SR in most of the 
composition functions, we concentrate on F1-F8. The 
experimental results are tabulated in table IV. The convergence 
speed of CoDE-QS is not as good as that of CDE, rpso, and 
LIPS when dealing with low dimensional simple multimodal 
functions. The reason is the over consume of FEs for simple 
functions, since CoDE-QS generates three trial vectors for each 
individual. However, for complex functions with many optima, 
CoDE-QS is superior. Plots of the number of found optima 
versus FEs on F6 and F7 are presented in Fig. 5. It can be seen 
that CoDE-QS can locate more optima with fewer FEs. 

D. Effect of Population Size 
The setting of population size has an impact on the 

performance of population-based multimodal algorithms. 
Generally, a large number of optima requires a large 
population size. In this part, we investigate the effect of 
population size parameter. Experiments are conducted on 
functions with many optima. The accuracy level  is set to  
0.0001. For each algorithm, we record the average number of 
found optima over 50 independent runs when different 
population sizes are used. The experimental results are shown 
in Fig. 6. Compared with other algorithms, CoDE-QS is able to 
find a large number of optima with a relatively small number 
of individuals. This is because that the combination of 
generation strategies has widened the search range of each 
individual, and therefore lessens the required population size. 
Further, it is noteworthy that there is a wide range of settings in 
which CoDE-QS performs equally well. This property 
decreases the difficulty in choosing the suitable population size. 

V. CONCLUSION 
In this paper, we proposed a queueing selection (QS) 

operator to enhance EAs’ ability of locating multiple optima. 
QS is designed to preserve the population diversity, and at the 
same time facilitate the evolution of individuals. This is 

TABLE  III 
EXPERIMENTAL RESULTS ON CEC2013 TEST SUITE 

Alg. r2pso r3pso LIPS FERPSO CDE SDE ShDE CoDE-QS 
Function PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR 
F1(1D) 1.000  1.000  1.000  1.000  1.000  1.000 0.500 0.000 1.000 1.000 0.580 0.360  0.500  0.000 1.000 1.000 
F2(1D) 1.000  1.000  1.000  1.000  1.000  1.000 0.996 0.980 1.000 1.000 0.996 0.980  0.360  0.000 1.000 1.000 
F3(1D) 1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000 1.000 1.000 
F4(2D) 1.000  1.000  0.995  0.980  1.000  1.000 0.725 0.220 0.965 0.860 0.265 0.000  0.270  0.000 0.745 0.140 
F5(2D) 1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  0.520  0.040 0.770 0.580 
F6(2D) 0.604  0.000  0.729  0.000  0.732  0.000 0.326 0.000 0.177 0.000 0.489 0.000  0.000  0.000 1.000 1.000 
F7(2D) 0.416  0.000  0.360  0.000  0.492  0.000 0.169 0.000 0.710 0.000 0.202 0.000  0.029  0.000 1.000 1.000 
F6(3D) 0.011  0.000  0.118  0.000  0.203  0.000 0.060 0.000 0.541 0.000 0.072 0.000  0.000  0.000 1.000 1.000 
F7(3D) 0.070  0.000  0.094  0.000  0.123  0.000 0.024 0.000 0.271 0.000 0.025 0.000  0.004  0.000 0.463 0.000 
F8(2D) 0.962  0.580  0.952  0.460  0.990  0.880 0.623 0.000 1.000 1.000 0.437 0.000  0.032  0.000 1.000 1.000 
F9(2D) 0.767  0.080  0.710  0.020  0.860  0.180 0.420 0.000 0.937 0.680 0.170 0.000  0.110  0.000 1.000 1.000 
F10(2D) 0.663  0.000  0.703  0.020  0.860  0.200 0.250 0.000 0.310 0.000 0.135 0.000  0.085  0.000 0.278 0.000 
F11(2D) 0.667  0.000  0.640  0.000  0.680  0.000 0.440 0.000 0.760 0.140 0.170 0.000  0.057  0.000 0.990 0.940 
F11(3D) 0.473  0.000  0.593  0.000  0.653  0.000 0.317 0.000 0.693 0.000 0.163 0.000  0.020  0.000 1.000 1.000 
F12(3D) 0.183  0.000  0.273  0.000  0.415  0.000 0.083 0.000 0.673 0.000 0.090 0.000  0.093  0.000 1.000 1.000 
F11(5D) 0.010  0.000  0.077  0.000  0.200  0.000 0.143 0.000 0.700 0.020 0.063 0.000  0.067  0.000 1.000 1.000 
F12(5D) 0.003  0.000  0.063  0.000  0.195  0.000 0.010 0.000 0.723 0.420 0.005 0.000  0.050  0.000 0.773 0.740 

F11(10D) 0.000  0.000  0.000  0.000  0.037  0.000 0.003 0.000 0.523 0.060 0.000 0.000  0.167  0.000 1.000 1.000 
F12(10D) 0.000  0.000  0.000  0.000  0.003  0.000 0.003 0.000 0.000 0.000 0.000 0.000  0.125  0.000 0.125 0.000 
F12(20D) 0.000  0.000  0.000  0.000  0.003  0.000 0.000 0.000 0.063 0.060 0.000 0.000  0.125  0.000 1.000 1.000 

 

                             (a)                                                          (b) 
Fig. 3.  Landscape of F6(2D) and F7(2D). (a) F6(2D) (b) F7(2D) 
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                            (a)                                                          (b) 
Fig. 4. Final population of CoDE-QS on F6(2D) and F7(2D). (a) F6(2D) (b)
F7(2D) 
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achieved by picking top-ranking individuals from different 
species. QS is integrated with composite differential evolution 
(CoDE) to tackle multimodal problems. The resulting 
algorithm (called CoDE-QS) inherits the global search ability 
of CoDE and is capable of maintaining multiple good solutions. 
Experiments on CEC2013 test suite have been carried out to 
investigate the performance of CoDE-QS. Experimental results 
show that CoDE-QS is very competitive. For future research, it 
would be interesting to integrate QS to other EAs for 
multimodal optimization. In addition, like most niching EAs, 
CoDE-QS has its niching parameter, the niche radius. An 
important issue is to develop methods to adaptively determine 
the niching parameter. 
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Fig. 5.  Number of global optima found versus FEs.  (a) F6(3D)  (b) F7(3D) 
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Fig. 6.  Number of global optima found using different population sizes. (a)
F6(3D)  (b) F7(3D) 
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