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Abstract—Particle swarm optimization (PSO) is a population-
based stochastic search technique for solving optimization
problems, which has been proven to be effective in wide
applications in scientific and engineering domains. However,
standard PSO is inefficient when searching in complex problems
spaces. Lots of improved PSO variants with different features
have been proposed, such as comprehensive learning PSO
(CLPSO). CLPSO is an enhanced PSO variant by adopting a
better learning strategy that lets particle have some chance to
choose other particles’ historically best information to update the
velocity. Comparing with the standard PSO, CLPSO has
successfully improved the diversity of population and hence
avoids the deficiency of premature convergence and local optima.
However, CLPSO causes slow convergence speed, especially
during the late state of searching process. In this paper, an
improved CLPSO algorithm is proposed, termed as ICLPSO, to
accelerate convergence speed and keep diversity of population at
the same time. We set the learning probability based on particles’
own fitness and adaptively construct different learning
exemplars for different particles according to particles’ own
features and properties. This is a more appropriate learning
strategy for particles’ optimization, rather than the random
selection fashion in CLPSO. Experimental results show that the
performance of ICLPSO is better than standard CLPSO and
some other peer algorithms, in terms of both unimodal and
multimodal functions.

L INTRODUCTION

ARTICLE swarm optimization (PSO), [1], [2], which
was first introduced by Kennedy and Eberhart in 1995, is
one of the most important swarm intelligence algorithms

[3]. It emulates swarm behaviors such as birds flocking and
fish schooling to search for an optimum. It is initialized with a
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population of particles randomly distributed in the search
space. Each particle in population is associated with two
vectors: a velocity vector and a position vector. During the
process, each particle flies in the search space and adjusts its
flying velocity according to its personal best experience (the
so-called pbest) and the position of the known best-fit particle
in the entire population (the so-called gbesf). As PSO is easy
to accomplish, it has rapidly attracted attention from many
scientists and applied to real-world optimization problems [4]-
[12].

As many real-world optimization problems become
increasingly complex, better optimization algorithms are
always needed. However, the standard PSO algorithm may
casily get trapped in local optima when solving some complex
multimodal problems [13]. Besides, PSO is also a population-
based iterative algorithm. Therefore, it may be
computationally inefficient as measured by the number of
function evaluations (FEs) required [14]. These weaknesses
have restricted wider applications of the PSO.

Thus, accelerating convergence speed and avoiding local
optima have become the two important goals [15]. Motivated
by these goals, a number of PSO variants have been proposed
to overcome these problems [15]-[22]. For example, Liang et
al. [16] introduced a comprehensive learning particle swarm
optimizer (CLPSO). However, so far, it seems difficult to
simultaneously achieve both goals. CLPSO can avoid local
optima, but also slows the convergence speed, especially
during the late state of searching process.

Motivated by this problem, in this paper, we proposed an
improved CLPSO algorithm (ICLPSO), which is a variant of
CLPSO. ICLPSO generates the learning probability Pc based
on particles’ own fitness and adaptively constructs different
learning exemplars for different particles according to
particles’ own features and properties, which is a more suitable
learning strategy for particles’ optimization. It can help the
better particles keep their properties and help the worse
particles have more chance to learn other particles with better
fitness. Experimental results show that the performance of
ICLPSO is more effective and more accurate than standard
CLPSO and some other peer algorithms in dealing with
optimization functions no matter unimodal or multimodal. It
can accelerate convergence speed and keep population
diversity at the same time.

The rest of the paper is organized as follows. Section II
introduces the standard PSO and its developments briefly.
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ICLPSO based on CLPSO is proposed in Section III. Section
IV compares ICLPSO with CLPSO and other algorithms using
a set of benchmark functions and makes discussions.
Conclusions are given in Section V.

II.  PSO AND SOME VARIANTS

A.  PSO Framework

In PSO, the member of the swarm is called particle, which
means a possible solution in the search space. Each particle i

. . . 1.2 D
is associated with two vectors. The vector V, =[v;,v/,...,v; ]

means the velocity of the particle i, while the vector
X, =[x!,x7,...,x"] means the position of the particle i, where
D stands for the dimensions of solution space. Both the two
vectors are initialized randomly within the corresponding
ranges. At the end of each iteration step, each particle in
population adjusts its position based on its own pbest and the
gbest in the entire population. The position X and velocity 7 of
each particle are updated according to the following formula:

d d d d d
Vi =*V +¢ *randl*(pbest| —x.")
d d d

+c, *rand2] *(gbest” —x")
x=x +v! 2

i

(M

where o is the inertia weight [17], to balance the global and
local search performance. ¢; and c¢; are the acceleration
coefficients, often set as 2.0. Parameter c1 pulls the particle to
its own pbest, ensuring the diversity of population; while ¢
pushes the swarm to converge to the current gbest, ensuring
the speed of convergence. randlf and rand2¢ are two
uniformly distributed random numbers within [0, 1]. A
particle’s velocity and position on each dimension are
clamped to the maximum Viax and Xmax.

The flowchart of PSO is shown in Fig. 1.

B.  Current Developments of the PSO

Since its introduction in 1995 by Kennedy and Eberhart,
[1], [2], PSO has become a popular optimizer and has been
applied in problem solving due to its simple concept and
effectiveness. In the literature, many researches have worked
on improving its performance in various ways.

Shi and Eberhart [17] proposed the large inertia weight w is
appropriate for global search, while the small inertia weight ©
is suitable for local search. In that way, @ should decrease
linearly during the evolution process. It can be described as:

— _ _ %« &
0= 0y (O, ~0,) "% G
where g is the current evolutionary generation, and G is the

maximum number of generation. Besides, the parameter wmax
and wmin are often set as 0.9 and 0.4.

Initialize the position, velocity and pbest for each particle,
gbest for the population, set g=0

A
i=1

”i
<

¥
Update the velocity and position for each
particle using (1) and (2)

N: population size D: dimensions
G: maximum generation g: current generation

Fig. 1. Flowchart of the PSO framework

In addition, improving PSO’s performance by designing
different types of topologies is also an effective method.
Generally, there are two major variants of PSO algorithms
depending on the topology [18]. The ghest model (GPSO)
shares information among the whole swarm and every particle
is able to obtain information from the best particle in the entire
swarm population. The /best model (LPSO), making
communication and utilizing information within a small group
of particles. Mendes and Kennedy [19] introduced a fully
informed particle swarm (FIPS). In the fully informed
neighborhood, all neighbors are a source of influence. There
are five different PSO topologies often used called all, ring,
four clusters, pyramid and square. The ring topology is a well-
known local topology. In the ring topology, each particle
connects with only two of other particles in the swarm and only
makes use of the information from the two particles while
updating its own position.

Comprehensive learning particle swarm optimizer
(CLPSO) was first introduced by Liang et al. [16]. In CLPSO,
particles make use of different particles’ pbest values to
update the velocity of different dimensions as:

d d d d d
v, =@*Vv] +c*rand *(pbesty ;) —x) 4)
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where o is the inertia weight as in (1), ¢ is the acceleration
coefficient fixed to be 1.49445, and rand is a random value
within [0, 1]. The fi(d) is the particle’s index which used to
guide the flying in the dth dimension of particle i, which can be
any particle including the particle i itself.

In order to find the fi(d) for each dimension, CLPSO firstly
generates a random number 7, then compares » with Pc;, which
is the learning probability to control particles’ learning from
self or others, can be seen in (5).

(exp( 2y
s —1
(exp(10)~1)

where ps is the population size. If » is smaller than Pc;, then
this dimension learns from others, otherwise learns from itself.
When learning from others, CLPSO chooses two particles
excluding the particle whose velocity is updating. And then
compares the fitness values of these two particles’ pbests and
selects the one with better fitness as exemplar. If all exemplars
come from the particle’s own pbest, CLPSO randomly chooses
a dimension to learn from another particle’s pbest’s
corresponding dimension. A particle will keep learning from its
exemplar until it cannot improve the solution quality for
several generations which is called refreshing gap m, then the
new learning exemplar will be chosen again using the same
method. The refreshing gap in CLPSO is set as 7 based on
experiments.

Pc, =0.05+0.45*

And the details of choosing learning exemplar in CLPSO
are given in Algorithm 1. (We define the fitness value the
larger the better). Fig. 2 presents an example of Pc for a
population size of 20.

Besides, CLPSO also uses a different method to constrain
the particles within the range as follows: Calculate the fitness
value of a particle and update its pbest only if the particle is in
the range. Since all exemplars are within the range, the particle
will eventually return to the search range.

Algorithm1 generating learning exemplar in CLPSO

d=1
while d<D
if r<Pc;
Randomly choose two particles out of the population which
excludes the particle whose velocity is updating
Compare the fitness values of the two particles’ pbests
The d" dimension will learn from the better one’s pbest
else
The d" dimension will learn from its own pbest
end if
d=d+1
end while

r: random number
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Fig. 2. Pc for a population size of 20 in CLPSO

III. ICLPSO APPROACH

As we mentioned above, CLPSO generates each learning
probability Pc; using formula (5). The probabilities are
determined by particles’ indexes and will remain unchanged
throughout the running process. However, in a typical run of
PSO, the features and properties of particles are changed along
with their evolution. As a result, it would make the algorithm
more effective if the learning probability can change
accordingly.

Besides, the method of constructing learning exemplar
(given in Algorithm 1) is invariant of the particles’ fitness.
Noticing that different particles have different features, it
would make algorithm more intelligent if the process can be
adjusted adaptively. Motivated by these findings, we proposed
an improved CLPSO, which is detailed in the following
subsections.

A. Generate the Learning Probability Pc for Each Particle

We set Pc; according to the i particle’s fitness. Because
generating the Pc; using formula (5) is only related to
particles’ indexes and will remain unchanged, however, the
index makes nearly no sense on particles’ optimization.
Besides, the performance of each particle is changed at each
iteration step, so the learning probability Pc; should also be
changed dynamically. So, our method is, when the fitness is
large, which means the particle is good, we make the
probability of learning other particle’s pbest smaller and make
the probability of learning its own pbest larger. When the
fitness is low, in other words, the particle is relatively poor,
we make the probability of learning other particle’s pbest
larger and make the probability of learning its own pbest
smaller. (We define the fitness value the larger the better). Our
method of calculating the learning probabilities is described as
follows:

(1) Sorting particles in descending order according to their
own fitness at the beginning of each iteration step;

(2) Pci=i/(2*N) (6)
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where N is the population size, i is the position of particle i
in the sort of fitness.

In this way, if i" is small, which means the particle i has a
good fitness value, we make Pc;smaller in order to make this
particle learn from itself with a higher probability to keep its
own property. On the contrary, if i is large, which means the
particle i has a relatively bad fitness value, we make Pc; larger
in order to make particle i has a larger probability to learn from
other particles. The range of Pc; in expression (6) is [1/ (2*N),
1/2].

B.  Construct the Learning Exemplar

In CLPSO, it only chooses two particles to compare, so the
probability of choosing top-ranking particles is small.
Although it can enhance the diversity of population, it slows
the convergence speed. Besides, different particles have
different properties, so this method should also be adjusted
adaptively. In our method, we randomly choose 7 particles out
of the population which excludes the particle whose velocity
is updating. Then, compare the fitness values of these
particles’ pbest and select the best one. The definition of
parameter # is also related to particle’s fitness, similar to that
of learning probability:

(1) Sorting particles in descending order according to their
own fitness at the beginning of each iteration step;

(2) n=2+round(([N/2]-2)/N*i") (7

where N is the population size, i is the position of particle i"
in the sort of fitness, [ ] is ceiling operator.

That is, if i is small, the fitness of particle is large, which
means the particle is good and many particles in population
are worse than it. At this time, there is no need to choose
many particles, choosing fewer particles can keep the diversity
of population. So we make » smaller. If i is large, the fitness
of particle is low, the particle is relatively poor, many particles
in population are better than it. As a result, we make » larger.
So we can choose more particles from population to compare
in order to have a larger probability of choosing better
particles. In that way, we can accelerate the speed of
convergence. However, we can’t choose the best particle from
all the population, similar to the traditional PSO, which may
get trapped in the local optimal and cause premature
convergence. So the range of » in expression (7) is [2, [N/2]].

There are three main advantages of ICLPSO as follows:

(1) Using the method similar to CLPSO to construct learning
exemplar, keep the better search ability and diversity of
population.

Changing the learning probability Pc; dynamically
depends on particle’s own fitness can help better particles
keep their own features and properties and help the worse
particles have more chance to learn other particle with
better fitness.

Choosing n (n€[2, [N/2]]) particles out of the population
to compare has the larger probability to learn better
particles, inhibit the randomness of the algorithm and
accelerate the convergence speed. The details of choosing
learning exemplar in ICLPSO are given in Algorithm 2.

@

3)
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Algorithm2  generating learning exemplar in ICLPSO

Generate parameter # using formula (7)

d=1
while d<<D
if r<Pc;
Randomly choose 7 particles out of the population which
excludes the particle whose velocity is updating
Compare the fitness values of these n particles’ pbests
The d" dimension will learn from the best one’s pbest
else
The d" dimension will learn from its own pbest
end if
d=d+1
end while

r: random number

In other words, ICLPSO combines the advantages between
PSO and CLPSO. And with these three advantages, ICLPSO
can easily get optimal solutions and maintain them until the
end of the predefined budget of the function evaluations for
unimodal or multimodal optimization. The details of ICLPSO
algorithm are shown in Fig. 3.

Initialize the position, velocity, pbest and fi for each
particle, gbest for population, set flag=0, g=0
%

i=1 0=, (0,

xxxxx

Generate learning probability Pc
for each particle using (6)

Reconstruct learing Y

exemplar using Algorithm 2

|

d=1

ag, > m

N
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d
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Fig. 3. Flowchart of the ICLPSO algorithm
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IV. EXPERIMENT TESTING AND RESULTS unimodal functions. These functions are used to test the
convergence speed of these algorithms. The next six functions

A. Experimental Settings fsi3 are multimodal functions where the number of local
In this section, ICLPSO is applied to minimize a set of 13 optima increases exponentially with the problem dimension.
benchmark functions of dimensions D = 30 chosen from [23] The population size NP of ICLPSO is set to 30 for each

as shown in Table I. The first seven functions fi—f; are problem. We also set the refreshing gap m and acceleration

TABLE I. THIRTEEN HIGH-DIMENSIONAL TEST FUNCTIONS USED IN THIS PAPER, BOTH UNIMODAL AND MULTIMODAL

Name Test functions Initial range Jinin
Sphere fi0="x? [-100,100]° 0
D
Schewefel 2.22 L@=3" 5+ [-10,10]? 0
i=1
N 2
Schewefel 1.2 L= ) [-100,100]° 0
Schewefel 2.21 £, =max, {|x} [-100,1001” 0
D-1 2\2 2
Rosenbrock fi=>" [IOO(xH1 -x) +(x,-1) ] [-30,30]° 0
Step fe@=>"[x+05] [-100,100]° 0
Noisy Quaric £ =" ix* +rand[0,1) [-1.28,1.28]° 0
N b -12569.5
Schewefel 2.26 fi(x)= 21 x,siny|x|) [-500,500] for D=30
Rastrigin £ =37 [ =10c0os(27x,) +10 | [-5.12,5.12]” 0
/ 1 <o 1 <o
Ackley fo = —20exp(-0.2 521' x) - exp(Bz; cos(27x,)) +20 + ¢ [-32,32]° 0
. 1 D = X;
Griewank S = Mz':' X7 - ];[cos( ﬁ) +1 [-600,6001” 0
T . - | 2 .
Jo(x)= B{IOst(zrym >, - D[+ 10sin* (7y,) 1+ (v, — 7
1 [-50,50]? 0
+>7 u(x,,10,100,4), where y, =1+ T+
/5 =0.1{sin* 3zx,) + Z_M (x, —1)’[1+sin’ 3zx,,,)]
Penalized =
+(x, =D’[L+sin’ Qax, )} + . u(x, 5,100,4)
- D
k(x,—a)" x >a [-30,50] 0
where u(x;,a,k,m)=40 —as<x <a
k(=x,—a)" x,<-a

TABLEIl. EXPERIMENTAL RESULTS OF 30-DIMENSIONAL PROBLEMS f-fi3, AVERAGED OVER 30 INDEPENDENT RUNS
F FEs ICLPSO CLPSO FIPS PSO

Mean Std Mean Std Mean Std Mean Std

/i | 300000 | 4.16E-47 | 3.78E-47 1.72E-21(-) | 2.38E-21 | 7.18E-29(-) 1.33E-29 | 3.56E-53(+) | 7.33E-53
£ | 300000 | 1.16E-32 | 3.41E-32 1.44E-13(-) | 2.05E-13 | 5.17E-18(-) | 2.38E-18 | 5.28E-34(+) | 6.37E-34
£ | 300000 | 7.10E-01 | 3.85E-01 | 1.29E+02(-) | 5.44E+01 | 1.47E+00(-) | 9.15E-01 | 1.15E-01(+) | 1.32E-01
fa | 300000 | 5.74E-02 | 9.45E-02 | 1.36E+00(-) | 7.85E-01 | 6.35E-05(+) | 3.37E-05 | 4.05E-01(-) | 2.58E-01l
/5 | 300000 | 1.21E4+01 | 7.11E+00 | 2.47E+01(-) | 1.72E+01 | 2.14E+01(-) | 9.38E+00 | 2.38E+01(-) | 1.25E+01
fs | 300000 | 0.00E+00 | 0.00E+00 | 0.00E+00(=) | 0.00E+00 | 0.00E+00(=) | 0.00E+00 | 0.00E+00(=) | 0.00E+00
/2 | 300000 | 1.11E-03 | 2.83E-03 | 3.56E-03(-) | 4.12E-03 | 4.35E-03(-) | 5.51E-03 | 3.58E-03(-) | 5.24E-03
/s | 300000 | -12569.5 | 5.19E-12 | -12569.5(=) | 3.81E-12 -6771.4(-) 6.35E+02 | -10488.7(-) | 5.36E+02
fo | 300000 | 2.84E-15 | 1.59E-15 | 5.24E-10(-) | 3.92E-10 | 3.22E+01(-) | 1.37E+01 | 2.96E+01(-) | 9.81E+00
fio | 300000 | 2.58E-14 | 2.63E-14 1.43E-12(-) | 2.48E-13 | 7.98E-15(+) | 6.61E-15 | 3.56E-14(%) | 4.38E-14
fir | 300000 | 0.00E+00 | 0.00E+00 | 4.77E-13(-) | 6.11E-13 | 0.00E+00(=) | 0.00E+00 | 2.18E-02(-) | 7.33E-02
fi2 | 300000 | 1.57E-32 2.78E-48 4.89E-22(-) 1.46E-21 5.25E-29(-) 3.81E-29 7.91E-02(-) 6.27E-02
fi3 | 300000 | 1.35E-32 | 5.57E-48 | 6.21E-21(-) | 9.19E-22 | 6.77E-30(-) | 4.98E-30 | 5.11E-04(-) | 3.22E-03

+(better than ICLPSO) 0 2 3
-(worse than ICLPSO) 11 9 8
~(no sig.) 2 2 2

=, +, - indicates whether a given algorithm performed no significantly different, better or worse compared to ICLPSO according the Wilcoxon rank-sum test
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coefficient ¢ in our algorithm is 7 and 1.49445. Besides, the
method to constrain particles within the range is same as
CLPSO. According to [19], the parameter y and ¢, in FIPS

is set as 0.7298 and 4.1, and we use a ring topology in our
experiment. Each experiment is run 30 times independently
and the results are averaged. For clarity, the results of the best
algorithms are marked in boldface, respectively. In addition,
we make use of the Wilcoxon’s rank sum test [24] at a. = 0.05
to evaluate the statistical significance of the results. The =, +, -
indicate whether a given algorithm performed no significantly
different (=), better (+) or worse (-) compared to ICLPSO
according the Wilcoxon rank-sum test.

B. Results and Discussions

e We can see the statistical results in Table II. As for
unimodal functions, PSO has fast convergence speed,
so it has a relatively better performance, especially on
fi-f3. While the convergence speed in CLPSO is slow.
But our method ICLPSO well solves the problem of
slow convergence speed from CLPSO, the error from
ICLPSO is smaller than CLPSO and the result is
relatively stable in ICLPSO. Although it is a little worse
than PSO, it is better than the other two algorithms
obviously.

As for the step function in fs, which is also unimodal,
these four algorithms can all get the optimal solution.

The functions fs-fi3, which are multimodal, ICLPSO
keeps the diversity of population, and accelerate the
convergence speed at the same time. The error from
ICLPSO is also smaller than CLPSO and the result is
relatively stable in ICLPSO, especially in fz and fii,
ICLPSO can get the optimal solution. Comparatively
speaking, PSO may trap in local optima and cause
premature convergence, it has a relatively worse
performance on these functions.

All in all, as shown in Table II, compare with CLPSO,
ICLPSO performs better on 11 functions while the results
of the other functions are not significantly different.
Besides, ICLPSO obtains better results on 9 functions than
FIPS, only worse on f; and fio. For standard PSO, ICLPSO
performs better on 8 functions and only worse on the first 3
functions due to the fast convergence speed during the late
state in PSO. So, we can conclude that ICLPSO
outperforms CLPSO, FIPS, and PSO.

Table III summarizes the success rate (SR) of each
algorithm which acceptable solutions are found over 30 runs
and the average number of function evaluations (FEs) required
to find the acceptable solutions. FEs and SR are useful to
compare the convergence rate and stability of different
algorithms. The ranks in table are evaluated based on the
descending order of the success rates and the ascending order
of FEs. From Table III, we find only ICLPSO 100%
successfully finds the acceptable solutions on all functions in
particular. And ICLPSO ranks the first and is the fastest in
most of the functions. Overall, ICLPSO performs the best on
most functions in fi-fi3. The results show that the new method
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of generating learning probability and constructing learning
exemplar speeds up the search process, and move to optima
quickly. Next, we will see the convergence of these four
algorithms more apparently using the method of scatter
diagram. We choose unimodal functions fi, /> and multimodal
functions fg, f13 as examples to illustrate it.

TABLE III. SUCCESS RATE AND SEARCH SPEED COMPARISONS ON 30-
DIMENSIONAL PROBLEMS F'i-Fi3

fun | Acceptable ICLPSO | CLPSO FIPS PSO
accuracy
SR 100 100 100 100
fi 1E-10 FEs | 1.09E+05 | 1.86E+05 | 1.55E+05 | 2.00E+05
Rank 1 3 2 4
SR 100 100 100 100
5 1E-10 FEs | 1.36E+05 | 2.49E+05 | 2.13E+05 | 2.10E+05
Rank 1 4 3 2
SR 100 0 433 100
f 1E+00 FEs | 2.74E+05 N/A 2.79E+05 | 2.66E+05
Rank 2 4 3 1
SR 100 60 100 100
fa 1E+00 FEs | 1.88E+05 | 2.46E+05 | 1.29E+05 | 2.43E+05
Rank 2 4 1 3
SR 100 100 100 100
/s 1E+02 FEs | 5.87E+04 | 1.18E+05 | 8.32E+04 | 1.67E+05
Rank 1 3 2 4
SR 100 100 100 100
Jo 0 FEs | 5.42E+04 | 8.09E+04 | 5.88E+04 | 1.63E+05
Rank 1 3 2 4
SR 100 100 100 100
¥ 1E-2 FEs | 1.05E+05 | 1.38E+05 | 1.82E+05 | 1.71E+05
Rank 1 2 4 3
SR 100 100 0 56.7
f -10000 FEs | 3.54E+04 | 4.77E+04 N/A 2.30E+05
Rank 1 2 4 3
SR 100 100 0 0
/o 1E-5 FEs | 2.27E+05 | 2.69E+05 N/A N/A
Rank 1 2 3.5 35
SR 100 100 100 100
fio 1E-10 FEs | 1.56E+05 | 2.77E+05 | 2.04E+05 | 2.56E+05
Rank 1 4 2 3
SR 100 100 100 133
it 1E-10 FEs | 1.13E+05 | 2.51E+05 | 1.71E+05 | 2.04E+05
Rank 1 3 2 4
SR 100 100 100 76.7
Ji2 1E-10 FEs | 1.12E+05 | 2.23E+05 | 1.44E+05 | 2.48E+05
Rank 1 3 2 4
SR 100 100 100 83.3
fis 1E-10 FEs | 1.33E+05 | 2.14E+05 | 1.66E+05 | 2.46E+05
Rank 1 3 2 4
Avg_Rank 1.15 3.08 2.5 3.27
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In order to show the convergence characteristics of these
compared algorithms, we plot the average evolutionary curve
during the running time of some selected functions in Fig. 4,
Fig. 5, Fig. 6, and Fig. 7. From the figures presented above, we
can see that:

® For unimodal functions, PSO has fast convergence
speed, especially during the late state of evolutionary
process. ICLPSO has a little slower convergence
speed than PSO, however, it performs much better

than the other two algorithms.

For multimodal functions, PSO may get trapped in
some local optima, while the other three algorithms
can keep the diversity to some degree. But FIPS
performs worse in fz. We can also see that the error in
ICLPSO is smaller than CLPSO and FIPS, the
convergence speed is also faster than these two
algorithms. In other words, ICLPSO well solves the
problem of slow convergence speed from CLPSO.

The better performance is due to the better choosing
learning probability Pc depends on fitness rather than particle’s
own index. Of course, changing the method of generating
learning exemplar adaptively is also more suitable for
optimization. As ICLPSO combines the advantages of PSO
and CLPSO, the search can be easily located at optimal
solutions, which is suitable for both unimodal and multimodal
functions.

V. CONCLUSION

In this paper, an improved CLPSO algorithm (ICLPSO)
was proposed to achieve optimization. ICLPSO made use of
the benefits both from the particle swarm optimizer (PSO) and
comprehensive learning particle swarm optimizer (CLPSO).
With the better method of choosing learning probability Pc
and generating learning exemplar, ICLPSO is more suitable
for optimization. Experimental results also showed that the
proposed ICLPSO algorithm can perform better than CLPSO
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and some other peer algorithms in this paper on a suite of
widely used test functions both unimodal and multimodal in a
statistically meaningful way.

In the future, the proposed ICLPSO is expected to be

applied on more complex optimization problems

like

topological active net optimization [25], cloud computing
resources scheduling [26][27], and even in a dynamic
environment [28].
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