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Human detection is a significant and challenging task with applications in various
domains. In real-time systems, the speed of detection is crucial to the performance of
system, while the accuracy is also taken into consideration. In this work, a human
detection approach based on Histograms of Oriented Gradients (HOG) feature and
differential evolution (DE), termed as HOG-SVM-DE, is proposed to achieve both fast
and accurate detection. The proposed method considers the problem of locating an
objective detection window as a search problem, and speeds up the detection stage by
solving the search problemwith DE. DE is chosen as the optimizer as it is characterized by
fast and global convergence. The proposed system trains only one linear-SVM, and allows
tradeoffs between the detection rate and the detection time to satisfy different applica-
tions by simply tuning one parameter. Experiments are conducted on a set of images from
the INRIA Person Dataset, and the results validate that the proposed HOG-SVM-DE is
promising in terms of both speed and accuracy.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Human detection is a significant and challenging task
in computer vision. With the increased popularity of
computer vision in areas such as video surveillance, smart
vehicles, robotics, and ubiquitous system, technologies of
human detection have drawn much research attention.

In many real-time applications, the detection of human is
required to be both fast and accurate. The task is difficult
since pedestrians are usually with various appearances,
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postures and backgrounds. There are mainly two directions
for the development on human detection, i.e. feature and
classifier. Methods such as Haar Wavelet features [1], Implicit
Shape Models [2], edge templates [3], Adaptive Contour
Features [4,5], and Histogram of Oriented Gradients (HOG)
[6] have been proposed for extracting features. On the other
hand, classifiers for human detection mainly include Support
Vector Machines (SVM) [6–9] and cascade-structured boost-
ing-based classifiers [10,11]. For methods that adopt SVM,
there is a preference for linear SVM because it achieves
higher speed and reduces the problem of overfitting com-
pared with the non-linear SVM kernels [6].

Among the feature extraction methods, the Histograms of
Oriented Gradients (HOG) proposed by Dalal and Triggs [6] is
widely used for human detection for its robustness and fast
speed. Working together with linear SVM, the HOG features
are extracted in sliding window fashion for human detection
in an image. The HOG-SVM approach scans the whole image
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in a sliding window in order to locate the objective detection
windows. However, the time efficiency of the scanning
strategy hardly satisfies the requirement of real-time appli-
cations for although the HOG feature extraction is faster than
many counterparts. Later on, Zhu et al. [12] speed up the
method by constructing cascade-of-rejectors with AdaBoost
algorithm. Although their method performed favorably in
terms of detection time, the training process is much time-
consuming. An et al. [13] suggested using a particle swarm
optimizer (PSO) for locating the detection window, but the
enhanced speed is at the cost of accuracy. To compute the
HOG features more efficiently, in the work of Pang et al. [14],
the HOG-SVM based human detection was accelerated by
reusing the features in blocks and cell-based interpolation.
Furthermore, the Dominant Orientation Templates (DOT)
[15,16] which is based on the idea of HOG is proposed to
enhance the speed.

In this work, a human detection approach termed HOG-
SVMwith differential evolution (HOG-SVM-DE) is proposed.
Aiming at both fast detection and training cost minimiza-
tion, the proposed method focuses on locating an objective
detection window quickly and accurately at real-time. To
fulfill the task, the evolutionary computation technology
differential evolution (DE) is applied instead of scanning the
detection windows in sliding fashion. The DE is a simple
and efficient population-based search algorithm proposed
by Storn and Price [17,18] for global optimization. Charac-
terized by its fast and global convergence, the algorithm has
been successfully applied to various real-world applications
in diverse domains [19,20]. In our proposed method, the DE
algorithmworks at the real-time detection stage and solves
the non-linear search problem of locating the objective
detection window. Individuals in DE are defined as detec-
tion windows on the image, and the fitness of individuals is
assigned according to the output of HOG-SVM for the
corresponding detection window.

The proposed method has following features:
�
 The proposed HOG-SVM-DE provides an approach for
fast detection at real time, and at the same time
requires minimum off-line training. Only a single linear
SVM is required to be trained.
�
 A human detection framework based on solving the
human detection problem as a search problem is
suggested. In the proposed method, the feature extrac-
tion method and classifier are relatively independent of
the search algorithm. Although HOG feature and linear
SVM are adopted in this work, other developments of
both feature extraction approaches and classifiers
might be applied to the proposed framework.
Examples are the simple graph-based method proposed in
[21], the adaptive hypergraph learning method proposed
in [22], and the multimodal features and classifiers like the
multiview sparse learning methods [23] and the high-
order multiview distance learning based classifier [24].
Besides, the information-reusing strategy in [14] can be
utilized in the proposed framework to accelerate the
computing of HOG features.
�

Fig. 1. Architecture of HOG-SVM based human detection.
The proposed algorithm is tunable, which means that the
balance between the successful rate and the execution
time can be adjusted by simply changing a parameter. In
this way, the method can satisfy the requirement of
different applications with little modification.

The remainder of this paper is organized as follows.
Section 2 introduces the framework of HOG-SVM based
human detection and the search problem defined in the
framework. Section 3 describes the proposed HOG-SVM-
DE in detail. In Section 4, the proposed algorithm is
simulated in a set of experiments and the results are
discussed. Finally, Section 5 concludes the paper.
2. HOG-SVM based human detection as a search problem

Characterized by relatively fast computation and favor-
able performance, the HOG-based human detection and its
variants are widely used for human detection. A typical
framework of the method is presented in Fig. 1, where the
three modules of the system, i.e. HOG feature extraction,
classifier training, and detection module are illustrated.
This framework is explained as follows.

There are two stages in the human detection system in
Fig. 1, i.e. off-line training stage and online detection stage.
The training stage works only once, whereas the online
detection stage works every time when a real-time image
arrives for detection.

The procedure of HOG feature extraction is employed in
both the training stage and the detection stage. Proposed
by Dalal and Triggs [6], the technique extracts a feature set
from a detection window. The extraction process is based
on evaluating well-normalized local histograms of image
gradient orientations in a dense grid.

In the off-line training stage, a classifier, typically linear
SVM, is trained for human/non-human classification on a
single detection window. For the training of classifier, a
number of labelled sample images are fed to the HOG
feature extraction module. The HOG features are then
extracted and used to train the classifier.

In the online detection stage, real-time images arrive
for human detection. The detection module is responsible
for finding out the objective windows containing human
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image from numerous possible detection windows. One
way of locating the objective window is scanning the
whole image in a sliding fashion. In this process, to judge
whether or not a window is the objective window, the HOG
feature of the window is extracted and fed to the classifier
trained in the off-line training stage.

In the detection stage introduced above, finding the
objective windows from possible detection windows can
be viewed as a time-consuming search problem. There are
numerous possible detection windows in an image with
different positions and sizes, and judging a window means
calling the HOG-SVM procedure. Thus searching for the
objective windows requires much computational effort.

The problem of finding the objective detection window
containing human image can be formulated as follows. For
a detection window (px, py, winsize) on an image, px and
py define the positions, i.e. the distances from the upper
left of detection window to the left edge and the top edge
of the image, respectively. The winsize represents the size
of detection window.

In the detection stage, after the extraction of HOG
features on detection window (px, py, winsize) and feeding
the features to the trained SVM classifier, the output of the
SVM classifier is presented in

f Output ¼HOG_SVMðpx; py;winsizeÞ�θ ð1Þ

where the constant θ is a pre-defined threshold, which is
usually set to 0. It is expected that a detection window
with positive value of fOutput rightly contains a human.
Besides, a detection windows with larger value of fOutput is
more likely to be the objective window.

In Fig. 2 the landscape of the HOG-SVM output function
in (1) on a sample image is presented, with each position
on the contour graph representing a detection window,
and the color representing different values of fOutput. Here
px and py are corresponding to the x- and y-axis, respec-
tively, whereas winsize is fixed to be the standard size for
simplicity. It is observed that the area with maximum
Fig. 2. An example of the landscape of the HOG-SVM output function. (a) Origi
the point with maximum value of HOG-SVM output function in (b). (b) Contou
The parameter winsize in (1) is fixed to be the standard size to make the land
the graph.
value of fOutput on the function landscape is corresponding
to the region containing a human object on the image,
which is the same as our expectation.

Given Eq. (1) and Fig. 2, it can be concluded that finding
the detection window containing a human object can be
converted to the problem of finding a detection window
(px, py, winsize) satisfying f Output40. In the case of single
human detection, a detection window that maximizes the
value of fOutput would be preferred.

In this work, we would focus on the online detection
module by solving the search problem with consideration
of time efficiency.
3. HOG-SVM-DE

3.1. Overall method

In this work, the proposed architecture of HOG-SVM-
based human detection is similar to Fig. 1, with an emphasis
on the online detection module. As explained in Section 2,
the online detection module of the HOG-SVM-based human
detection system can be viewed as a search problem. Since
computing the objective function, i.e. HOG-SVM output
function, is the most time-consuming part of the module,
the efficiency of the search algorithm would be crucial in
real-time applications that demand fast detection.

For fast detection based on HOG-SVM, our method
adopts the DE algorithm to solve the search problem in
the online detection module. DE is a population-based
meta-heuristic search algorithm for global optimization
[17,18]. Similar to other population-based optimization
algorithms like particle swarm optimization [25] and ant
colony optimization [26], DE approximates the global best
solution of a search problem by executing an evolutionary
process iteratively. Characterized by its fast and global
convergence, the DE algorithms have been applied in
many fields for their fast and global convergence on many
optimization problems.
nal image. The rectangle containing human image is in the same position as
r graph for the landscape of HOG-SVM output function for the image in (a).
scape illustratable. The region with maximum function value is marked on
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Instead of traversing the whole search space, the DE
algorithm maintains a population of 3-dimensional vectors
representing detection windows in the search space. In each
generation, the population reproduces new solutions by
learning from the difference of other individuals. When a
new detection window is generated, the result of HOG-SVM
output function is computed and assigned to the individual
as fitness value. In each generation, detection windows with
better fitness values are more likely to survive. After several
generations, the population would be evolved and the best-
so-far solution would be reported.

The overall method of the proposed detection system is
summarized in Table 1. Details of the proposed method
would be explained in the rest of this section.

3.2. Feature extraction

For a detection window from an image, the following
steps are taken to obtain the HOG feature:
(1)
Tab
Bas

S

T

D

A simple 1-D [�1, 0, 1] gradient filter is applied to the
detection window. Specifically, if the detection win-
dow is not the standard size of 64�128, bilinear
interpolation is used to resize the image before the
gradient filter. The gradient vectors for color images
are obtained by computing separate gradients for each
channel and taking the one with largest L2-norm.
(2)
 The window is divided into cells of 8�8 pixels, and
each group of 2�2 cells are considered as a block.
Blocks are in a sliding fashion. Over each cell, the 9-bin
histogram for edge orientation is constructed by each
pixel voting for the histogram. In this way, there are 4
cells of 9 bins histogram in each block.
(3)
 The HOG feature vector consists of histograms extracted
from 7�15=105 blocks and each block is a
36-dimensional feature vector in a sliding fashion. To
obtain the overall feature set of the window, the feature
vector for each block is normalized using L2-norm.
Totally, the final feature set would be a vector of
7�15�4�9¼3780 features.
Fig. 3. Basic flow of the HOG feature extraction.
The flowchart of HOG feature extraction is summarized
in Fig. 3. The detailed implementation of HOG can be
referred to [6].

3.3. Search algorithm

In this work, DE is adopted as the search algorithm
in the online detection module. The DE algorithms sea-
rch iteratively for a global optimum with a population
le 1
ic flow of HOG-SVM-DE human detection system.

tage Steps

raining
stage

Step 1: Extract HOG features from positive and negative train
Step 2: Train a linear SVM with extracted features.

etection
stage

Step 1: Input real-time image for detection.
Step 2: Search for the objective detection window with DE. T
window is an objective window.
Step 3: Report the results.
of individuals, each represented by a vector x¼ ½xgi;1; x
g
i;2;…;

xgi;D�; i¼ 1;2;…; popsize, where D denotes the dimension of
the search space, g is the number of iteration, and popsize
is the size of population.

The basic flow of DE is illustrated in Fig. 4. After the
initialization of population, in each iteration the indivi-
duals of DE undergo an evolutionary process which con-
sists of the reproduction and selection operators. In the
reproduction operation, the mutation operator produces
mutants by learning from the differences between indivi-
duals, and the crossover operator combines mutants with
original individuals. In the selection operation, the repro-
duced individuals with better values of fitness function are
more likely to survive to the next iteration. The algorithm
terminates when a pre-defined criterion is satisfied, e.g.
the maximum number of function evaluations is reached.

The details of applying DE to the detection module
would be explained in the rest of this section.
3.3.1. Coding of solution
Each individual in the proposed algorithm defines a

detection window. For the i-th individual in the g-th
generation in DE, the solution vector ðx1; x2; x3Þ is corre-
sponding to the triplet (px, py, winsize) introduced in
Section 2. Here px and py define the positions of window
on the image, and winsize defines the size of window. In
the proposed method, on an image with a size W � H, a
window in the position ðX;YÞ and with a size Hw=2� Hw
is coded into ½px;py;winsize�, where px¼ X=W ; py¼ Y=W
ing samples.

he SVM trained in training stage is used for the judging whether a



Fig. 4. Flowchart of DE.
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and winsize¼Hw=128. Note that both px and py are
normalized to be within the range ½0;1�. The parameter
winsize can be explained as the ratio between the window
size and the standard size 64�128. Since windows with
height smaller than 32 pixels or larger than H are not
suitable for detection, we set the feasible range for winsize
to be ½0:25;H=128�.

3.3.2. Definition of fitness
For the fitness function of DE, the HOG-SVM output

function given in (1) can be used directly. Each time the
algorithm evaluates a new solution, the extraction of HOG
feature is executed at runtime, and the results are fed to a
trained linear SVM. Output that is larger than the pre-
defined threshold gives a positive value of the function,
which means that the objective region is found. In this
sense, during the search process, individuals with larger
fitness value should be more desired.

3.3.3. Evolutionary process
The DE algorithm for the search problem in human

detection has the same framework of traditional DE. At the
beginning of the algorithm, the j-th variable of the i-th
individual is initialized as

x0i;j ¼ xmin;jþrandnumð0;1Þ � ðxmax;j�xmin;jÞ ð2Þ

where 1r jr3, xmin;j and xmax;j are the lower and the
upper bound defined in Section 3.3.1, and randnum(0,1) is
a random number on the range [0,1].
After initialization, the algorithm enters an evolution-
ary process composed of mutation, crossover, evaluation
and selection operations iteratively.

Mutation: The mutation operator is applied to generate
a mutant vi

g
based on each individual xi

g
, where g is the

number of generations. The generation of mutant is based
on a base individual learning from the difference of other
individuals. Depending on the choice of base individual
and the individuals to learn from, there are several
different mutation strategies. In this work, we adopt the
DE/target-to-best/1, which can be expressed as

vgi ¼ xgi þF � ðxgbest�xgi ÞþF � ðxgr1�xgr2Þ ð3Þ

where the indices r 1 and r 2 are distinct integers randomly
generated within the range ½1; popsize� excluding the integer
i, xbest

g
denotes the individual with the best-so-far fitness. The

coefficient F is a positive parameter for controlling the effect
of the differences. Here DE/target-to-best/1 is selected
because the strategy draws individuals to the best-so-far
individual and at the same time learns from the differences
from other individuals.

Crossover: The crossover operator exchanges a number
of variables of the mutant vi

g
with the xi

g
to reproduce a

candidate ui
g

for the next generation. The process is
controlled by a parameter CR, which can be expressed as

ug
i;j ¼

vgi;j if randnumð0;1ÞrCR or j¼ jrnd

xgi;j otherwise

8<
: ð4Þ

where jrnd is an integer randomly generated from the
range [1, 3] for guaranteeing that at least one variable is
changed, and randnumð0;1Þ is a randomly generated real
number within the range [0,1]. The parameter CR is the
crossover probability which controls the probability for
variables to be inherited from the mutant.

Selection: After the evaluation of the trial vectors, the
selection operation is finally performed to decide whether
the reproduced trial vectors can survive to the next
generation. For the search problem addressed in this work,
a trial vector survives if its fitness is better than the
corresponding vector, which can be expressed as

xgþ1
i ¼

ug
i if f ðug

i ÞZ f ðxgi Þ
xgi otherwise

(
ð5Þ

where f(x) is the fitness function defined in Section 3.3.2.

3.3.4. Termination criterion
The DE algorithm terminates when a pre-defined criter-

ion is satisfied. In this work, the termination criterion is
defined by a parameter FEmax, which denotes the maximum
number of function evaluations (FEs). Since the computation
of HOG-SVM output function is the most time-consuming
part of the proposed method, the FEmax is directly related to
the detection time.

3.3.5. Computational complexity
As introduced above, the most time-consuming part of

HOG-SVM-DE is the evaluation of HOG-SVM output function.
Compared with time consumption in the extraction of 3780
features, the time consumption of evolutionary operations in
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DE would be trivial. The DE algorithm terminates after FEmax

evaluations of HOG-SVM output function. Here the FEmax is
set by the user. The time consumption of HOG-SVM-DE
depends on the setting of FEmax. However, it is unwise to
reduce the value of FEmax to a minimum, for large values of
FEmax are excepted to allow more thorough search, and
consequently promise better solution.

Since DE is a metaheuristic algorithm and the algo-
rithm behavior is not known a priori, it is hard to discuss
the effect of FEmax without experiments. In Fig. 5 an
example is presented to show different values of FEmax

and the corresponding objective window found by the
proposed HOG-SVM-DE. The number of possible detection
windows in the image is defined to be 2400. It is observed
that the proposed HOG-SVM-DE checked only about 200
detection windows to find the objective window, which is
more than 10 times faster than scanning these detection
windows one by one. The improvement is significant,
although the HOG-SVM-DE algorithm cannot promise the
same results in every single run.

In this work, we would conduct experiments on more
test images to further investigate the effect of FEmax

in Section 4.

4. Experiments and discussions

4.1. Experimental setup

To study the performance of the proposed algorithm,
experiments are conducted on two datasets of images. For
the training stage of linear SVM, both positive and negative
Fig. 5. HOG-SVM-DE running for 30, 60, 100,
samples are from the INRIA Person Dataset [27]. For
experiments on the detection stage, two set of images,
denoted as Dataset1 and Dataset2, are used. Dataset1
includes 150 positive images and 150 negative ones from
the INRIA dataset, all of the images are 320. For Dataset2,
we collected positive images larger than 640�480 from
internet, and all of the images collected are with large areas
of background. It is supposed that these images are more
difficult for locating the objective window. The negative
images are background images with high resolution from
the NICTA Dataset [28]. Examples of positive and negative
images from Dataset2 are presented in Fig. 6. All human
objects on the images are with height larger than 32 pixels.

The proposed HOG-SVM-DE is compared to both the
conventional dense grid and the Gaussian PSO approach
in [13]. The setting of parameters in DE and PSO are as
follows. For DE, the factor F and the crossover rate CR are
set to F¼0.5 and CR¼0.9, and the population size popsize
is set to 30. For Gaussian PSO, the population size is set to
20. All of the three algorithms stop immediately when a
human is detected in the image or the FEs exceed FEmax.

All of the experiments are implemented under the
environment of Intel Duo Core CPU@2.6 GHz, Visual studio
2010, Windows 7. The OpenCV functions are used for
optimized implementation of HOG feature extraction.

4.2. Results and discussions

Experimental results are presented in Table 2, where the
average execution time and detection rate are reported.
Here the detection rate is defined as the percentage of
and 200 evaluations on a sample image.



Table 2
Experimental results for dense grid searching algorithm, HOG-SVM-PSO
and HOG-SVM-DE.

Data Algorithm s l FEs_max Detection
rate (%)

Exe. time
(ms)

Dataset1 DenseGrid 8 8 / 97 1882
Dataset1 HOG-SVM-

PSO
/ / 400 80 189

Dataset1 HOG-SVM-
DE

/ / 400 84 165

Dataset1 DenseGrid 16 4 / 69 296
Dataset2 DenseGrid 8 8 / 91 5673
Dataset2 HOG-SVM-

PSO
/ / 600 73 311

Dataset2 HOG-SVM-
DE

/ / 600 83 265

Dataset2 DenseGrid 16 4 / 47 449
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images that are correctly labelled by the algorithm. The
column FEmax denotes the maximum number of function
evaluation for the PSO and the DE algorithm, and the
columns s and l represent the step size for the position of
sliding window and the number of different sizes in the
traditional dense grid method, respectively.

It is observed from Table 2 that the proposed HOG-SVM-
DE and the PSO approach in [12] consumes less than 200 ms
on Dataset1, and less than 350 ms on Dataset2, while the
traditional dense grid consumes much more time for s¼8,
l¼8. Although the detection rates of HOG-SVM-DE and the
PSO approach are less than that of the dense grid scanning,
the two algorithms are acceptable for real-time applications
for the advantage on computation time.

Note that when using the parameter set s¼16 and l¼4,
the execution time of the dense grid method decreased to
296 ms for Dataset1 and 449 ms for Dataset2, but the
detection rate of the dense grid method dropped drasti-
cally. Since the number of detection windows scanned has
decreased, the drop of both execution time and detection
rate is natural. In this case, the proposed HOG-SVM-DE still
has significant advantage over the dense grid method in
terms of detection rate.

When compared with the HOG-SVM-PSO, the proposed
HOG-SVM-DE has shown advantage in both detection rate
and execution time on the two datasets. The advantage is
significant on Dataset2, where images with high resolution
and large background are collected. In Fig. 7, cases where
HOG-SVM-PSO failed and HOG-SVM-DE succeeded are
presented. Both of the two cases are images with large
areas of background and only one people, which requires
efficient search algorithm to locate the objective detection
window. On these cases, the proposed HOG-SVM-DE out-
performed the PSO method, which is possibly resulted
from the fast and global convergence of DE.

4.3. Parameter analysis

Generally, for the dense grid scanning method, the
parameters s and l are directly associated with the time
Fig. 6. Sample images from Dataset2. (a) P
complexity and the detection rate of the algorithm. The
number of windows scanned on average is in proportion to
W=s� H=s� l, where W and H are the height and the
width of the image, respectively. As verified in Table 2,
using 2s and (1/2)l would consequently decrease the
execution time to about 1/8, but a sharp drop of accuracy
would occur.

On the other hand, it is difficult to discuss the effect of
different parameter settings in the proposed HOG-SVM-DE
analytically, for DE is a meta-heuristic algorithm and the
behavior is not known a priori.

Instead of analytical discussion, we investigate the
relation between the maximum function evaluations, i.e.
FEmax and the detection rate based on experiments. Here
the maximum function evaluations are associated with the
time consumption of HOG-SVM-DE, and the detection rate
measures the successful rate of the algorithm. The results
for HOG-SVM-DE running for a maximum of 400, 600,
800, and 1000 FEmax are reported in Table 3. It is observed
that the relationship between the FEmax and the execution
time is almost linear, while the relationship between FEmax

and detection rate is like a convex curve. Based on these
ositive images. (b) Negative images.



Fig. 7. Detection results for dense grid scanning, HOG-SVM-PSO and HOG-SVM-DE on two sample images.

Table 3
Experimental results for HOG-SVM-DE with different maximum numbers
of FEs.

Dataset FEs Detection rate Execution time (ms)

Dataset1 400 84 165
Dataset1 600 86 248
Dataset1 800 91 312
Dataset1 1000 92 409
Dataset2 400 76 177
Dataset2 600 83 265
Dataset2 800 85 332
Dataset2 1000 86 423
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results, a maximum of 400 and 600 FEs are recommended
for Dataset1 and Dataset2, respectively.

Given the empirical studies, the balance between
detection rate and execution time of HOG-SVM-DE can
be tuned with different settings of maximum FEs to satisfy
different applications.

5. Conclusions

In this work, a fast human detection approach based on
HOG-SVM with differential evolution (HOG-SVM-DE) is
proposed. The proposed method applied the evolutionary
computation technology differential evolution (DE) to
locate the objective detection window. The DE algorithm
works at the real-time detection stage and solves the non-
linear search problem of locating the objective detection
window. Individuals in DE are defined as detection win-
dows on the image, and the fitness of individuals is
assigned according to the output of HOG-SVM for the
corresponding detection window. Experimental results ver-
ified that the proposed method is promising by achieving
both favorable time efficiency and acceptable detection rate.

Future work would include extending the proposed
algorithm to detect multiple people by using a multimodal
DE algorithm. Besides, information-reusing strategies
would be adopted in the proposed frame work to accel-
erate the computing of HOG feature. Applications on
human tracking would also be considered.
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