
Abstract—Particle swarm optimization (PSO) is originally 
designed to solve continuous optimization problems. Recently, 
lots of improved PSO variants with different features have been 
proposed, such as Adaptive particle swarm optimization 
(APSO), Orthogonal Learning particle swarm optimization 
(OLPSO) and Comprehensive Learning particle swarm 
optimization (CLPSO). In order to find out whether these PSOs 
have any particular difficulties or preference and whether one 
of them would outperform the others on a majority of the tested 
problems, we analyze the performance of different PSOs on 
various tested problems. In this paper, we evaluate the 
performance of APSO, OLPSO, and CLPSO on more complex 
benchmark functions. The comparison is performed on a large 
amount of real-parameter optimization problems, including the 
CEC 2005 and the CEC 2014 benchmark functions. Finally, we 
find out that the OLPSO achieves higher solution quality than 
the other two PSOs on most problems based on the simulation 
results on benchmark functions. 
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Orthogonal Learning particle swarm optimization (OLPSO); 
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I. INTRODUCTION 
ARTICLE swarm optimization (PSO), which was 
introduced by Kennedy and Eberhart [1], is one of the 
most important swarm intelligence paradigms in 

Y.-F. Li, Z.-H. Zhan, and J. Zhang are with the Department of Computer 
Science, Sun Yat-Sen University, Guangzhou, 510275, China, with the 
School of Advanced Computing, Sun Yat-Sen University, Guangzhou, 
510275, China, with the Key Laboratory of Machine Intelligence and 
Advanced Computing (Sun Yat-sen University), Ministry of Education, 
China, with the Engineering Research Center of Supercomputing 
Engineering Software (Sun Yat-sen University), Ministry of Education, 
China, with the Key Laboratory of Software Technology, Education 
Department of Guangdong Province, China, and also with State Key 
Laboratory of Mathematical Engineering and Advanced Computing. Zhi-Hui 
Zhan is the corresponding author, email: zhanzhh@mail.sysu.edu.cn.  

Y. Lin is with the Department of Psychology, Sun Yat-Sen University, 
Guangzhou, 510275, China. 

This work was supported in part by the, in part by the National Natural 
Science Foundations of China (NSFC) with No. 61402545 and No. 
61309003, the Natural Science Foundations of Guangdong Province for 
Distinguished Young Scholars with No. 2014A030306038, the Project for 
Pearl River New Star in Science and Technology, Guangzhou, China, the 
Fundamental Research Funds for the Central Universities, the NSFC Key 
Program with No. 61332002, the NSFC for Distinguished Young Scholars 
with No. 61125205, the National High-Technology Research and 
Development Program (863 Program) of China No.2013AA01A212, and the 
Open Project Program of the State Key Lab of Mathematical Engineering and 
Advanced Computing. 

evolutionary computation community and has attracted more 
and more attention in recent years [2][3][4]. PSO was 
designed to imitate the interaction of the bird flocking and 
fish schooling, it works by utilizing a population of candidate 
solutions (called particles) searching in the search-space. The 
particles are guided by both the historical best position of 
their own (pbest) and the position of the best particle in the 
swarm (gbest). Because PSO is simple and as well as practical, 
researchers have found many applications of PSO in 
optimization problems, due to its easy implement [5][6][7]. 

However, as PSO is a population-based heuristic stochastic 
optimization algorithm, it may be time-consuming for 
obtaining satisfactory results. Moreover, when solving 
complex multimodal problems, the standard PSO algorithm 
may easily get trapped in local optima. Hence, accelerating 
convergence speed and avoiding the local optima have 
always been the two appealing goals with the development of 
the PSO [8]. Recently a large amount of efforts have been 
devoted to the improvement of PSO, and lots of improved 
PSO variants with different features have been proposed. 
Mendes et al. [9] proposed a Fully Informed Particle Swarm 
(FIPS) so as to solve single global optimization problems. In 
FIPS, all neighbors influence the fly of the particles. 
Integrated with five types of topology, complete graph, ring, 
four clusters, pyramid and square, FIPS is able to find the 
single global peek rapidly. In order to solve multimodal 
optimization problems, Qu et al. [10] proposed a 
distance-based Locally Informed Particle Swarm algorithm 
(LIPS), where each particle is informed by several of its 
nearest neighbors. Unlike FIPS, LIPS defines a particle’s 
neighbor using Euclidean distance. The experimental results 
in [10] verify the superiority and consistence of LIPS in 
multimodal optimization problems. To avoid the quick 
convergence of standard PSO, A. Muñoz et al. [11] 
introduced the singly-linked neighborhood structure and the 
perturbation of the particle’s best in their proposed 
Constrained Optimization via PSO (COPSO) algorithm. In 
[12],  A. Ochoa et al. proposed a model by combining data 
mining and evolutionary computation to  analyze the voting 
and predict the final ranking of the Eurovision Song Contest, 
and simulations showed that COPSO contributes competitive 
results to the prediction performance. Liang et al. [13] 
proposed the comprehensive learning PSO (CLPSO) to 
increases its ability to avoid local optima by using all other 
particles’ historical best information to update a particle’s 
velocity. Zhan et al. [8] developed a systematic parameter 
adaptation scheme by devising an elitist learning strategy 
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(ELS) and an evolutionary state estimation (ESE) technique 
to control parameters in their proposed Adaptive PSO 
(APSO). Moreover, Zhan et al. [14] introduces an orthogonal 
learning (OL) strategy for PSO to discover more useful 
information that lies in the particle’s own historical best 
experience and its neighborhood’s best experience via 
orthogonal experimental design, which comes up with the 
algorithm Orthogonal Learning PSO (OLPSO). 

Results show that these PSO algorithms have enhanced the 
performance of the PSO paradigm in terms of convergence 
speed, global optimality, solution accuracy, and algorithm 
reliability on conventional benchmark functions. 
Nevertheless, according to the theorem of “no free lunch” 
[15], one algorithm cannot fit every kind of problems 
perfectly. One algorithm may outperform the other one on 
unimodal functions, but fail on multimodal functions. In 
order to investigate the performance of CLPSO, APSO, and 
OLPSO on more complex benchmark problems, the three 
PSOs are used to solve the problems within the CEC 2005 
and CEC 2014 test suits. The reason for choosing these three 
algorithms is because they have quite different searching 
behaviors. This paper aims to analyze different improved 
PSOs’ performance on a large number of variant complex 
benchmark problems, and find out whether they have any 
particular difficulties or preference and whether one of them 
would outperform the others on a majority of the tested 
problems. The comparisons and discussion of these PSOs’ 
performance are presented in this paper. 

Overall, experimental evaluations show that all the tested 
algorithms yield potential characteristics on different 
problems, and the OLPSO performs best on most tested 
functions and reveals more robust compared to APSO and 
CLPSO.  

The rest of the paper is organized as follows. Section II 
introduces the three PSOs used in the study: APSO, OLPSO, 
and CLPSO. The experimental results of the CEC 2005 and 
the CEC 2014 are presented in Section III and Section IV 
respectively. Finally, conclusions are given in Section V. 

II. BACKGROUND

A. PSO 
PSO uses a swarm of particles to represent the potential 

solutions of the problem. Each particle i has a position vector 
Xi=[xi1, xi2,…, xiD], a velocity vector Vi=[vi1, vi2,…, viD], and a 
personal historical best position vector Pi=[pi1, pi2,…, piD], 
where D is the dimensions of the solution space. In the 
initialization, the position and vector are randomly set within 
the search space and maximal velocity space respectively. 
The personal historical best position vector Pi is set to Xi. By 
calculating the fitness values of all the particles, the best 
position vector of all the particles in the ith particle’s 
neighborhood is denoted as Pn=[pn1, pn2,…, pnD]. 

During the evolutionary process, the velocity vid and the 
position xid of the dth dimension of the ith particle are updated 
as follows: 

vid = ×vid + c1×r1d×(pid – xid) + c2×r2d×(pnd – xid)         (1) 
xid = xid + vid       (2) 

where w is the inertia weight, c1 and c2 are the acceleration 
coefficients, and r1d and r2d are the two independent random 
numbers uniformly distributed in the range of [0,1] for the dth 
dimension [1]. The Pi is the best position the ith particle has 
found so far and the Pn is the best previous position among a 
specified topology structure of the neighborhood. The w was 
first introduced by Shi and Eberhart [16], which decreases 
linearly from 0.9 to 0.4 during the evolution. 

Generally, there are two major variants of PSO algorithms 
depending on the topology [17]. The gbest model (GPSO) 
shares information among the whole swarm and the gbest is 
the best position among all the particles. The lbest model 
(LPSO), whose neighborhood is constructed with a small 
group of particles. The ring topology proposed in [18] is a 
well-known local topology. In the ring topology, each 
particle connects with only two of the other particles in the 
ring and only makes use of the information from the two 
particles while updating its own position. 

B. CLPSO 
The CLPSO was introduced by Liang et al. [13] to 

overcome the premature convergence by introducing a 
comprehensive learning (CL) strategy. The CL strategy 
enables the diversity of the swarm. In CLPSO, the particles 
choose different pbest values of different particles to update 
the velocity of different dimensions as: 

vid = ×vid + c×rd×(pf(i)d – xid)                    (3) 
where  is the inertia weight as in (1), c is the accelerate 
coefficient fixed to be 1.49445, and rd is a random value 
from 0 to 1. The f(i) is the particle index that used to guide the 
flying of the dth dimemsion, which can be any particle 
including the particle i itself. 

In order to find the f(i) for each dimension, CLPSO firstly 
generates a random number r, then compare r with Pci, which 
is a probability to control learn from self or others. If r is 
smaller than Pci, then this dimension learns from others, 
otherwise learns from itself. When learning from others, 
CLPSO chooses two particles from the other particles and 
selects the one with better fitness as f(i). If all the exemplars 
come from the particle i itself, randomly choose a dimension 
to learn from another particle. A particle will keep learning 
from its exemplars until it can not improve the solution 
quality for several generations which is called the refreshing 
gap m, then the new learning exemplars will be chosen again. 

C. APSO 
In order to control the performance of PSO more 

objectively and effectively, Zhan et al. [8] introduced an 
evolutionary state estimation (ESE) technique to reflect the 
population and fitness diversity in their proposed adaptive 
PSO (APSO). In consideration of the fact that particles may 
disperse in different areas in the early stages and gather 
together to a locally or globally optimal area as the 
evolutionary process goes on, Zhan et al. [8] investigate the 
population distribution information in a PSO process and use 
ESE to the determine the evolutionary state for each 
generation. 

With the evolutionary state information, the inertia weight 
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 value is adaptively mapped to the search environment so as 
to balance the local and global search capabilities efficiently. 
Moreover, the acceleration coefficients c1 and c2 are adjusted 
according to the exploration state, exploitation state, 
convergence state, and jumping-out state adaptively. 

Besides, in the APSO, an elitist learning strategy (ELS) is 
developed for the global leader gBest to improve itself when 
the algorithm is in convergence state. The ELS operation was 
designed to help the global leader gBest push itself out to a 
potentially promising region. The ELS randomly choose one 
dimension, then generate a new particle by mutating the 
gBest’s historical best position on the selected dimension. If 
the new particle is better than the gBest, then it will replace 
gBest, otherwise, it will replace the worst particle in the 
swarm. 

D. OLPSO 
In order to improve the learning strategy of PSO when 

searching in complex problem spaces, Zhan et al. [14] 
adjusted the conventional PSO by introducing a novel 
orthogonal experimental design (OED) mechanism in 
position learning in their proposed Orthogonal Learning 
Particle Swarm Optimization (OLPSO). In OLPSO, the 
traditional PSO learning mechanism is replaced by an 
Orthogonal learning (OL) strategy, which constructs an 
efficient and promising exemplar for a particle to learn from. 
  Without loss of generality, by using OED, each dimension is 
regarded as a factor. By this means, OLPSO combines 
information of the particle’s historical best experience Pi and 
its neighborhood’s best experience Pn to construct a guidance 
vector Po=[po1, po2,…, poD]. Then the ith particle’s velocity 
can be updated by: 

vid = ×vid + c×rd×(pod – xid)                       (4) 
where  is the inertia weight as in (1), c is the accelerate 
coefficient fixed to be 2.0, and rd is a random value from 0 
to 1. The pod stands for pid or pnd according to the construct 
result of OED. That is, pod just points to pid or pnd but is not the 
real exemplar. 
  In every generation, each particle i updates its own velocity 
and position with this promising and effective learning 
exemplar Po. The Po will be used as the exemplar for particle i 
until it cannot improve the solution quality for a certain 
number of generations which is called reconstruction gap G. 
  The OL operator can be implemented to PSO with any 
topological structures. As the results in [14] show that 
OLPSO based on local version PSO with ring topology can 
contribute to faster convergence speed and achieve promising 
solutions on both unimodal and multimodal problems, we 
adopt such OLPSO variant in this paper. 

III. COMPARISONS STUDY ON CEC 2005
The CEC 2005 test functions which are proposed as 

real-parameter optimization problems and include shifted and 
rotated test functions are selected in this study. The tested 
functions of CEC 2005 can be found at [19]. All the 25 
functions are tested with these three PSOs in this study. The 
test functions can be divided into two groups, unimodal and 
multimodal functions. The definition of the first 12 functions 

is based on some well-known classical benchmark functions 
(Sphere, Schwefel, Rosenbrock, Rastrigin, etc.). Among 
these 12 functions, F1 to F5 are unimodal while F6 to F12 are 
multi-modal. Moreover, F13 and F14 are expanded functions, 
F15 to F25 are the hybrid composition of several functions. For 
all the functions, the local optima is shifted to a non zero 
value to avoid exploitation of symmetry of the search space. 

In this study, to make a fair comparison among the PSO 
algorithms, in all our experiments, dimension D is 30 and the 
number of total function evaluations (FEs) is assigned to be 
3×105. According to the original references, the number of 
particles is set to 20 for APSO while is set to 40 for CLPSO 
and OLPSO. In APSO, the accelerations coefficients c1 and c2 
are both initialized to 2.0 and adaptively controlled according 
to the evolutionary states. The accelerations coefficient c is 
set as 1.49445 for CLPSO and 2.0 for OLPSO, which is kept 
unchanged along the whole procedure. The inertia w is 
initialized to 0.9 at the beginning for the three PSOs, then 
linearly decreases to 0.4 at the end of the stage according to (3) 
for CLPSO and OLPSO while is adaptively adjusts for APSO. 
The refreshing gap m is set at 7 in CLPSO. The reconstruction 
gap G in OLPSO set to 5. 

The APSO updates positions as (1) and (2). The CLPSO 
updates by (3). The OLPSO updates by (4). All the 
experiments are carried out in the same computer with Intel 
Pentium (R) Dual 2.40GHz CPU, 3.00GB memory, and a 
Win7 x32 operation system. To make the results more 
convincing, the algorithm is run for 30 independent times and 
the results of every run are recorded. 

The results of CEC 2005 test functions for APSO, OLPSO, 
and CLPSO are shown in Table I. Error values (F(x)-F(x*)) 
are calculated as described in [19] and used to measure the 
performance. The best results on each function among these 
three algorithms are highlighted in boldface and the worst 
results are underlined. Fig. 1 plots the convergence 
progresses of the PSOs on some CEC 2005 test functions. 

The simulations show that OLPSO performs best on most 
test functions. For the very simple unimodal function F1 
(Shifted Sphere function) and the multimodal function F9 
(Shifted Rastrigin’s function with huge local optima number), 
OLPSO provides error values with the highest quality 
(0.00E+00). The experimental results also show that OLPSO 
outperforms the other two PSOs on all rotated hybrid 
composition functions (F16 to F25). This may benefit from the 
capacity of OL strategy in avoiding local optima and the 
ability of local version of PSO (because the OLPSO is based 
on the local version PSO) in preventing premature 
convergence to obtain the global optimum robustly. 

The APSO shows significant advantages on unimodal 
functions except F5 (the Schwefel’s Problem 2.6 with Global 
Optimum on Bounds). F5 is non-separable and scalable, if the 
initialization procedure initializes the population at the 
bounds, it will be solved easily [19]. In addition, APSO also 
performs best on some basic multimodal functions (F6, F7, F8, 
F12, and F13). However, the experimental results show that 
APSO almost performs worst on hybrid composition 
functions when comparing with OLPSO and CLPSO. In 
hybrid composition functions, different function’s properties 

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 02:03:39 UTC from IEEE Xplore.  Restrictions apply. 



are mixed together [19]. All of them have a huge number of 
local optima, and some of them are rotated or with noise. This 
makes them extremely complex functions. Hence, as Fig. 1(e) 
and Fig. 1(f) show, the faster convergence speed may affect 
the performance of APSO, resulting in early premature. 

The CL strategy in CLPSO was designed to focus on 
maintaining the diversity of the swarm to obtain better 

performance on multimodal problems. However, the 
disadvantage is the slow convergence on unimodal problems 
[13]. As Fig. 1 shows, the CLPSO converges most slowly 
among the three PSOs. Nevertheless, the ability of 
maintaining the population diversity helps it achieve similar 
performance on some complex hybrid composition functions 
as well as the OLPSO. 

TABLE I.  RESULTS OF APSO, OLPSO, AND CLPSO ON CEC 2005 BENCHMARK PROBLEMS 

Functions 
APSO OLPSO CLPSO

MEAN STD RANK MEAN STD RANK MEAN STD RANK 
F1 7.01E-14 2.45E-14 3 0.00E+00 0.00E+00 1 5.68E-14 0.00E+00 2 
F2 9.97E-13 1.79E-12 1 1.50E+01 1.23E+01 2 8.79E+02 1.79E+02 3 
F3 3.96E+05 1.59E+05 1 1.46E+07 5.33E+06 2 1.67E+07 4.66E+06 3 
F4 7.23E+01 6.02E+01 1 2.26E+03 9.70E+02 2 6.61E+03 1.14E+03 3 
F5 5.85E+03 1.45E+03 3 3.28E+03 5.54E+02 1 3.86E+03 5.32E+02 2 
F6 6.94E+00 1.68E+01 1 2.63E+01 2.50E+01 3 5.10E+00 5.43E+00 2 
F7 4.70E+03 2.34E-04 1 4.70E+03 1.61E-12 1 4.70E+03 6.78E-12 1 
F8 2.00E+01 2.97E-02 1 2.09E+01 6.90E-02 2 2.09E+01 5.46E-02 2 
F9 1.48E-13 5.90E-14 2 0.00E+00 0.00E+00 1 1.08E-11 1.02E-11 3 
F10 1.50E+02 6.25E+01 3 1.10E+02 3.12E+01 1 1.14E+02 1.50E+01 2 
F11 2.78E+01 3.16E+00 3 2.55E+01 2.95E+00 1 2.70E+01 1.71E+00 2 
F12 1.27E+04 1.70E+04 1 1.33E+04 6.95E+03 2 2.81E+04 6.59E+03 3 
F13 1.54E+00 4.05E-01 1 1.92E+00 3.28E-01 3 1.66E+00 5.68E-01 2 
F14 1.30E+01 5.24E-01 2 1.31E+01 2.57E-01 3 1.29E+01 1.72E-01 1 
F15 3.48E+02 1.50E+02 3 2.50E+02 9.21E+01 2 1.06E+02 5.34E+01 1 
F16 3.22E+02 1.41E+02 3 1.32E+02 3.74E+01 1 1.88E+02 3.11E+01 2 
F17 3.12E+02 1.32E+02 3 1.89E+02 3.25E+01 1 2.40E+02 3.89E+01 2 
F18 9.45E+02 2.19E+01 3 9.10E+02 1.82E+00 1 9.12E+02 1.35E+00 2 
F19 9.45E+02 5.63E+01 3 9.07E+02 2.03E+01 1 9.13E+02 1.12E+00 2 
F20 9.36E+02 4.18E+01 3 9.07E+02 2.03E+01 1 9.13E+02 1.28E+00 2 
F21 7.66E+02 3.23E+02 3 5.00E+02 2.86E-13 1 5.00E+02 4.14E-13 1 
F22 1.02E+03 5.65E+01 3 9.43E+02 1.35E+01 1 9.63E+02 1.36E+01 2 
F23 9.11E+02 3.04E+02 3 5.34E+02 3.59E-04 1 5.34E+02 1.39E-04 1 
F24 3.45E+02 3.76E+02 3 2.00E+02 2.89E-14 1 2.00E+02 6.19E-13 1 
F25 1.70E+03 1.74E+01 3 1.64E+03 5.59E+00 1 1.65E+03 3.77E+00 2 

AVE. Rank 2.28 1.48 1.96 
Final Rank 3 1 2 
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Fig. 1.  Mean error curves for selected CEC 2005 benchmark problems 
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IV. COMPARISONS STUDY ON CEC 2014
Since the main focus of this paper is to compare the 

performance of APSO, OLPSO, and CLPSO in solving 
various complex functions, in order to examine whether one 
of them would outperform the others on a majority of the 
problems, we use a rather large number of benchmark 
problems from the CEC 2014. This test suit contains 30 
benchmark functions that can be transformed into dynamic, 
niching composition, computationally expensive and many 
other classes. Therefore, they can evaluate the tested 
algorithms’ characteristics on various problems. More details 
and analysis for the CEC 2014 Test Functions can be found at 
[20]. The 30 test functions can be divided into 4 groups, 
Unimodal Functions (F1 to F3), Simple Multimodal Functions 
(F4 to F16), Hybrid Function (F17 to F22) and Composition 
Functions (F23 to F30). 

The results of CEC 2014 test functions for APSO, OLPSO, 
and CLPSO are listed in Tables II. Error values (F(x)-F(x*)) 
are calculated as described in [20] and used to measure the 
performance of the algorithms. The best results on each 
function among these three algorithms are highlighted in bold 
and the worse results are underlined. In addition, Fig. 2 
graphically presents the comparison in terms of convergence 
characteristics of the evolutionary processes on several 
selected problems. 

The simulations show that the performance of APSO is 
outstanding in comparison to the other two algorithms on all 
the three unimodal functions. APSO solves the Shifted and 
Rotated Rosenbrock’s Function (F4) better than OLPSO and 
CLPSO. F4 has a very narrow valley from local optimum to 
global optimum, Fig. 2(b) shows that the APSO indeed jumps 
out of local optimal regions and achieves very good 
performance, mainly due to the help of ELS. F17 and F22 are 
hybrid functions constructed by some basic functions 
including F1. Moreover, F1 holds the largest percentage 
among all the subcomponents for these two functions. Benefit 
from the good performance on F1 and also on other 
subcomponents, APSO shows advantages on F17 and F21 too. 
The composition function merges the properties of the 
sub-functions better and the local optimum which has the 
smallest bias value determines the global optimum [20]. 
Since the hybrid function F17 is also a basic function with the 
smallest bias for F29, it decides more properties and influence 
than the other subcomponents and leads to the good 
performance of APSO on F29. 

As discussed in [14], the global version of OLPSO 
outperforms the local one on both accuracy and speed for the 
very simple unimodal functions but the local one is better for 
final solution accuracy for multimodal functions, this may 
explains why the local version of OLPSO used in this study 
does not show significant advantages on the three unimodal 

TABLE II.  RESULTS OF APSO, OLPSO, AND CLPSO ON CEC 2014 BENCHMARK PROBLEMS 

Functions 
APSO OLPSO CLPSO

MEAN STD RANK MEAN STD RANK MEAN STD RANK
F1 1.38E+05 9.59E+04 1 6.12E+06 3.58E+06 2 9.41E+06 3.02E+06 3 
F2 4.34E-03 1.02E-02 1 1.28E+03 1.48E+03 3 2.76E+02 6.84E+02 2
F3 2.61E+02 4.10E+02 1 3.23E+02 5.69E+02 2 3.24E+02 2.79E+02 3 
F4 6.85E+00 2.03E+01 1 8.64E+01 2.22E+01 3 8.07E+01 1.58E+01 2
F5 2.00E+01 1.88E-04 1 2.03E+01 1.28E-01 2 2.05E+01 4.95E-02 3 
F6 1.58E+01 3.53E+00 3 5.09E+00 1.48E+00 1 1.43E+01 1.38E+00 2
F7 1.73E-02 2.08E-02 3 1.02E-13 3.47E-14 1 6.68E-05 5.86E-05 2
F8 8.86E-12 4.67E-11 2 0.00E+00 0.00E+00 1 3.95E-11 5.48E-11 3 
F9 9.13E+01 2.46E+01 3 4.06E+01 7.02E+00 1 6.11E+01 7.92E+00 2
F10 7.92E-01 8.25E-01 2 8.72E-02 2.04E-01 1 3.13E+00 1.52E+00 3 
F11 2.74E+03 5.37E+02 2 2.28E+03 4.66E+02 1 2.87E+03 2.73E+02 3 
F12 1.95E-01 7.17E-02 1 2.28E-01 6.38E-02 2 5.38E-01 7.21E-02 3 
F13 4.33E-01 9.22E-02 3 2.59E-01 3.20E-02 1 3.32E-01 3.46E-02 2
F14 3.23E-01 1.10E-01 3 2.41E-01 2.66E-02 1 2.78E-01 2.98E-02 2
F15 2.96E+01 4.03E+00 3 6.67E+00 1.62E+00 1 8.62E+00 1.09E+00 2
F16 1.05E+01 8.21E-01 1 1.17E+01 5.48E-01 3 1.06E+01 3.80E-01 2
F17 3.19E+04 2.14E+04 1 7.98E+05 4.13E+05 2 8.59E+05 3.58E+05 3 
F18 3.73E+03 5.23E+03 3 3.58E+02 5.12E+02 2 1.69E+02 5.85E+01 1 
F19 1.41E+01 1.84E+01 3 6.13E+00 8.20E-01 1 8.35E+00 8.04E-01 2
F20 6.38E+03 4.86E+03 3 5.58E+03 4.01E+03 2 3.26E+03 1.70E+03 1 
F21 2.16E+04 1.31E+04 1 1.07E+05 8.33E+04 3 8.08E+04 3.99E+04 2
F22 6.50E+02 2.42E+02 3 2.20E+02 1.07E+02 2 1.75E+02 7.77E+01 1 
F23 3.15E+02 1.15E-12 1 3.15E+02 1.23E-10 1 3.15E+02 4.86E-05 1 
F24 2.29E+02 4.73E+00 3 2.24E+02 5.47E-01 1 2.25E+02 1.29E+00 2
F25 2.16E+02 5.81E+00 3 2.09E+02 1.75E+00 2 2.08E+02 1.19E+00 1 
F26 1.58E+02 6.05E+01 3 1.00E+02 4.44E-02 1 1.00E+02 7.35E-02 1 
F27 6.84E+02 2.11E+02 3 3.26E+02 3.80E+01 1 4.17E+02 5.24E+00 2
F28 2.53E+03 8.16E+02 3 8.73E+02 2.97E+01 1 8.98E+02 5.32E+01 2
F29 1.24E+03 5.02E+02 1 1.36E+03 2.82E+02 3 1.29E+03 1.69E+02 2
F30 2.50E+03 6.63E+02 2 2.39E+03 5.99E+02 1 3.63E+03 1.00E+03 3 

AVE. Rank 2.13 1.63 2.1 
Final Rank 3 1 2 
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functions. However, as the problem becomes more complex, 
the efficiency of the OL strategy can bring about improved 
performance of the OLPSO. For example, for the Shifted 
Rastrigin’s Function (F8) with huge number of local optima, 
OLPSO has reliably found the minimum and reaches the 
0.00E+00 error values. When solving problems that the local 
optima’s number are huge and second better local optimum is 
far from the global optimum like F10 and F11, by means of 
fully utilizing useful information of the learning exemplars, 
OLPSO yields the best performance among the three PSOs. 
Moreover, owing to the OL’s ability of the constructing 
potential and efficient exemplars, the results also shows that 
though affected by the shift and rotation, OLPSO still 
performs better than the other two algorithms on most simple 
multimodal functions. This good performance of OLPSO is 
also observed on hybrid functions F18, F19, F22, and most 
composition functions. 

Although the results show that the CLPSO does not have 
significant advantages on the Unimodal Functions and the 

Simple Multimodal Functions in comparing with APSO and 
OLPSO, CLPSO achieves the best or second best results on 
all the Hybrid Functions and the Composition Functions 
except F17. As previously mentioned, F17 has certain 
concerned with F1. As Fig. 2(a) and Fig. 2(e) show, owing to 
the slow convergence of CLPSO on unimodal problems like 
F1, the CLPSO fails on F17, so does OLPSO. The composition 
functions with complex asymmetrical landscapes are 
designed to merge the properties of the sub-functions better 
and maintain continuity around the global/local optima [20]. 
Solving these problems requires the algorithms to maintain 
the population diversity and avoid the prematurity. Since the 
CL strategy can effectively utilize all other particles’ 
historical best information, it may be attractive to combine the 
CLPSO with some local search method to solve the 
real-world problems with fitness landscape we do not 
frequently know. Moreover, Fig. 2(d) shows that maintaining 
the population diversity is helpful for multimodal problems. 

Fig. 2.  Mean error curves for selected CEC 2014 benchmark problems 
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V. CONCLUSION 
In this paper, the performance of APSO, OLPSO, and 

CLPSO are compared on a large amount of complex 
benchmark problems. All the problems are shifted or rotated, 
and most of them are both shifted and rotated. Due to the 
simple concept and learning strategy of the traditional PSO, 
all these three improved PSOs are easy to understand and 
implement too. From the experiments and analysis, we can 
observe that the OLPSO yields the best performance in 
comparison to the other algorithms tested. Although the 
OLPSO may not be better than APSO at solving unimodal 
problems, the OL strategy can indeed make use of the 
information in swarm more effectively to generate better 
quality solutions frequently on complex multimodal 
problems. By effectively adjust the parameters, the novel 
APSO shows advantages on several benchmark problems, 
however, as the problems becomes more complex, the higher 
convergence speed APSO offers may degrade its 
performance and leads to the failure on composition problems. 
Moreover, CLPSO also shows potential performance on 
some extremely complex problems as well as OLPSO. 

For details of the data, please contact the corresponding 
author Zhi-Hui Zhan (zhanzhh@mail.sysu.edu.cn) or visit 
the website: http://www.ai.sysu.edu.cn/zhanzhh.  
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