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ABSTRACT 
This paper takes the multiobjective traveling salesman problem 
(MOTSP) as the representative for multiobjective combinatorial 
problems and develop a set-based comprehensive learning particle 
swarm optimization (S-CLPSO) with decomposition for solving 
MOTSP. The main idea is to take advantages of both the 
multiobjective evolutionary algorithm based on decomposition 
(MOEA/D) framework and our previously proposed S-CLPSO 
method for discrete optimization. Consistent to MOEA/D, a 
multiobjective problem is decomposed into a set of subproblems, 
each of which is represented as a weight vector and solved by a 
particle. Thus the objective vector of a solution or the cost vector 
between two cities will be transformed into real fitness to be used 
in S-CLPSO for the exemplar construction, the heuristic 
information generation and the update of pBest. To validate the 
proposed method, experiments based on TSPLIB benchmark are 
conducted and the results indicate that the proposed algorithm can 
improve the solution quality to some degree.  

Categories and Subject Descriptors 

I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods. 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
multiobjective traveling salesman problem (MOTSP); 
multiobjective evolutionary algorithm based on decomposition 
(MOEA/D); set-based particle swarm optimization (S-PSO). 

1. INTRODUCTION 
As one of the most famous combination optimization problems 
[1], the traveling salesman problem (TSP) is to find a Hamiltonian 
circuit with minimum length in a number of cities, that is, a 
salesman would like start from a home city to visit other cities 
once and only once and come back to his home city finally. The 
TSP has been proved as NP-hard [2]. Because of the simplicity to 
describe and hardness to solve, TSPs are commonly used as 
benchmarks to assess the performance of heuristics [3] and have 
been well research in many fields [4]-[7]. However, in reality 
some other kinds of cost except for distance have to be considered 
when dealing with a TSP, such as risk and time, thus the TSP 
becomes an MOTSP with more than one objectives to optimize. A 
MOTSP can be formulated as follows 
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where m is the number of objectives, n is the number of cities,  

1( ,..., )nx x x= is a permutation of city indices, ,( ) ( )i
j k n nC i c ´= is 

the ith cost matrix, ( )if x is the ith objective. It is worth noting 

that the objectives in (1) often conflict with each other, thus a 
single solution with every objective optimized is impossible to 
find. Like other multiobjective optimization problems (MOPs), a 
set of tradeoff solutions is usually found when developing an 
MOEA for dealing with an MOTSP. A prevailing way to make 
tradeoff in MOPs is based on Pareto dominance theory, where a 
Pareto front (PF) is found in the objective space (Pareto set (PS) 
in the decision space) [8]. 

Much effort has been devoted to solving MOTSPs and there are 
two approaches regularly adopted: 1) based on local search on 
multiobjective framework; 2) based on EAs and multiobjective 
framework. In the former case, the hybridization of 
decomposition and local search is developed in [9], where the 
Pareto local search is extended to solve MOTSPs. For the latter 
case, more applications can be found. For instances, the 
estimation of distribution algorithm (EDA) [10] is integrated into 
the decomposition framework to solve the multiobjective multiple 
traveling salesman problem in [11]; L. J. Ke etc. [12] proposed a 
multiobjective EA, namely MOEA/D-ACO, combining ant 
colony optimization (ACO) [13] and the multiobjective 
evolutionary algorithm based on decomposition (MOEA/D) [14]; 
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[15] developed a multiobjective hybrid genetic algorithm (MO-
HGA) for TFT-LCD module assembly scheduling that hybridizes 
with the variable neighborhood descent (VND) algorithm as a 
local search and TOPSIS evaluation technique to derive the best 
compromised solution.  

Among all the popular EAs, the particle swarm optimization 
(PSO) is easy to implement as well as obtain pretty solutions 
when applied to optimize many problems. However, the 
conventional PSO was originally designed for solving continuous 
problems [16] and some strategies have been proposed to develop 
discrete PSO when using it to solve discrete problems [17]-[20]. 
Among those discrete strategies, the set-based particle swarm 
optimization (S-PSO) method proposed in [20] is effective and its 
validity for solving combinatorial optimization problems (COPs) 
have been proved on TSP and 0/1 knapsack problem benchmarks. 
Based on the S-PSO method, the representation scheme is 
carefully designed and the position and velocity of a particle are 
represented as a crisp set and a set with possibilities respectively. 
Then according to the update formulae of a variant PSO with 
extra mathematical operations defined for crisp sets and sets with 
possibilities, the discrete PSO evolves to solve some certain 
COPs. Like other heuristics for solving COPs, the local heuristic 
information is also important to the efficiency of S-PSO and 
should be carefully designed based on the characteristics of the 
COP to be solved. 

To make S-PSO available for solving MOTSPs, a prevailing 
multiobjective framework based on decomposition, i.e. MOEA/D, 
is adopted in this paper to extend S-PSO to its multiobjective 
version. More specifically, we obtain the discrete comprehensive 
learning PSO (CLPSO) [21] based on S-PSO method, namely S-
CLPSO and then extend S-CLPSO to its multiobjective version 
using the MOEA/D, donated as MOEA/D-S-CLPSO. In 
MOEA/D-S-CLPSO, an MOTSP is decomposed into several 
single-objective TSPs represented by different weight vectors, 
and each subproblem is optimized by a particle in S-CLPSO 
method using information from its neighboring particles. The 
neighboring particles of a particle are determined according to the 
distance between weight vectors of subproblems. Actually, the 
weight vector of a particle is also used in exemplar construction, 
local heuristic information generation and update of best-so-far 
solutions in S-CLPSO: 1) when constructing an exemplar for a 
particle, its weight vector is used to converted the objective 
vectors of two randomly-selected particles into two real values 
and the better one can be selected out by comparing the two real 
values during tournament selection. 2) The heuristic information 
will help to make decision when there are two cities can be taken 
as next node. However, there will be a cost vector instead of a 

single cost value between two cities. Through the product of a 
cost vector and the particle’s weight vector, the cost vector is 
transformed into a single cost value and the comparison can be 
made easily on it. 3) In MOEA/D-S-CLPSO, the objective vectors 
of a particle’s all neighboring particles are compared to update the 
particle’s pBest, where the objective vector is transformed into a 
real value. To validate the proposed method, experiments based 
on TSPLIB benchmark are conducted and the results indicate that 
the proposed algorithm can improve the solution quality to some 
degree. 

The rest of this paper is organized as follows. Section 2 reviews 
the MOEA/D framework. Section 3 introduces S-PSO method. In 
Section 4, the proposed MOEAD-S-CLPSO for solving MOTSP 
is presented. Experiments and comparison studies are shown in 
Section 5, and the conclusions are drawn in Section 6. 

2. MOEA/D FREAMWORK 
MOEA/D is a prevalent EA framework based on decomposition 
to solve MOPs. It decomposes an MOP into a number of scalar 
optimization subproblems and optimizes them simultaneously. 
Each subproblem is represented by a weight vector and optimized 
by combining the information from its several neighboring 
subproblems. 

2.1 Decomposition Approaches 
Several approaches are available to convert an MOP into a 
number of scalar optimization problems. The following two 
approaches are introduced in [8]: 

1) Weighted Sum Approach 

Considering a minimal MOP with m objectives, 
let 1( ,..., )T

ml l l= be a weight vector. Then the scalar 

optimization problem is defined as follows: 

minimize 1( | ) ( ),ws m
i i ig x f x xl l== ÎWå             (2) 

2) Chebyshev Approach 

In this approach, the scalar optimization problem is defined 
as follows:  

minimize * *

1
( | , ) max{ | ( ) |},te

i i i
i m

g x z f x z xl l
£ £

= - ÎW       (3) 

where z* is the reference point, i.e., * min{ ( ) | }i iz f x x= ÎW . 

2.2 Basic Ideas of MOEA/D 
Actually, the following two main points in MOEA/D make it 
efficient as well as simple. 

1) Subproblem: Each subproblem i is assigned with a specific 
weight vector il , thus it’s responsible for optimizing that 

direction of the MOP. Therefore, a set of well-distributed 
subproblem weight vectors will guarantee a good approximation 
of the PF. Usually, a set of evenly distributed subproblem weight 
vectors is used, that is, shown in Fig. 1., where 0j

il ³ for all 

1,...,j m=  and 1 1jm
j il= =å . 

2) Neighborhood: Each subproblem is optimized by only using its 
neighboring subproblems’ information, which results in a lower 
computational complexity. In MOEA/D, the neighborhood ( )B i of 

subproblem i with the weight vector il is defined as a set of its 

1( )f x

2 ( )f x

 
Figure 1. Example of a set of evenly distributed 

subproblem weight vectors 
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several closest weight vectors in all the subproblem weight 
vectors, i.e., 1{ ,..., }Nl l .  

3. SET-BASED PSO 
3.1 Continuous PSO 
In the original PSO Error! Reference source not found., the ith 
particle in the swarm maintains a velocity vector iv and a position 

vector ix , where , n
i iv x RÎ if the swarm is to search the global 

optimum in the n-dimensional space. In each iteration, the 
velocity and position of particle i are updated as follows: 

1 1 2 2( ) ( B )j j j j j j j j
i i i i iv wv c r pBest x c r g est x= + - + -           (4) 

j j j
i i ix x v= +                                       (5) 

where ipBest is the best-so-far solution yielded by particle 

i, gBest is the best-so-far solution obtained by the whole 

swarm, 1 2, ,w c c are parameters with great importance on the 

algorithm efficiency. 

Many variants of PSO have been proposed by researchers, and 
CLPSO is a representative one among them. In CLPSO, a novel 

learning strategy is used and the velocity of particle i is updated 
as follows: 

( )( )
i

j j j j j
i i f j iv wv cr pBest x= + -                        (6) 

where ( )if j is set as i or the better one of two randomly selected 

particles in a particularly probabilistic way. In other words, all 
particles’ historical best information is used to update a particle’s 
velocity [21]. 

3.2 S-PSO 
To extend continuous PSOs to their discrete versions, the set-
based PSO method is presented in [20]. Since a set-based 
representation scheme is applied in S-PSO, a particle’s position X 
is redefined as a crisp set corresponding to a feasible solution to 
the problem and its velocity V is redefined as a set with 
possibilities, also, the updating operators of position and velocity 
are changed respectively. 

To address the key concepts in S-SPO, a TSP instance with four 
nodes, indexed as 1,…,4, is taken as an example in the following. 

1) Representation scheme of X and V: Usually, the set-based 
representation scheme of a particle’s position and velocity for a 
discrete problem is intuitive to build up, whose design depends on 
the characteristics of a specific problem. To describe it 
figuratively, representations of X and V for the TSP is given in 
Figure 2. 

2) The velocity updating rules: The concepts of a set with 
possibilities, the multiplication operator between a coefficient and 
a set with possibilities, the multiplication operator between a 
coefficient and a crisp set and the plus operator between two sets 
with possibilities are carefully defined in [20]. Based on those 
definitions, examples of all the arithmetic operators when 
updating particle i’s for a symmetric TSP are given in Figure 3. 

3) Position updating: After updating the velocity, particle i uses 
the new velocity iV , its own position iX to build a new 

position iNEWX . Unlike the continuous cases, the positions in the 

discrete space must satisfy some constraints, for example, a 
feasible solution in TSP must be a permutation of all the city 
nodes. To ensure the feasibility of the new position, a constructive 
is used in S-PSO with extra constraint-checking mechanism or 
solution-repair mechanism. When constructing the jth dimension 

of iNEWX , denoted as j
iNEWX , particle i first learns from 

elements in ( )j
icut Va , which is a set consists of all elements in 

j
iV  whose possibility is larger than a given threshold [0,1]aÎ . If 

there is no available element in ( )j
icut Va , particle i reuses the 

elements in the previous j
iX . If there is still no available element 

in j
iX , it uses the other available elements to complete j

iNEWX . 

4. MOEA/D-S-CLPSO FOR MTSP 
Consistent with the MOEA/D framework, MOEA/D-S-CLPSO 
decomposes a multiobjective optimization problem into a number 
of single-objective subproblems. Each particle with a certain 
representative weight vector is responsible for solving one 
subproblem, and it belongs to a neighborhood. Checking all the 
newly constructed solutions in the neighborhood, a particle 
updates its best-so-far pBest if a better one is found in terms of its 
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Figure 2. Examples of the representation scheme 

for the TSP. (a) Scheme for the symmetric TSP. (b) 
Scheme for the asymmetric TSP. 
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own objective. Meanwhile, exemplars for guiding each particle’s 
evolution are constructed in CLPSO way, i.e., each dimension of 
a particle learns from itself or the better one from two particles 
randomly selected in the neighborhood according to the specific 
objective. A particle updates its velocity and position in the 
similar way in S-PSO except that the local heuristic information is 
closely related to the corresponding subproblem. 

4.1 Initialization 
Since the proposed MOEA/D-S-CLPSO consists of MOEA/D 
framework and S-CLPSO algorithm, the initialization 
preparations should be conducted from that two perspectives. For 
MOEA/D, the way of decomposing an MTSP into several 
subproblems (single-objective TSPs) and determining the 
neighboring subproblems of each subproblem should be defined, 
that is, the setting of weight vectors sl and the partition of 
neighborhoods according to sl . For S-CLPSO, the initialization 
of velocities and positions is important since the representation 
scheme of S-PSO changes along with the specific discrete 
problem. 

2 ( )f x

1( )f x
0 1

1

 
Figure 4. The neighborhoods of different points in 
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Figure 3. Examples of all the arithmetic operators when updating particle i’s for a symmetric TSP. 
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Figure 5. The algorithm of exemplar construction 
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1) sl and neighborhoods: In this paper, the evenly-distributed-
like weight vectors are adopted and the neighborhoods are 
determined based the distances among weight vectors, that is, the 
neighborhood ( )B i of subproblem i with the weight vector il is 

defined as a set of its several closest weight vectors in all the 
subproblem weight vectors, i.e., 1{ ,..., }Nl l . As for the setting of 

evenly-distributed-like weight vectors, more weight vectors are 
placed in the fringe compared with evenly-distributed weight 
vectors. In mathematics, take bi-objective weight vectors for 
example, there are F weight vectors in the form of [1,0]T and F 

weight vectors in the form of [0,1]T and the other (ps-2*F) weight 

vectors are evenly distributed in the way shown in Figure 1. 

Why not just evenly-distributed weight vectors: As shown in 
Figure 4, assume the size of neighborhood is 5 and the number of 
weight vectors is 9, the neighboring points of point 1 all lay on its 
right except itself and the point 5 is its farthest neighbor, however, 
the neighboring points of point 5 lay on its left and right and the 
point 3 is one of its farthest neighbors. Then it is obvious that the 
distance between point 1 and point 5 is two times the distance 
between point 5 and point 3. If the distance between two weight 
vectors is too long, the subproblems represented by that two 
weight vectors will differ significantly and they should not learn 
from each other. Therefore, by placing more points in the fringe, 
the above problem can be overcome to some degree. 

2) Initialization of position and velocity: For a TSP with n cities, 
each position of particle i is initialized as a permutation of n 
cities, i.e. a permutation of 1,...,n, since the position of a particle 
must be a candidate solution for that TSP. Then a position 
{(1,3),(3,2),(2,4),(1,4)} with n = 4 will represents a path that one 
starts from city 1, then go to city 3, then city 2, then city 4, then 
returns to the city 1. As for the velocity for particle i, we choose n 
edges from the complete topology of n cities and randomly 
generate a real value in [0,1] for each edge since the velocity in S-
PSO is a set with possibilities. For example, a velocity can be 
{(1,2)/0.4, (1,3)/0.5, (2,4)/0.4, (2,3)/0.1}. 

4.2 Exemplars construction in CLPSO way 
As pointed out above, the dimension j of exemplar for particle i 
can be determined by k-tournament selection (k=2 in this paper). 
However, when dealing with multiobjective TSPs, the selection 
operator should be carefully designed due to the lack of single 
fitness value. Two obvious approaches can be used to select the 
better one: 1) based on dominance; 2) based on aggregation of 
multiobjective values. In the dominance-based way, it is common 
to find that the two randomly chosen particles not dominated by 
each other. Thus in this paper, the second approach has been 
adopted and the algorithm of exemplar construction for particle i 
is given in Figure 5. 

4.3 Update operators 
1) Update of velocity: The dimension j of particle i is updated in 
formula (7). Just as the example in the section VI. A, the 

1 {(1,2) / 0.4,(1,3) / 0.5}iV = and 1 {(1,3),(1,4)}iX = , assume that 

w=0.7, 1 0.7cr = an {(1,4),(4,3),(3,2),(1,2)}iexemplar = , 

i.e., 1 {(1,4),(1,2)}iexemplar = , then according to the mathematical 

operations on crisp set and set of possibilities, the dimension j of 

new velocity is that 1 {(1,2) / 0.7,(1,3) / 0.35}iV = . 

( )j j j j j
i i i iv wv cr exemplar x= + -                        (7) 

2) Heuristic information and update of position: When solving 
discrete combinatorial problems, the heuristic information is 
important and the bad use of heuristic information will result in 
terrible algorithm efficiency. For particle i, if the current node is 
city k and there are two cities u, l can be chosen as next node, 
then the better one should be selected out based on the heuristic 
information. In this paper, the multiple costs between two cities 
are aggregated into a real value (heuristic fitness) by the weight 
vector of particle i, i.e., the heuristic fitness from city k to city u is 

calculated as , ,( | )k u k u iHF g C l= where ,k uC is costs vector from k 

to u, then the heuristic fitness is used as heuristic information the 
one with less heuristic fitness is better. The update of X is just in 
the S-PSO way, that is, when constructing the jth dimension 

of iNEWX , denoted as j
iNEWX , particle i first learns from 

elements in ( )j
icut Va firstly, then the elements in the previous j

iX , 

then the other available elements. Whenever there are more than 
one elements available, the best one will be chosen according to 
their heuristic fitness values. 

3) Update of pBest: According to the MOEA/D framework, the 
best-so-far solution of a particle should be updated by combining 
the information of its neighborhood. In MOEA/D-S-CLPSO, to 
update particle i’s pBest, the best one of all new solutions 
generated by i’s neighbors (including i itself). Still, the 
aggregation method is used for selection operator, that is, the one 
with minimal g value is selected where the g value is calculated 
based on the decomposition approach adopted in MOEA/D, i.e.,  

( ) ( | ), ( )k k ig X g X k B il= Î . 

4) Update of EP: The External Pool (EP) is an external archive 
for saving all non-dominated solutions during the evolution. 
Whenever a new solution is generated by a particle, we check the 
dominance relationship between that solution and all the solutions 
in EP. If the new solution is not dominated by any solution in EP, 
then it is added into EP and all the solutions in EP dominated by 
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Figure. 6 The framework of MOEA/D-S-CLPSO 
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it will be deleted. Meanwhile, in the proposed MOEA/D-S-
CLPSO, the refreshing value rg (used in CLPSO) of each particle 
will be updated according to the update of EP, that is, if the new 
solution generated by particle i is added into EP successfully then 
particle i’s refreshing value will be set to zero, otherwise, the 
value plus one. If the value is greater than or equals the refreshing 
gap, a new exemplar will be constructed for particle i. 

4.4 Algorithm Framework 
The main framework of MOEA/D-S-CLPSO is given in Figure 6, 
firstly we initialize weight vectors, neighborhoods, position and 
velocity for each particle and set rg value for refreshing gap for 
each particle, and then we evaluate each particle and initialize its 
pBest. After initialization, an iteration begins, that is, for each 
particle: construct exemplar if needed, then update velocity and 
position, evaluation, update pBest and EP. At the end of an 
iteration, the stopping criterion is checked, if stopping criterion is 
satisfied then the algorithm ends, otherwise a new iteration is 
started. 

5. COMPARISON WITH MOEA/D-ACO 
BicriterionAnt [22] is one of the best existing multiobjective 
ACOs on bi-objective TSP [23] [24], and MOEA/D-ACO has 
been proved to outperform BicriterionAnt significantly in [12]. 
Therefore, to assess the performance proposed in this paper, only 
comparison with MOEAD-ACO is made here. 

5.1 Performance Metric 
The inverted generational distance (IGD) is used to assess the 
performance of the algorithm proposed in this paper. 

Let P be the PF approximated by an MOEA and P* be a set of 
uniformly distributed points along the real PF of an MTSP, the 
IGD from P* to P is defined as 

* ( , )
( *, )

| * |
P d P

IGD P P
P

u uÎå=
                       (8) 

where ( , )d Pu  is the minimum Euclidean distance between u  
and the points in P. If P* is large enough to approximate the real 
PF, the IGD value can measure the distance from P to the real PF 
to some degree. To have a low IGD value, points in P must be 
close to the real PF and well distributed in objective space 
without missing any part of the whole PF. 

5.2 Experimental Setup 
The 12 instances with corresponding P*s from [25] are used in 
the experiments. The two algorithms are implemented in C++ and 
executed in the same environment (the source code of MOEA/D-
ACO for TSP is provided by its authors and available in [26]).  

The parameters of MOEA/D-ACO are set according to Error! 
Reference source not found.. Since MOEA/D-ACO with 
Chebyshev decomposition strategy performs better that with 
Weighted Sum strategy, only Chebyshev strategy for MOEA/D-
ACO is included in experiments. In contrast, the Weighted Sum 
strategy is used for MOEA/D-S-CLPSO and the parameter 
settings of MOEA/D-ACO are as follows. 

 Number of particles ps = 72 

 Neighborhood size T = 12 

 Max generations maxgen = 1000 
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Figure 7. The best approximations with smallest IGD among 30 runs obtained by MOEA-S-CLPSO and MOEA/D-ACO on 

four TSP instances 
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 F value for evenly-distributed-like weight vectors, F = 5 

 Refreshing gap ref_g = 7 

 pc[], pc[i] = 0.1 for each particle i 

 c = 2.0, w linearly decrease within [0.4, 0.9] 

 0.001a= for obtaining a -cut of a set 

All statistics are based on 30 independent runs. MOEA/D-ACO 
stops after 3000 generations with 24 ants and MOEA/D-S-CLPSO 
stops after 1000 generations with 72 particles, thus the same 
number of candidate solutions for each MOTSP instance are 
generated in each run. 

5.3 Experimental results 
The mean and standard deviation of IGDs obtained by MOEA/D-
ACO and MOEA/D-S-CLPSO are summarized in Table 1. As 
shown in Table 1, mean IGD value obtained by MOEA/D-S-
CLPSO is significantly smaller than that obtained by MOEA/D-
ACO for almost all instances except for kroab150ab, i.e., 
MOEA/D-SCLPSO can approximates the PF better for those 
MOTSP instances. 

However, it can’t be ignored that the standard deviation values of 
MOEA/D-S-CLPSO are larger than MOEA/D-ACO’s on all 
instances apart from krobc100 and krobe100, especially for 
kroab150, kroab200 and euclidAB300. Combining the results or 
IGDs’ mean and standard deviation, we find that compared with 
MOEA/D-ACO, MOEA/D-S-CLPSO can achieve better 
approximations to PF for almost all instances but with poorer 
stability, it can’t guarantee its solution quality in an arbitrary run. 

For further discussion, the final approximations with smallest 
IGDs for four MOTSP instances, i.e., kroab100, kroab150, 
kroab200 and euclidAB300, over 30 runs are given in Figure 7. 
Although the quality differences between the two algorithms are 
hard to detect visually, it can be found that the solutions generated 
by MOEA/D-S-CLPSO are commonly denser in comparison with 
MOEAD-ACO. Meanwhile, it is clear that nearly all the 
approximations of two algorithms miss some parts of the real PF, 
which is not desired and hoped to be avoided in further study. 

6. CONCLUSION 
In this paper, a hybrid algorithm namely MOEA/D-S-CLPSO is 
proposed to solve multiobjective traveling salesman problems by 
aggregating the set-based CLPSO into the MOEA/D framework. 
In the hybrid algorithm, an MOTSP is decomposed into a set of 
single-objective subproblems and each particle is responsible for 
solving a specific subproblem in S-CLPSO way. Experiments in 
comparison with MOEA/D-ACO are designed to prove the 
validity of MOEA/D-S-CLPSO. The statistical results show that a 
better solution quality can be achieved by MOEA/D-S-CLPSO at 
most time but the quality can’t be guaranteed due to poor 
stability. Also, the deficiency shared by the two algorithms is 
addressed in this paper. 
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