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This paper proposes an information sharing mechanism (ISM) to improve the performance
of particle swarm optimization (PSO). The ISM allows each particle to share its best search
information, so that all the other particles can take advantage of the shared information by
communicating with it. In this way, the particles could enhance the mutual interaction
with the others sufficiently and heighten their search ability greatly by using the search
information of the whole swarm. Also, a competitive and cooperative (CC) operator is
designed for a particle to utilize the shared information in a proper and efficient way. As
the ISM share the search information among all the particles, it is an appropriate way to
mix up information of the whole swarm for a better exploration of the landscape. There-
fore, the competitive and cooperative PSO with ISM (CCPSO-ISM) is capable to prevent
the premature convergence when solving global optimization problems. The satisfactory
performance of CCPSO-ISM is evaluated by comparing it with other variants of PSOs on a
set of 16 global optimization functions. Moreover, the effectiveness and efficiency of
CCPSO-ISM is validated under different test environments such as biased initialization,
coordinate rotated and high dimensionality.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Inspired by the swarm behaviors of birds flocking and fish schooling, the particle swarm optimization (PSO) was first
introduced by Kennedy and Eberhart in 1995 [16]. A particle in PSO uses the information of its historical best position
and its neighborhood’s best position to adjust its flying velocity to search for the global optimum in the solution space. How-
ever, the algorithm is not very efficient when solving complex problems because it is easy to be trapped into local optima
[21,28].

The easiness of getting trapped into local optima is caused by that PSO does not sufficiently utilize its population’s search
information to guide the search direction. Therefore PSO has difficulty in solving complex problems [28]. The original PSO is
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a global version PSO (GPSO) where all the particles are attracted by the same globally best particle and the swarm has ten-
dency to fast converge to the current globally best point. However, as GPSO only uses the search information of the globally
best particle to guide the search direction, it may be premature convergence due to the lack of diversity [22]. Therefore, GPSO
is not very efficient when solving complex multimodal functions because particles cannot efficiently utilize search informa-
tion of the whole swarm to find out the global optimum.

How to cope with the ‘‘attraction’’ phenomenon of the globally best particle in PSO and make the particles have access to
more information is a critical issue in improving the performance of PSO. Kennedy and Mendes [17] introduced a local ver-
sion PSO (LPSO) to handle this drawback. Particle in LPSO is influenced by its historically best position and the local neigh-
borhood’s best position. As different particles have different neighborhoods, more local best particles are used to guide the
search direction. Therefore, the information used in LPSO is richer than that in GPSO. LPSO is less prone to be trapped in local
optima, but usually converges more slowly [17]. However, LPSO is still not very efficient in solving complex multimodal
functions because each particle still uses the information only from two exemplars, the personal best position and its neigh-
borhood’s best position. For particles have access to more search information to guide the search direction, a ‘‘fully informed
particle swarm’’ (FIPS) is proposed in [24]. In FIPS, all the particles in the neighborhood make contributions to guide the
search direction. FIPS hence uses more information from the neighbors and leads to good performance.

The performance of GPSO, LPSO and FIPS with different degrees of information sharing has indicated that the more
information is efficiently utilized to guide the flying, the better performance the PSO algorithm will have. Therefore, an infor-
mation sharing mechanism (ISM) is proposed in this paper to let the particles share their best search information with all the
other particles, and a competitive and cooperative (CC) operator is designed to use the shared information properly and effi-
ciently. Thus, a competitive and cooperative PSO with ISM (CCPSO-ISM) is developed to enhance the PSO performance.

The ISM is inspired by the ‘‘blackboard’’ idea [13]. In the ISM, a ‘‘blackboard’’ is used as information pool where each par-
ticle can post information, or read information. In every iteration, the particles post their historically best information to the
blackboard. Any particle can access and utilize the search information provided by other particles. This way, the degree of
information share is much higher than GPSO, LPSO, or FIPS. The blackboard idea is similar to the ‘‘archive’’ idea which has
been widely used in multiobjective optimization approaches [19,43,40] to store the found nondominated solutions, and is
also similar to the harmony memory strategy in harmony search algorithm [12,35]. The archive strategy and harmony mem-
ory strategy have been proven to bring better performance to optimization approaches. Therefore we can expect good per-
formance of the blackboard strategy because it makes the search information sufficiently shared. More efficiently, the
additional memory required by the blackboard idea used in this paper is almost negligible because the historically best infor-
mation of each particle is stored by the particle itself. The blackboard mechanism makes all the search information shared,
therefore is helpful to mix up information of the whole swarm for a better exploration of the landscape. In order to use the
shared information in a proper and efficient way to improve the PSO’s performance, the CC operator is designed, which is
loosely inspired by the corresponding competition and cooperation behaviors in human society [6]. CCPSO-ISM is shown
to have good performance by testing on global optimization problems, especially on complex multimodal functions. More-
over, it is also promising on functions with biased initialization ranges, coordinate rotation and high dimensionality.

The reminder of this paper is organized as follows. In the next section, we give a brief review of traditional PSO together
with its recent developments and the previous work related to the information sharing. In Section 3, the algorithm named
CCPSO-ISM is developed based on the ISM and the CC operator. Section 4 presents experimental results, comparisons and
discussions. Section 5 makes further investigation on the performance of CCPSO-ISM under different environments, followed
by conclusions and future work in Section 6.
2. PSO and its developments

2.1. Framework of PSO algorithm

PSO uses a swarm of particles to represent the potential solutions of the optimization problem and lets the particles fly in
the search space to search for the global optimum. Assume that the particles search in a D-dimension hyperspace, a particle i
has a position vector Xi ¼ ½xi1; xi2; . . . ; xiD� which represents the current solution and a velocity vector Vi ¼ ½v i1;v i2; . . . ;v iD�
which is used to adjust the position. Moreover, each particle has a memory of a vector called the personal historically best
pBesti to store the best position that the particle has found so far. The best pBesti in the particle i’s neighborhood is regarded
as nBesti (for convenience, gBest is used in GPSO and lBesti is used in LPSO). The velocity and position of each particle i are
first initialized randomly and will be updated by the influences of its own pBesti and the corresponding nBesti as
v id ¼ xv id þ c1r1dðpBestid � xidÞ þ c2r2dðnBestid � xidÞ ð1Þ
xid ¼ xid þ v id ð2Þ
In Eq. (1), the velocity is updated. The x is the inertia weight introduced by Shi and Eberhart [33] in order to balance the
abilities of global search and local search; c1 and c2 are the acceleration coefficients which indicate the influence of the par-
ticle’s historically best position and its neighborhood’s best position, respectively [8]; r1d and r2d are two randomly generated
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number in range [0,1] with the uniform distribution, where the subscript d means that the random values for different
dimensions are generated independently. Moreover, a position variant Vmax;d is used to clamp the maximal absolute value
of updated velocity jv idj.

In Eq. (2), the new position of the particle is obtained. Here, the new position may be out of the search region sometimes.
If the new position is out of the search range, it will not be evaluated. This way, the particles which are out of range will have
worse fitness and can be drawn back into the search region eventually.

After updating the velocity and position, the particles within the search range are evaluated. The pBesti of each particle is
replaced by its current search position if and only if the fitness of current position is better than pBesti. The nBesti is also
replaced if a position which is better than the current nBesti has been found in the neighborhood of particle i.

Evolutionary process goes on and the updated velocity and position will be obtained again by the new pBesti and new
nBesti. The evolutionary process is iterative and will end when the stop conditions are met.

2.2. Developments of PSO

As the PSO has become more attractive and has been utilized in lots of real world applications [22,38,25,5,23,18,20,32],
many researches have been working to improve the algorithm performance and various PSOs have been proposed.

Some researches focused on the parameter studies such as the inertia weight [33,34,41] and the acceleration coefficients
[41,29]. Also, some researchers concentrated on combining PSO with other evolutionary operators and techniques to improve
PSO’s performance. Since Angeline proposed to apply selection operator into PSO [2], the combination of PSO with other opti-
mization algorithms has become very attractive [7,1]. Inspired by biological mechanisms, niche technology [4] and speciation
technology [26] are introduced into PSO to prevent particles to be too close to each other so that PSO can locate as many opti-
mal solutions as possible. On the other hand, different topology structures, such as the star, ring, pyramid, and von Neumann
structures [17] have been studied to improve the algorithms performance. PSO variants enhanced by orthogonal learning
strategy [42], neighborhood search [36], centripetal strategy [3], multi-layer search strategy [37], self-adaptive strategy
[9], and intermediate disturbance strategy [11] have attracted great attentions in recent years in PSO community.

2.3. Related work on information sharing

How to utilizing existing information to better adjust particles’ velocities has become a promising and significant research
topic in PSO. Besides the information sharing methods in GPSO, LPSO and FIPS, some other information sharing strategies are
reviewed by Engelbrecht in [10]. Stereotyping method [14], fitness-distance-ratio method [27], barebones method [15], and
general information sharing method [30] are summarized and their advantages and disadvantages are discussed. In the ste-
reotyping PSO, the information comes from the cluster group [14], but the clustering adds computational complexity in the
PSO and the best number of clusters is always problem-dependent [10]. In FIPS, the particle is fully informed by all the par-
ticles in the neighborhood [24], but the FIPS has the disadvantage that it may cancel the influence of each particle by the
summing up of multiple influences [10]. In [27], the information of the fitness-distance-ratio PSO (FDR-PSO) provides a par-
ticle with maximal FDR to influence its flying velocity. However, the calculation of the additional particle on each dimension
for each particle is time-consuming. In the information sharing strategy used in [30], the individuals with fitness which is
better than the average fitness are collected in the best-performing list (BPL) and the individuals are attracted towards
the nearest member in the BPL. However, the approach is developed for general swarms not specifically for PSO [10]. The
comprehensive learning PSO (CLPSO) proposed in [21] can enhance the population diversity by letting each dimension learn
from different particles. The CLPSO performs well on multimodal functions, but is less promising in unimodal functions.

3. CCPSO-ISM

3.1. ISM

The ISM idea is simple and easy to be implemented. Similar to [13], the ISM is implemented by using a sharing device,
called ‘‘blackboard’’, where an individual particle posts information and reads information. To keep the algorithm simple,
the blackboard has limited capacity. That is, the older, worse information will be overwritten by the newer, better one. In
each iteration, all the particles post their current personal historically best information pBesti to the blackboard. Note that
the blackboard keeps only the newest best information of each particle, and hence the information post in last iteration
is overwritten by the information in this iteration. This way, the particles in the swarm can communicate with each other
by posting and reading the shared information. Also, the particles can use this shared information for better search when
necessary. The following subsection will design the CC operator to properly and efficiently use the shared information to
enhance the search ability.

3.2. CC operator

The CC operator is based on the ISM that collects the sharing information. In order to simplify the implementation, a vec-
tor named ccBest (competition and cooperation best) is introduced into each particle. This vector is used to store the shared
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information the particle gets from the ‘‘blackboard’’. In each iteration, when updating the velocity, the particle i is influenced
by its corresponding ccBesti as shown in Eq. (3) below instead of pBesti and nBesti used in Eq. (1). In Eq. (3), x is the inertia
weight as in Eq. (1), the c is the acceleration coefficient set as 2.0 and the rd is a random value in the range [0,1].
v id ¼ xv id þ crdðccBestid � xidÞ ð3Þ
The construction of ccBest is described as follows. The vector ccBesti is initialized as pBesti at the beginning and is used to
guide the flying velocity as in Eq. (3). However, when the particle i has been trapped for a specified number of iterations G,
this means the current guidance information in ccBesti is no longer effective to lead the particle to a better search region.
Thus the trapped particle will call for cooperation from other particles. But who will be the correct cooperators and how
to manipulate the cooperative operation become important issues. Inspired by the phenomenon in the human society that
people always have different cooperators in different aspects, we allow the particle to have different cooperators in different
dimensions. In details, for each dimension d of the trapped particle i, the particle will communicate with all the particles
through the ‘‘blackboard’’ and randomly select K particles (possibly including itself) to compete. The winner with the best
pBest fitness (particle k, for example) will become the cooperator.

The competition pressure can be controlled by K, which can also be regarded as the neighborhood size of particle i. In this
paper, a novel strategy that uses a dynamic neighborhood size can be designed in order to balance the exploration and
exploitation abilities. The K is obtained as
K ¼ t
T
� SIZE

� �
ð4Þ
where t, T and SIZE are the current iteration, maximal iteration and population size respectively. Eq. (4) shows that K
increases from 1 to the whole swarm. Even though there may be other strategies to control the K value or just set it as con-
stant, we think that a linearly increase K value is somehow consistent with the claim in [17] that smaller neighborhood is
better for exploration in the early phase whilst larger one is propitious to convergence in the late phase.

After the determination of the cooperator, CCPSO-ISM uses a cooperation probability P to control the cooperation behav-
ior, and only when a random value generated uniformly in range [0,1] is lower than P, the cooperation behavior takes place
successfully. Once the cooperation behavior happens, the value of ccBestid will be replaced by pBestkd of the corresponding
cooperator. Otherwise, ccBestid will be replaced by pBestid of the particle itself.

As ccBest is the result of competition and cooperation among the whole swarm, it represents for the search information
not only the particle itself, the neighborhoods’ best particle, the globally best particle, but also any other particles. Hence,
ccBest on the one hand keeps the concept of original PSO, and on the other hand can enhance diversity to weaken the ‘‘attrac-
tion’’ phenomenon of the globally best particle because all the information of the swarm is used. It should be noted that the
personal historically best pBesti is still stored by each particle because this information is to be posted to the ‘‘blackboard’’ in
each iteration. Additionally, the globally best position which is important to indicate the global convergence will not be lost
during the evolutionary process.

3.3. Parameter investigations of CCPSO-ISM

CCPSO-ISM adds two new parameters into original PSO in its CC operator. The two new parameters are the stagnated iter-
ations G and the cooperation probability P. We will investigate these two parameters through experiments based on Sphere,
Rosenbrock, Schewefel, Rastrigin, Ackley and Griewank functions. All these functions are given in Table 1, where the search
range, acceptable error value, and global optimum are also presented. We run 30 independent trials on each function when
investigate different parameter configurations. The population size is 20 and the maximal iteration is 5000. The mean results
are recorded for comparison.

Firstly, the parameter G is investigated. The value of G may affect the performance of CCPSO-ISM. A smaller value for G
may destroy the normal stagnation phenomenon of the algorithm whilst a larger value of G may result in the waste of com-
putation on the local optima. In order to obtain an insightful view of how the stagnated iteration G affects the performance of
CCPSO-ISM, this paper tests different G from 0 to 10. As we have not investigated the value of parameter P, we adopt 0.05 for
P. The mean fitness values of 30 runs when CCPSO-ISM using different G are plotted in Fig. 1(a). It should be noted that the
global optimum of the Schewefel function is �12596.5, and therefore the mean fitness values of this function are often smal-
ler than �10,000 even with different G, while all the other functions are with 0 as the global optimum. Therefore the vertical
axis of the figure is broken into two segments to make the plot possible. The figure shows that it is better to use a smaller G
for Sphere function which is a simple unimodal function mainly owing to that it is better to change the guidance as soon as
possible to enhance the hill-climbing. However, such a property is not evident for the difficult unimodal function (Rosen-
brock function) and the multimodal functions. The plots in the figure indicate that a value of 5 for G is better when all
the six functions are considered. Therefore, we recommend setting G ¼ 5 to balance the performance of CCPSO-ISM on both
unimodal and multimodal functions.

Secondly, we investigate the parameter P. P is used to control the cooperation behavior. That is, it is the probability that
impacts whether the particle learns from cooperator’s historically best. By considering the impact of P, we can imagine that
parameter P has something common with parameter G. A smaller G may affect the results somehow like a larger P because



Table 1
The 16 test functions for comparison, the first 4 functions are unimodal functions, and followed by 6 multimodal functions with many local optima, the last 6 are multimodal functions with a few local optima, more
details of these functions referred to [39].

Test functions D Search range f min Accept Name

f 1ðxÞ ¼
PD

i¼1x2
i

30 [�100, 100]D 0 0.01 Sphere

f 2ðxÞ ¼
PD�1

i¼1 100 xiþ1 � x2
i

� �2 þ ðxi � 1Þ2
h i

30 [�10, 10]D 0 100 Rosenbrock

f 3ðxÞ ¼
PD

i¼1ð xi þ 0:5b cÞ2 30 [�100,100]D 0 0 Step

f 4ðxÞ ¼
PD

i¼1ix4 þ random½0;1Þ 30 [�1.28,1.28]D 0 0.01 Quadric noise

f 5ðxÞ ¼
PD

i¼1 � xi sin
ffiffiffiffi
xi
p� � 30 [�500, 500]D �12596.5 �10,000 Schwefel

f 6ðxÞ ¼
PD

i¼1 x2
i � 10 cosð2pxiÞ þ 10

� � 30 [�5.12, 5.12]D 0 50 Rastrigrin

f 7ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D

PD
i¼1x2

i

q	 

� exp 1=D

PD
i¼1 cos 2pxi

� �
þ 20þ e

30 [�32, 32]D 0 0.01 Ackley

f 8ðxÞ ¼ 1
4000

PD
i¼1x2

i �
QD

i¼1 cos xiffi
i
p
� �

þ 1 30 [�600, 600]D 0 0.01 Griewank

f 9ðxÞ ¼ p
D 10 sin2ðpy1Þ þ

PD�1
i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ� þ ðyD � 1Þ2

n o
þ
PD

i¼1uðxi;10;100;4Þ 30 [�50, 50]D 0 0.01 Generalized penalized 1

f 10ðxÞ ¼ 1
10 sin2ð3px1Þ þ

PD�1
i¼1 ðxi � 1Þ2½1þ sin2ð3pxiþ1Þ� þ ðxD � 1Þ2½1þ sin2ð2pxDÞ�

n o
þ
PD

i¼1uðxi;5;100;4Þ 30 [�50, 50]D 0 0.01 Generalized penalized 2

f 11ðxÞ ¼ 0:5þ sin
ffiffiffiffiffiffiffiffiffiffi
x2

1þx2
2

p
ð Þ2�0:5

1:0þ0:001 x2
1þx2

2ð Þð Þ2
2 [�100, 100]D 0 0 Schaffers f6

f 12ðxÞ ¼ 1
500þ

P25
j¼1 jþ

P2
i¼1ðxi � aijÞ6

� ��1

 ��1 2 [�65.536, 65.536]D 0.988004 0.988004 Shekels foxholes

f 13ðxÞ ¼
P11

i¼1 ai �
x1 bi

2þbi x2ð Þ
b2

i þbi x3þx4


 �2 4 [�5, 5]D 0.0003075 0.0005 Kowalik

f 14ðxÞ ¼ �
P5

i¼1 ðx� aiÞðx� aiÞT þ ci

h i�1 4 [0, 10]D �10.1532 �10 Shekels family 1

f 15ðxÞ ¼ �
P7

i¼1½ðx� aiÞðx� aiÞT þ ci�
�1 4 [0, 10]D �10.4029 �10 Shekels family 2

f 16ðxÞ ¼ �
P10

i¼1½ðx� aiÞðx� aiÞT þ ci�
�1 4 [0, 10]D �10.5364 �10 Shekels family 3
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Fig. 1. Parameter investigation results in CCPSO-ISM.
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they both make the cooperation behavior among the swarm more frequent and easier. The results plotted in Fig. 1(b) support
this hypothesis in a certain sense. For example, while optimizing the Sphere function, a smaller G or a larger P can enhance
search performance. Fig. 1(b) shows that for a general configuration, neither too small P nor too large P is better, but the
value of 0.05 for P is good for most of the test functions. Hence, we will use 0.05 as the cooperation probability in
CCPSO-ISM because it can balance the performance of CCPSO-ISM on different kinds of functions.
Table 2
Results comparison of variant PSOs (Boldface means the best value among all the PSOs).

Functions GPSO LPSO FDR-PSO FIPS CLPSO CCPSO-ISM

f 1 Mean 3:03� 10�52 1:43� 10�28 7:14� 10�117 3:97� 10�30 3:37� 10�19 6:61� 10�35

Std. dev 9:55� 10�52 6:79� 10�28 5:05� 10�116 6:82� 10�30 3:80� 10�19 6:56� 10�35

f 2 Mean 22.28 22.95 1.10 22.52 11.46 0.07
Std. dev 18.54 14.37 1.72 0.46 11.44 0.19

f 3 Mean 0 0 0 0 0 0
Std. dev 0 0 0 0 0 0

f 4 Mean 7:14� 10�3 1:46� 10�2 4:11� 10�3 2:38� 10�3 4:03� 10�3 6:71� 10�3

Std. dev 2:50� 10�3 4:08� 10�3 2:20� 10�3 5:79� 10�4 1:19� 10�3 1:71� 10�3

f 5 Mean �9925.01 �9518.86 �9071.14 �10050.4 � 12552.91 �12538.69
Std. dev 536.07 432.51 489.17 823.30 41.54 62.46

f 6 Mean 27.02 35.72 31.72 28.43 1:23� 10�11 0

Std. dev 7.55 8.61 9.62 9.69 2:29� 10�11 0

f 7 Mean 1:44� 10�14 1:91� 10�14 1:51� 10�14 1:25� 10�14 1:92� 10�12 1:40� 10�14

Std. dev 2:88� 10�14 5:96� 10�15 8:37� 10�15 3:21� 10�14 1:17� 10�12 1:65� 10�15

f 8 Mean 2:62� 10�2 1:27� 10�2 1:35� 10�2 1:97� 10�4 9:29� 10�13 6:84� 10�14

Std. dev 2:48� 10�2 1:64� 10�2 1:62� 10�2 1:39� 10�3 3:81� 10�12 1:69� 10�13

f 9 Mean 1:66� 10�2 1:59� 10�30 8:29� 10�3 1:07� 10�31 1:57� 10�21 1:57� 10�32

Std. dev 4:37� 10�2 4:22� 10�30 2:84� 10�2 3:98� 10�32 2:18� 10�21 1:11� 10�47

f 10 Mean 2:2� 10�3 5:36� 10�28 2:86� 10�3 1:35� 10�30 1:37� 10�20 1:35� 10�32

Std. dev 4:44� 10�3 1:66� 10�27 4:87� 10�3 4:55� 10�31 1:67� 10�20 1:38� 10�47

f 11 Mean 0 1:94� 10�4 0 1:94� 10�4 3:12� 10�9 0

Std. dev 0 1:37� 10�3 0 1:37� 10�3 1:55� 10�8 0

f 12 Mean 0.998 0.998 0.998 1.215 0.998 0.998
Std. dev 1:12� 10�15 1:12� 10�15 1:12� 10�15 0.982 1:12� 10�15 1:12� 10�15

f 13 Mean 1:68� 10�3 3:07� 10�4 1:64� 10�3 3:28� 10�4 4:48� 10�4 4:38� 10�4

Std. dev 4:78� 10�3 1:59� 10�17 4:79� 10�3 1:44� 10�4 1:14� 10�4 1:14� 10�4

f 14 Mean �6.7503 �9.8017 �5.5036 �9.2041 � 10.1532 � 10.1532
Std. dev 3.52515 1.43344 3.45745 2.41188 1:26� 10�14 1:26� 10�14

f 15 Mean �8.0983 � 10.4029 �7.2395 �10.2499 � 10.4029 � 10.4029
Std. dev 3.4340 8:87� 10�15 3.7696 1.08 7:18� 10�15 7:18� 10�15

f 16 Mean �7.7852 � 10.5364 �7.5083 � 10.5364 �10.4292 � 10.5364
Std. dev 3.7395 8:97� 10�15 3.7943 1:07� 10�14 0.7581 8:97� 10�15
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Fig. 2. The mean evolutionary curves of different PSO algorithms on some selected test functions. (a) f 2, (b) f 5, (c) f 6, (d) f 7, (e) f 8, (f) f 9, (g) f 10, (h) f 14.
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4. Experimental studies

4.1. Benchmark functions and PSOs configurations

In order to show the advantages of CCPSO-ISM, we choose 16 benchmark functions [39] to test the performance of CCPSO-
ISM and compare the results obtained by CCPSO-ISM and other PSOs. These 16 test functions listed in Table 1 include 4 uni-
modal functions, 6 complex multimodal functions with many local optima and 6 multimodal functions with only a few local
optima. The details of these benchmark functions are given in Table 1 and more information can be referred to [39].

We choose five PSOs that use different methods to utilize the search information to compare with CCPSO-ISM. The five
PSO algorithms are GPSO [33], LPSO [17], FDR-PSO [27], FIPS [24] and CLPSO [21], which are paradigms that use the search
information in different fashions. In order to make a fair comparison among the algorithms, the parameter configurations of
different PSOs are set according to that proposed by their authors respectively. For CCPSO-ISM, the inertia weight x = 0.6,
acceleration coefficient c = 2.0, stagnated iteration G = 5, and cooperation probability P = 0.05. Moreover, all the algorithms
use the same population size of 20. All the PSOs use the same maximal number of 2� 105 function evaluations (FEs) for each
test function. For the purpose of reducing the influences of stochastic error, we run 50 independent trials on each test func-
tion and record the mean results for comparison.
4.2. Result comparisons on solution accuracy

The experimental results in Table 2 contain the mean fitness and the standard deviation of the 50 trials on each function
with different PSO algorithms. The results show that CCPSO-ISM has a stronger ability to reach the global optimum on most
of the tested functions. CCPSO-ISM obtains the best solutions on the functions f 2; f 3; f 6; f 8; f 9; f 10; f 11; f 12; f 14; f 15 and
f 16, 11 out of the 16 functions.

Fig. 2 give the evolutionary curves of each algorithm in the same figure to show the convergence characteristics of dif-
ferent PSOs on some selected functions. The curves can also suggest the convergence speed and solution quality. As the func-
tions are minimization problems, the left the curve is closer to, the faster convergence speed it indicates, and the lower point
it has when the algorithm terminates, the better solution it obtains at last. Moreover, we can see from the curves whether the
algorithm is trapped into the local optima while the iteration goes on. An algorithm which is easy to be premature or be
trapped into local optima will keep a relative aclinic line on the later iterations (function evaluations) whilst an algorithm
has ability to jump out of local optima to refine the results can keep a gradient line until it finds the global optimum. The
figures show that CCPSO-ISM is not likely to be trapped into local optima but can reach the global optimum gradually during
the process, especially on the complex multimodal functions f 5 to f 10.
4.3. Result comparisons on convergence speed

The experimental results indicate that CCPSO-ISM can get better solutions than other PSO algorithms, especially on com-
plex multimodal problems. However, it is also interesting to compare the convergence speed of algorithms. The data in



Table 3
Convergence speed comparison among different PSO algorithms (Boldface means the best value).

Functions GPSO LPSO FDR-PSO FIPS CLPSO CCPSO-ISM

f 1 Speed (FEs) 106743 117,730 63,549 32,485 71,297 35,020
Time (s) 0.96 1.12 4.74 0.35 0.66 0.27
Ratio (%) 100 100 100 100 100 100

f 2 Speed (FEs) 94,216 102,557 51,580 12,922 76,852 32,276
Time (s) 0.92 1.05 3.88 0.15 0.75 0.27
Ratio (%) 100 100 100 100 100 100

f 3 Speed (FEs) 93,625 122,506 51,413 19,562 39,384 20,229
Time (s) 1.17 1.6 4.01 0.27 0.51 0.23
Ratio (%) 100 100 100 100 100 100

f 4 Speed (FEs) 166,203 188,299 80,523 46,967 100,858 133,985
Time (s) 1.57 1.93 6.02 0.52 0.98 1.12
Ratio (%) 88 16 98 100 100 98

f 5 Speed (FEs) 91,011 96,602 51,789 121,938 38,802 14,350
Time (s) 2.32 2.06 6.53 2.22 0.95 0.21
Ratio (%) 52 14 6 64 100 100

f 6 Speed (FEs) 93,690 99,473 47,758 89,219 54,704 17,819
Time (s) 1.22 1.4 3.76 1.29 0.77 0.22
Ratio (%) 100 96 96 100 100 100

f 7 Speed (FEs) 110,705 125,543 66,489 38,434 75,584 48,964
Time (s) 1.39 1.82 5.18 0.59 0.98 0.56
Ratio (%) 100 100 100 100 100 100

f 8 Speed (FEs) 111,043 132,489 65,612 45,875 80,784 40,667
Time (s) 1.45 1.84 5.15 0.69 1.08 0.49
Ratio (%) 38 58 54 100 100 100

f 9 Speed (FEs) 98,918 106,550 54,106 19,689 58,403 32,032
Time (s) 2.14 2.6 4.69 0.47 1.33 0.66
Ratio (%) 86 100 92 100 100 100

f 10 Speed (FEs) 110,014 122,578 61,840 26,605 68,030 38,539
Time (s) 2.57 2.7 5.46 0.57 1.58 0.82
Ratio (%) 80 100 74 100 100 100

f 11 Speed (FEs) 50,005 58,915 33,250 13,708 66,088 42,352
Time (s) 0.65 0.69 3.2 0.13 0.83 0.31
Ratio (%) 100 98 100 98 96 100

f 12 Speed (FEs) 6199 7362 4424 3729 6618 6456
Time (s) 0.17 0.21 0.49 0.09 0.19 0.13
Ratio (%) 100 100 100 94 100 100

f 13 Speed (FEs) 43,726 55,044 25,834 18,919 49,775 58,976
Time (s) 0.7 0.76 2.88 0.22 0.67 0.52
Ratio (%) 76 100 82 98 68 68

f 14 Speed (FEs) 14,479 14,151 3562 7020 12,262 7077
Time (s) 0.24 0.22 0.39 0.08 0.17 0.06
Ratio (%) 50 94 34 86 100 100

f 15 Speed (FEs) 10,954 9459 3180 2012 10,179 7202
Time (s) 0.18 0.15 0.32 0.02 0.14 0.06
Ratio (%) 68 100 58 98 100 100

f 16 Speed (FEs) 8889 7810 3118 2369 10,879 7272
Time (s) 0.15 0.14 0.33 0.03 0.16 0.06
Ratio (%) 64 100 60 100 98 100

Mean reliability 81.375% 86% 78.375% 96.125% 97.625% 97.875%
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Table 3 shows the convergence speed of each PSO by giving the FEs and running time to reach the Accept solution (accept-
able accuracy for each test function that presented in Table 1). Additionally, successful ratio is given in Table 3. We can
observe from Table 3 that CCPSO-ISM reaches the Accept solutions fastest on functions f 1; f 5; f 6 and f 8 when measured
on the FEs. When measured on the running time, CCPSO-ISM is the fastest on functions f 1; f 3; f 5; f 6; f 7; f 8 and f 14 (all
the experiments are carried out on the same machine with a Celeron 2.26 GHz CPU, 256 MB memory and the Windows
XP2 operating system). Nevertheless, the most attractive advantage of CCPSO-ISM is that it can obtain the Accept solutions
with much higher successful ratio. It reaches the ratio of 100% on 14 out of the 16 tested functions. The highest mean
reliability with 97.875% makes CCPSO-ISM the most reliable algorithm.
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4.4. Result discussions

(1) Unimodal functions
While optimizing unimodal functions, for example, from f 1 to f 4, GPSO always does better than LPSO. This is because
that GPSO uses the globally best particle to guide all the particles to fast converge convergence on unimodal functions.
FDR-PSO adds a nearest-better particle as an exemplar to guide the flying. Moreover, the c1 and c2 used in FDR-PSO are
both 1.0 instead of 2.0. Both the best ‘‘fitness-distance-ratio’’ particle and the smaller acceleration coefficients may
help to refine the solution accuracy. Therefore, FDR-PSO has better performance on unimodal functions. On the con-
trary, CLPSO is not much promising for solving unimodal functions. The conclusions in [21] and the experimental
results in this paper both are in agree with this fact. The result that CCPSO-ISM is not better than GPSO and
FDR-PSO for the simple unimodal function may be caused by weakening the influence of the globally best particle.
However, CCPSO-ISM can still achieve higher accurate solution than LPSO, FIPS and CLPSO on the Sphere function.
The advantages of CCPSO-ISM become more evident when more complex functions are tested. Like the Rosenbrock
function ðf 2Þ, although it is a unimodal function, it is very difficult to find the global optimum for that the minimal
point is on the long narrow valley [21]. We can observe that only CCPSO-ISM can find the globally best optimum
for the Rosenbrock function, therefore, CCPSO-ISM outperforms all the other PSOs on this function.

(2) Multimodal functions with many local optima
The capabilities of avoiding local optima and reaching the global optimum on multimodal functions are very impor-
tant for global optimization algorithms. Traditional PSO has disadvantages in solving multimodal functions for that the
algorithm is easy to be trapped by local optima. The results presented in Table 2 show that GPSO and FDR-PSO do
much worse than LPSO, FIPS, CLPSO and CCPSO-ISM mainly due to that the later ones use more information from
the swarm to maintain the diversity when solving multimodal functions. Especially, CCPSO-ISM is very promising
on multimodal functions. Compared with all the other PSOs, CCPSO-ISM can reach the global optimum on all the com-
plex multimodal function from f 5 to f 10 and outperforms all the other PSOs on functions f 6; f 8; f 9 and f 10. More
importantly, only CCPSO-ISM can reach the optimum value 0 on the Rastrigrin function ðf 6Þ.
Multimodal functions are difficult to solve because the global optimum can be very far from the local optima (like the
Schwefel function f 5), or can be surrounded by a considerable amount of local optima (like the Rastrigin function f 6),
or the function has linkages between variables (like the Griewank function f 8). Hence, any algorithm that wants to find
the global optimum need to have the ability of jumping out of local optima by using all the information of the swarm
to maintain the diversity. Traditional PSO is easy to be attracted by the only globally best particle. Therefore it is dif-
ficult to jump out of the current globally best region which is more likely to be a local optimum. CCPSO-ISM lets the
particle cooperate with any other particle on different dimension. The guidance vector ccBest in CCPSO-ISM is the com-
petition and cooperation results of the whole swarm not that of one particle (for example, the globally best particle).
Such a mechanism can avoid local optima for that the whole information in the swarm is used. Hence the ISM can mix
up information of the whole swarm for a better exploration of the landscape. Also, the figures in Fig. 2 support the
claim that CCPSO-ISM has the ability to jump out of the local optima and search for better region on complex multi-
modal problems. The curves of CCPSO-ISM indicate that the algorithm is able to improve the solutions steadily for a
long time on the multimodal functions whilst many other PSOs appear to fall into poor local optima quite early and
cannot jump out during the running.

(3) Multimodal functions with only a few local optima
On solving functions f 11 to f 16, we can also observe the advantages of CCPSO-ISM as shown in Table 2. Functions f 11 to
f 16 are simpler although they are still multimodal functions because the dimension is lower and the local optima are
fewer. We can see from the experimental results that most of the algorithms can found the global optimum for these
problems. On function f 11, all the PSOs can obtain the global optimum except that LPSO, FIPS and CLPSO are trapped.
FIPS is also trapped in f 12 whilst other algorithms are not. It is interesting to observe that different PSOs can get dif-
ferent results for f 13. Functions f 14 to f 16 are the Shekel’s family functions, and CCPSO-ISM performs much better than
other algorithms. CCPSO-ISM obtains the global optima on all these three functions, and only CLPSO can have a com-
parable performance with CCPSO-ISM on these functions. The experimental results show that CCPSO-ISM is a much
promising algorithm in solving this kind of problems.
Table 4
Biased initialization ranges for test functions.

Functions Symmetric initialization Biased initialization Global optimization

f 1 ½�100;100�D ½50;100�D ½0;0; � � � ;0�
f 2 ½�10;10�D ½5;10�D ½1;1; � � � ;1�
f 5 ½�500;500�D ½�500;�250�D ½420:96;420:96; � � � ;420:96�
f 6 ½�5:12;5:12�D ½2:56;5:12�D ½0;0; � � � ;0�
f 8 ½�600;600�D ½300;600�D ½0;0; � � � ;0�
f 12 ½�65:536;65:536�D ½32:768;65:536�D [-32, �32]



Table 5
Results comparison on biased initialized functions (Boldface means the best value).

Functions PSO CCPSO-ISM

Mean Std. dev Mean Std. dev

f 1 3:76� 10�53 1:12� 10�52 8:20� 10�36 5:80� 10�35

f 2 28.801 25.8169 8.63897 8.53605
f 5 �8843.61 241.272 � 10371.3 59.3881
f 6 30.8437 8.6715 2:49� 10�16 1:76� 10�15

f 8 2:35� 10�2 2:60� 10�2 6:89� 10�14 2:90� 10�13

f 12 0.998004 1:59� 10�16 0.998004 1:7� 10�16

Table 6
Results comparison on rotated multimodal functions (Boldface means the best value).

Functions PSO CCPSO-ISM

Mean Std. dev Mean Std. dev

f 5 �7524.2 664.389 �8555.20 384.30
f 6 61.6077 16.4053 43.35 13.71
f 7 1.92294 0.657,078 3:67� 10�4 2:15� 10�3

f 8 1:39� 10�2 1:55� 10�2 6:43� 10�6 2:48� 10�5
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5. Further performance tests on CCPSO-ISM

This section further tests CCPSO-ISM under different conditions. The asymmetric initialization ranges for each function
which do not contain the globally best point will be used; the rotated multimodal functions are tested; and higher dimen-
sional functions are also tested, for the purpose of testing the performance of CCPSO-ISM under different environments. We
use GPSO as the traditional PSO (PSO for short) to compare with CCPSO-ISM here in the following simulations.

5.1. Biased initializations of test functions

We use the schema proposed by Angeline [2], in which the particles are initialized just to a portion of the space that does
not contain the global optimal point. Six functions are used for test, including the unimodal function f 1 and f 2, and the mul-
timodal function f 5; f 6; f 8 and f 12. The biased initialization ranges are shown in Table 4. Also, the test of each function is run
for 50 independent trials and each trail runs for 2� 105 FEs.

Table 5 gives the results. The results indicate that both PSO and CCPSO-ISM perform well with or without biased initial-
izations. These are in reasonably good agreement with the conclusions of Angeline that PSO are only slightly affected by the
initialization schemas [2]. Therefore, CCPSO-ISM can obtain promising solutions even though it is initialized without
containing the global optimal region.

5.2. Rotated multimodal test functions

The use of rotated functions to test the performance of algorithms is also emphasized by many researchers [21,31]. Tra-
ditional test functions are often criticized for the lack of linkages among variables and they can be optimized by algorithms
dimension by dimension. The most popular method to rotate a function is to left multiply an orthogonal matrix. More details
of the rotation method can be referred to [21,31].

We rotated the multimodal functions of f 5; f 6; f 7 and f 8 in this way and reevaluated them in both PSO and CCPSO-ISM.
Results are obtained by 50 independent trials (2� 105 FEs for each trial) and are given in Table 6.

Results in Table 6 show that both PSO and CCPSO-ISM are affected by the rotation of test functions. They have difficulty in
finding the global optimum of function f 5 and f 6 after rotation. However, CCPSO-ISM can still perform better than PSO on
these two rotated functions. Moreover, CCPSO-ISM can still obtain the global optimum on function f 7 and f 8 even though
they are rotated, whilst traditional PSO is trapped.

5.3. Different dimensions of test functions

We also test the performance of CCPSO-ISM on functions with different dimensions. As we can expect, when the dimension
of the problem increases, it becomes harder and harder to find the global optimum, especially for the multimodal functions
whose number of local optima increase exponentially as the dimension increases. CCPSO-ISM has adequate information
among the swarm by using the ISM and CC operator. Therefore CCPSO-ISM is expected to reach the global optimum much



Table 7
Results comparison between PSO and CCPSO-ISM on f 1 with different dimensions.

Dimensions 3 5 10 15 20 30 50 100

MAX. FEs 2� 104 2� 104 5� 104 1� 105 5� 105 2� 105 5� 105 1� 106

PSO Mean 6:04� 10�60 7:64� 10�43 3:29� 10�55 2:12� 10�69 3:01� 10�47 1:95� 10�52 5:59� 10�60 8:59� 10�36

FEs 4633 7362 21,414 44,921 50,927 106,100 276,023 624,608

CCPSO-ISM Mean 1:10� 10�19 6:23� 10�12 1:87� 10�18 4:73� 10�29 8:93� 10�23 6:99� 10�35 3:32� 10�61 1:71� 10�71

FEs 3984 7112 13,762 19,825 24,880 35,105 53,488 95,090

Speed ratio 1.16 1.04 1.56 2.27 2.05 3.02 5.16 6.57
Solutions ratio 5:47� 10�41 1:23� 10�31 1:75� 10�37 4:49� 10�41 3:37� 10�25 2:79� 10�18 16.8 5:03� 1035

Table 8
Results comparison between PSO and CCPSO-ISM on f 6 with different dimensions.

Dimensions 3 5 10 15 20 30 50 100

MAX. FEs 2� 104 2� 104 5� 104 1� 105 5� 105 2� 105 5� 105 1� 106

PSO Mean 0 0.437804 3.50227 7.68766 15.004 30.7044 51.4393 167.592
FEs 39 39 1546 19,601 34,138 93,825 569,699 –

CCPSO-ISM Mean 2:09� 10�13 3:77� 10�7 4:74� 10�11 0 9:48� 10�11 0 3:98� 10�2 53.9886

FEs 37 72 2172 4835 8096 18,298 89,446 1,772,955

Speed ratio 1.05 0.54 0.71 4.05 4.22 5.13 6.37 –
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easier than traditional PSO. Experimental results in Section 4 have shown the advantages of CCPSO-ISM on most of the func-
tions with 30 dimensions. In order to find out the impact of dimension, we set different dimension number on the unimodal
function f 1 and the multimodal function f 6 and carry out experiments. The dimension increases from 3 to 100, including 3, 5,
10, 15, 20, 30, 50 and 100. For the complex level of different dimensions, we set different maximal FEs for different dimen-
sions. The results of f 1 and f 6 are given in Tables 7 and 8 respectively. Here, we still use 0.01 as the acceptable solution for
f 1 and 50 for f 6. The final solutions and speed (average FEs number to obtain the acceptable solution) are average values of
50 independent trials.

It can be seen from the results that the advantages of CCPSO-ISM become more and more evident as the dimension
increases according to the Row ‘‘Speed Ratio’’ and Row ‘‘Solution Ratio’’ in Table 7, and the Row ‘‘Speed Ratio’’ in Table 8.
The value of ‘‘Solution Ratio’’ is the quotient of the solution obtained by PSO and the solution obtained by CCPSO-ISM. As
the functions are minimization problems, the larger the value is, the better result CCPSO-ISM obtains than PSO. The value
of ‘‘Speed Ratio’’ is the quotient of the FEs needed by PSO and the one needed by CCPSO-ISM to obtain an acceptable solution.
Therefore, the larger the value is, the faster CCPSO-ISM outperforms PSO. For example, in Table 7 for f 1, when the dimension
is 30, solution ratio is 2:79� 10�18 as the result of ð1:95� 10�52Þ=ð6:99� 10�35Þ and speed ratio is 3.02 as the result of
106,100/35,105. Due to the existence of solution 0 to f 6, we do not provide the solution ratio in Table 8. The Speed Ratio
value of the 100 dimensional f 6 is not given in Table 8 because PSO cannot reach the Accept solution within the maximal
FEs. The experimental results show that CCPSO-ISM is a promising algorithm not only on low but also high dimensional
problems, not only on unimodal functions but also on multimodal functions. Hence, CCPSO-ISM is a promising algorithm
to be used in a wider scope of real-world applications.

6. Conclusion

This paper has designed the ISM for PSO to make all the best information in the swarm accessible by all the particles. This
is useful to cope with the lack of information sharing in traditional PSOs. In order to use the shared information more prop-
erly and efficiently, the CC operator was designed based on competition and cooperation behaviors in human society. The
implementation of CCPSO-ISM was given in details and the advantages of CCPSO-ISM were shown by comparing it with
some other PSO algorithms on 16 global numerical benchmark functions. The experimental results firstly show that even
though CCPSO-ISM is not as good as GPSO or FDR-PSO in solving simple unimodal functions, it does much better than LPSO,
FIPS and CLPSO. Secondly, CCPSO-ISM has strong global search ability by using all the information of the swarm to guide
search direction, indicating that the ISM is an appropriate way to mix up information of the whole swarm for a better explo-
ration of the landscape. Lastly, CCPSO-ISM has very satisfactory performance on solving complex problems and outperforms
other PSOs on most of the benchmark functions, especially on multimodal functions with many local optima.

We also provided a further test on the proposed algorithm CCPSO-ISM under more difficult environments in order to ver-
ify its effectiveness and efficiency. The results show that CCPSO-ISM is slightly affected by the biased initialization ranges of
functions and can still have better performance on the rotated problems when compared with traditional PSO. Moreover, the
advantages of CCPSO-ISM become more and more evident with the increment of the problems’ complexity. In the future
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work, we will apply CCPSO-ISM to multi-objective optimization problem and test the CCPSO-ISM performance on real-world
application problems.
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