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Abstract—The tightly restricted resource in wireless sensors 
networks (WSN) makes it challenging to schedule the task 
assignment for better performance. Binary particle swarm 
optimizers (BPSO) along with its modified version 
(MBPSO) have shown promising performance to this 
problem, but premature convergence remains a key issue. 
To improve performance of BPSO for task assigning in 
WSN, this paper first develops various extended BPSOs by 
using different topologies and the comprehensive learning 
strategy. An integrated comparison among these candidate 
approaches and the MBPSO is carried out. In addition, the 
choice of transfer function highly affects the global 
optimizing ability of BPSO. Thus the significance of 
transfer functions with different shapes adopted in BPSO 
is discussed. Through sufficient simulations and analysis, it 
is found that the BPSO with the comprehensive learning 
strategy and a V-shaped transfer function is very 
promising, especially toward large-scale problems. 

Keywords-particle swarm optimization, wireless sensor 
networks, combinatorial optimization 

I. INTRODUCTION

The computing capability and energy storage of sensors are 
usually limited in wireless sensor networks. Meanwhile, there 
are some computationally intense processing tasks that require 
more computing ability and energy that exceed the capability 
of a sole sensor node [1]. So we have to decompose tasks into 
smaller sub-tasks that can be executed in a single sensor node. 
Sub-tasks are then assigned to sensor nodes and processed in 

sensor nodes. Such in-network processing schemes are 
considerably efficient [2].  

The isomerism of node capability leads to the discrepancy 
of the overall WSN performance of different task assigning 
scheme. Sequentially, finding the task assigning scheme with 
the optimal performance is a problem worth deep researching. 
Our aim is to obtain longer WSN lifetime, smaller overall 
energy consumption and better energy consumption balance.
The three parts composes the fitness function that defines a 
good task assigning scheme.  

Recent studies have been focusing on the utilization of 
stochastic meta-heuristic approaches like particle swarm 
optimization (PSO) to the problem. PSO is a meta-heuristic 
algorithm with excellent characters [3]. PSO can be easily 
implemented into real-world applications. PSO has manifested 
its dominance in various WSN problems [4]. As the problem is 
discrete, researches tried to apply the binary version of PSO 
(BPSO) to it and gained ideal performance [5]. Jun Yang 
proposed a modified binary particle swarm optimization 
(MBPSO) with a transfer function differs from that of the 
original version of BPSO [6]. Toward the task assigning issue, 
MBPSO is capable of outperforming BPSO and genetic 
algorithm (GA) in finding the global optimum. 

BPSO approaches are advantageous and promising toward 
the task assigning problem in WSN. Nevertheless, there are 
still some aspects that are badly in need of further study. The 
drawback of premature remains to be fixed. As the transfer 
function in BPSO plays an essential role and it strongly affect 
the algorithm performance, the issue of transfer function choice 
and how it influences the algorithm performance needs to be 
researched and analyzed in depth. 

Aimed at the above-mentioned issues, various kinds of 
modified BPSO approaches toward the task assigning problem 
in WSN are proposed in this work. Three binary versions of 
local PSO based on different topology structures are developed. 
Moreover, a BPSO with the comprehensive learning strategy 
(BCLPSO) is proposed. They are all applied to the problem to 
further improve the particle diversity of BPSO, and so as to 
avoid local optima. We also propose using V-shaped functions 
instead of S-shaped ones in BPSO as transfer functions. 
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Comparisons between the two forms of transfer functions are 
carried out, and based on this, analysis of the effectiveness of 
transfer functions is given. 

In our experiments, it is manifested that the proposed 
BCLPSO algorithm with the V-shaped function is very 
promising. The global searching ability of BCLPSO is greatly 
improved by the comprehensive learning strategy and the V-
shaped function. This approach is especially advantageous to 
large-scale problems. As wireless sensor networks are 
comparably large today, the superiority of BCLPSO is apparent. 

The remainder of this paper is structured as follows. In the 
next section, the problem definition is given. Basic concepts of 
BPSO algorithm, the neighborhood topology of local BPSO 
and the comprehensive learning strategy are introduced in 
Section 3. Section 4 introduces S-shaped transfer functions 
and V-Shaped functions in details and a comparison is made. 
Simulations are carried out in Section 5, where analysis and 
review are also given. And finally, the conclusion is drawn in 
Section 6. 

II. PROBLEM DEFINITION
The problem definition follows [6], and here the outline is 

given. 

A.  Modeling Tasks 
A directed acyclic graph (DAG) notation is used to present 

series of tasks that compose a WSN application. For each of 
the task, workload of computing and communicating are used 
as featuring components. In a given DAG that represent the 
series of tasks, the node vector { : 1,2,... }iW W i m� � represents 
all the tasks to be processed. Directed edges in DAG denote 
the executing sequence. That is, the task attached to the front 
of an arrow shall not be processed until the one attached to the 
rear of the same arrow is done. 

B. Modeling WSN Networks 
A weighted undirected graph notation is introduced here to 

represent wireless sensor networks. Each sensor node is 
denoted by a graphic node with three components, i.e., the 
computing speed v , the rate of work e and the initial energy 
storage initE . The weight of each edge in the graph denotes the 
distance between the two related sensor nodes. 

C. Specification of Fitness Function 
The fitness function consists of three components: the 

overall task processing time, the overall energy consumption 
and the energy distribution. Definitions of these three factors 
in fitness function are given respectively. 

1) Overall task processing time 
Tasks are decomposed into sub-tasks and then assigned to 

a bunch of sensor nodes. We use ijW to represent the sub-task 
of task iW  that assigned to the sensor node j. ijT  is the time 
consumed by ijW , which consists of two parts: p

ijT  the 
computational time consumption and m

ijT the communication 
time consumption. Formula for p

ijT  is given as follows: 

                                        /p p
ij ij jT W v�                          (1) 

Here jv  is the computing speed of node j. As for c
ijT , the 

formula is shown in (2). 

                          /c qu
ij ij ijT dl bw T� �                          (2) 

In (2), ijdl  is the data amount of sub-task ijW  while bw

stands for the bandwidth. qu
ijT  is the queuing time caused by 

the limited bandwidth. Combining formula (1) and (2), the 
time consumption of sub-task ijW is acquired by (3): 

           c p
ij ij ijT T T� �              (3) 

Sequentially the overall time consumption for a WSN 
application is the accumulation of all the ijT , which is 
illustrated in (4) . 
                                          ijT T��                            (4) 

2) Overall Energy Consumption 
Energy consumption is composed by two parts i.e., the 

computational energy consumption pE and the communication 
energy consumption cE . p

ijE is determined by the product of a
sensor node’s rate of work je and the correlative computing 
time consumption p

ijT . A popular communication energy 
model is introduced in [7] to modify the energy consumption 
of inter-node data exchange. For the communication energy 
consumption c

ijE , there are two standalone parts: the data 
sending part and data receiving part, denoted by (5) and (6) 
respectively. 

                                 
2( )s

ij elec amp ijE e dist dl�� � � �                     (5) 
                r

ij elec ijE e dl� �                                 (6) 

elecE and amp�  are parameters that specified by the radio 
characteristics of sensor nodes. And here we have: 

                 
c s r
ij ij ijE E E� �             (7) 

Therefore, we conclude the energy consumption of task i
on node j  as : 

                                           
p c

ij ij ijE E E� �                                  (8) 
And finally the energy consumption is given as: 

                                            ijE E��                                     (9) 
3) Energy Distribution 

The energy distribution shows the balance of energy 
consumption among sensor nodes, thus a standard deviation 
measurement is introduced to evaluate the proportionality. The 
formal expression of energy distribution is given by formula 
(10) where ( )jEva E  is the average energy consumption of all 
sensor nodes. 

               2

1

1 ( ( ))
n

j j
j

SD E Eva E
n �

� ��
                       

(10) 

D. Constraints in the Problem of Task Assigning in WSN 
As a real-world application problem, our issue is 

constrained by two factors: the number of chosen nodes 
should not be smaller than the minimum number of needed 
nodes to fulfill the task, and the chosen nodes should be 
connected with each other to ensure the data exchange among 
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nodes. The definition of these two constraints follows what’s
given in [6]. We need to confirm that the chosen nodes in the 
WSN are in the same connected graph, either by straight links 
or by multi-hop links. This can be done by a depth-first-search 
operation or by the Theorem 1 in [6].

E. Formulation of Fitness Function 
Evaluation of fitness function for a certain solution X  is 

given as follows: 
1 2 3( )Fitness X w T w E w SD� � � � � �            (11) 

In formula (11), T, E and SD are normalized by being 
divided by the values under the circumstance of the maximum 
task workload and the lowest processing speed. And 

1 2 3, ,w w w are the weight coefficients, where 1,( 1,2,3)iw i� �� , 
(0,1)iw � . Therefore, our aim is to find the optimal X with the 

minimal ( )Fitness X . 

III. BINARY PARTICLE SWARM OPTIMIZERS 

A. The Local Version BPSO 
In PSO algorithms, particles cooperate with each other as a 

collective and fly to the optimal position together [3]. The idea 
of local PSO is to force particles to learn from the local best 
position in its neighbors rather than from the global best one. 
This helps to slow down the communication among particles 
and keeps their diversity. With this modification, the updating 
of particle velocities is altered into formula (12), where j

ilbest
refers to the dimension j of the best position in the 
neighborhood of particle i . The neighborhood is like Fig.1(a). 

           1 1 2( ) ( )j j j j j j j j
i i i i i i iV V c r pbest X c r lbest X	
 � � � � (12) 

In ring topology BPSO, particles are organized as a ring, 
and the neighborhood for each particle includes three 
individuals, i.e., the one before it, the one behind it and the 
particle itself. Fig. 1(b) illustrated an example neighborhood of 
RBPSO. 

The random neighborhood topology is self-evident. Fig. 
1(c) gives a simple model of a random neighborhood of 4 
particles including the particle itself. Particles connected by 
full lines are currently in a neighborhood, and particles 
connected by dotted lines may be a neighborhood in the next 
iteration. The number of particles in a neighborhood is
constant, while we randomly decide which particles to 
conform a neighborhood in iterations during the whole run [8]. 

For von Neumann structure neighborhood topology, there 
are four other individuals in one particle’s neighborhood 
excluding itself, and particles are tied together and form 
square grids as shown in Fig. 1(d). For each of the particle, its 
neighbors are the one above it, the one below it, the one on the 
left side and the one on the right side. 

B. Mutation in Local BPSO 
Mutation operation is a technique applied in genetic 

algorithms, which can be utilized in PSO to maintain particle 
diversity. It is an effective way to avoid local optimum. Here a 
mutation operator is introduced to the local versions of BPSO. 
The mutating formula is given by (13).

                            

1 if  j
j i

i j
i

x rand muRate
x

x otherwise
� � �� �
�

                   (13)

In (13), rand is a randomly generated number within [0,1] 
and muRate  is the predefined mutation rate that describe the 
probability of executing the mutation. 
Procedure MBCLPSO: 
01 randomly initialize X and V of all particles; 
02 set parameters; 
03 set 

if , gbest , pbest , Iteration=0; 
04 for Iteration=0..MaxIteration: 
05     renew w according to (13); 
06     for each particle: 
07         if iflag Lg� : 
08             renewFi() ;
09             0;iflag �
10         end if; 
11         for each dimension d: 
12             renew d

iV  according to (16); 

13             renew d
iX  according to (17) and (18); 

14         end for; 
15         if fitness(Xi)>fitness( ipbest ):
16             ipbest =Xi; 
17             0;iflag �

18         if fitness(Xi)>fitness( gbest ):
19             gbest =Xi; 
20         else: 
21             1;i iflag flag� �

22         end if; 
23         end for; 
24     end for; 
25 output; 
End procedure; 

Figure 2. Pseudo-code of MBCLPSO 

C.  The Comprehensive Learning Strategy  
In traditional PSO, the particle with the optimal fitness 

may not be optimal in some dimensions. A large amount of 
useful information is deserted when particles learn from the 
global optimum gbest . Liang developed a version of PSO 
called the comprehensive learning PSO where particles learn 
from all the pbestsinstead of gbest or solely their own pbest .
The diversity of particles is ensured and premature is 
prevented by this modification. CLPSO outperforms a lot 
other variants of PSO in many multi-modal problems. The 
velocity updating for CLPSO follows formula (14).

Figure 1. Different topology of local BPSO

(a) (b)

(d)(c)
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               ( )( )j j j j j
i i i fi j iV V c rand pbest X	� � � � � �            (14) 

In (14), [ (1), (2),... ( )]i i i if f f f D� denotes which particle’s 
pbest  the thi  particle should learning from. When one 

dimension of a particle is being updated, if a randomly 
generated value is smaller than the pre-configured iPc , we 
stochastically choose two particles excluding itself, and run a 
tournament selection between them to choose the one with 
better fitness value. Afterwards, the particle renew this 
dimension of its velocity by learning from the identical 
dimension of the chosen particle velocity. Or if the random 
value is greater than iPc , the particle simply learn from its 
own pbest  when renewing this dimension. If all the 
dimensions of a particle are learned from itself, a random 
dimension is chosen to learning from another random particle. 
The contents of if  are not renewed at each iteration. Instead, 
the learning gap Lg determines that if  will be updated every
other Lg iterations that without getting a better fitness value[9].
By using the comprehensive learning strategy, we developed 
the algorithm of BCLPSO, which is concluded into the 
flowchart in Fig. 2. In Fig. 2, iflag records the number of 
iterations without renewing ipbest  for particle i , and Lg  is 
the refreshing gap defining the rate of updating if .

IV. TRANSFER FUNCTION 
As the guidance of position renewing, the shape of the 

transfer function strongly effect the algorithm performance. In 
the original version of BPSO, a sigmoid function as in (15) is 
employed and the position updating is (16).

                                

1( )
1 exp( )

j
i j

i

S V
v

�
� �

                              (15) 

                               

1 0 if  ( )
1

j
j i

i
rand S v

X
otherwise

� � �� �
�

                      (16) 

( )j
iS V  denotes the probability of converting a bit of the 

position to 1 and rand  is a randomly generated value. Both of 
these values are within the range [0,1]. 

As the algorithm goes on, velocities converge to 0, making 
)( 1

,
�d
jiVS  converge to 0.5, which means the converting becomes 

completely random. This feature tends to slow down the 
convergence of the whole swarm. Furthermore, the already 
obtained good positions are easily forgotten when using 
formula (16) as the position updating formula. This tends to 
weaken the global optimizing ability of BPSO. 

There are some other candidate S-shaped functions given 
in TABLE I as S1, S2 and S3 that might be employed as the 
transfer function in BPSO. On the other hand, the V-shaped 
function family takes a totally different form of function 
image, which is given in TABLE I as V1, V2 and V3. When 
velocities of particles are input to transfer functions, and the 
outputs are regarded as the position converting probability, V-
shaped functions well conform to the fact that velocities and 
the probability of position reversing converge to zero 
simultaneously. 

In [6], a modified BPSO for task assigning in WSN is 
illustrated. The V-shaped transfer function they used is V1 in 
TABLE.I. The works in [6] also made an improvement to the 
position updating formula as in (17). This improvement 
enables particles to stay where they are when the evolution is 
about to end. The memory of former obtained good positions 
is kept, helping the particle swarm to converge faster. 

                     

1

0 if  ( ) and  0
1 if  ( ) and  0

if  ( )

j j
i i

j j j
i i i

j j
i i

rand T V V
X rand T V V

X rand T V

�

� � �
� � ��
 ��

(17) 

Yet there are a lot other S-shaped and V-shaped functions 
with different characteristics, which may be even more 
suitable for the task assigning issue in WSN. We employ all 
functions in TABLE I to find the optimal transfer function for 
BPSO in the application of task assigning issue of WSN. 
When developing algorithms using V-shaped functions, the 
position updating formula of (17) is utilized. 

TABLE I. The S-shaped and V-shaped functions 

Name Function formula

S1 ( ) 1/ (1 exp( ))T x x� � �

S2 ( ) 1/ (1 exp( 2 ))T x x� � �

S3 ( ) 1/ (1 exp( / 2))T x x� � �

V1
1 2 / (1 exp( )) if  0

( )
2 / (1 exp( )) 1 else

x x
T x

x
� � � ��

� � � � ��

V2
2( ) arctan( )T x x

x
�

�
� �

V3 ( ) tanh( )T x x�

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Particle Coding and Basic Configuration 
To fit in for the application problem, a particle is denoted 

as a two-dimensional binary matrix. The element ijb in the i-th 
row and the j-th column is either 1 or 0, meaning whether 
node j is chosen for task i . All particles are randomly 
initialized at first, so they may fail to meet the constraints. We
continually use the formula of (18) to repair them. In (18), iX

is one whole row in a particle, ( )randint d  generates d  integers 
valued 1 or 0, Col is the total number of columns in a particle, 
and ( )sg y  is 1 if 0y �  or 0 otherwise. 

                               ( ( ))i iX = sg X +randint Col                       (18) 
During the run of BPSO, there may be some particles that 

don’t satisfy the constraints. All these defective particles are 
repaired after each iteration. The encoding of particles makes 
each row of a particle represent a task allocating scheme for 
one task. Thus when one row of a particle does not satisfy the 
constraints, it is replaced by the identical row from the best-
ever position of the swarm. 
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For a valid and fair comparison, the simulation 

environment setting is identical to [6]. The value of elece  is set 
as 50 /nJ b  and amp�  is 10 2/ /pJ b m . The maximum transfer 
range is 100 m. The processing velocity of sensor nodes are 
within [30,100] MCPS while the rate of work is constrained to 
[4,10] mW . For each task, computational load is randomly 
initialized in [300,600] KCC and the communication load is 
set to be between 500 and 800 bytes. Upper limit of 

computational load is 40 KCC and communication load is 50 
bytes. The scale of problems is confirmed by the number of 
sensor nodes and the number of tasks, as they confirm the 
shape of the solution space. In our simulation, four typical 
problems scales are considered as in TABLE II. 

As for parameter configuration of all the BPSO, values or 
formulations are given in TABLE III, where Lg is for 
BCLPSO only. The Pc setting follows (19). The three 
proposed versions of local PSO and BCLPSO are developed 
for the task assigning issue in WSN. And the MBPSO from [6]
is developed for comparison. All simulations are carried out in 
MATLAB with 30 runs. 

                             

10( 1)
1

10

0.45 ( 1)0.05
1

i
ps

i
ePc

e

�
�� �

� �
�                    

(19) 

In order to compare the performance of different BPSO to 
the problem and analyze the characters and factors that cause 
the discrepancy, MBPSO, BCLPSO and the three topological 
BPSO are developed. In RBPSO, particles conform a closed 
cycle. Then the size of neighborhood is 3. The neighborhood 
size of ABPSO is set as 4. Hence there will randomly be 3 
other particles in one particle’s neighborhood. It’s evident that 
the neighborhood size of VBPSO is 4. For a reasonable 
comparison, all the BPSO take the identical transfer function 
V1. The mutation rate is set as 0.02 in MBPSO and all local 
BPSO. Aimed at the problems with different scales,
convergence characters of BPSOs are illustrated in Fig. 3. 

TABLE II. Problem scale setting

Mark Sensor number Task number
P1 30 6
P2 40 15
P3 50 20
P4 60 30

TABLE III. Algorithm parameter configuration
Parameter name Value/formula

Lg 7
c 1.49445
c1 2
c2 2

Max inertia weight 0.9
Min inertia weight 0.4

Velocity range [-6,6]
Max iteration 10000
Swarm size 50

muRate 0.02

 

Figure 3. Performance of BPSOs in WSN task assigning. 

 (b) Performance on P2 (a) Performance on P1 

(d) Performance on P4 (c) Performance on P3 

(a) Performance on P1 (b) Performance on P2

(c) Performance on P3 (d) Performance on P4
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It is seen from Fig. 3 that the three proposed local BPSO 
and BCLPSO are all effective for the problem, among which 
BCLPSO is the most promising one. In P1, where the problem 
scale is comparably small, MBPSO performs best, yet the 
superiority is not quite obvious against local BPSO and 
BCLPSO. When problem scale becomes larger, BCLPSO 
outperforms all other approaches in finding the global 
optimum, and the larger the problem scale, the more apparent 
the superiority is. Although the convergence speed is slightly 
slower, the trade-off is tolerable, and if the iteration is 
prolonged, we can see even greater superiority. As a complex 
multi-modal and real-world problem, the task assigning issue 
is better solved by BCLPSO than other approaches. The 
significance of BCLPSO against the best result gained by 
others is tested. Seeing from TABLE IV, BCLPSO is 
significantly better than others. 

TABLE IV. Performance significance  

B. Analysis on Transfer Functions 
To analyze the influence of transfer functions, simulations 

are done by using all the candidate transfer functions in 
TABLE I on BCLPSO. V-shaped functions show much better 
performance against S-shaped ones. Comparisons are given in 
TABLE V. The modification of transfer function and position 
updating formula preserves the knowledge about good 
positions. Also, the randomness at the end of the iteration is 
avoided. Under the guide of the preserved knowledge, 
particles are able to fly to the global optimum. For the three 
candidate V-shaped functions, they shows their own advantage 
in different problem scales. V1 and V2 are better than V3 
according to TABLE V.

TABLE V. Best solutions fitness by different transfer functions.
Function P1 P2 P3 P4

S1 0.1518 0.3133 0.4166 0.5973
S2 0.1512 0.3246 0.3984 0.5703
S3 0.1511 0.3428 0.4311 0.6079
V1 0.1057 0.2223 0.2881 0.4139
V2 0.1064 0.2148 0.2776 0.4164
V3 0.1059 0.2196 0.2840 0.4218

 V3 drops much faster to 0 when input tends to 0. This 
feature weakens the local searching ability of the swarm. 
Solution fitness of V3 is close to that of V1 and V2 with a tiny 
gap owing to the loss of local searching ability. Still, the V-
shaped function family is far more advantageous than the S-
shaped one toward the problem of task allocating in WSN. 

VI. CONCLUSIONS

A BPSO with the comprehensive learning strategy and 
three versions of local BPSO are proposed for the task 
assigning problem in WSN. Through simulations we find that 

all the proposed approaches are capable of solving this 
problem. Among them, the BCLPSO approach performs the 
best. Due to the particle diversity and extensive searching 
space gained by learning from all the particles' best-ever 
position, BCLPSO is competent as a promising solution to the 
problem. V-shaped functions are way better than S-shaped 
functions when applied as BPSO transfer function in the task 
assigning issue. For the three V-shaped functions, V1 and V2 
are comparably more suitable. To sum up, the proposed 
BCLPSO with a V-shaped transfer function, which 
outperforms other approaches like MBPSO, is very promising 
to the task assigning problem in WSN. 
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