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ABSTRACT 
Differential evolution (DE) is an efficient and powerful 
population-based stochastic evolutionary algorithm, which 
evolves according to the differential between individuals. The 
success of DE in obtaining the optima of a specific problem 
depends greatly on the choice of mutation strategies and control 
parameter values. Good parameters lead the individuals towards 
optima successfully. The increasing of the success rate (the ratio 
of entering the next generation successfully) of population can 
speed up the searching. Adaptive DE incorporates success-
history or population-state based parameter adaptation. 
However, sometimes poor parameters may improve individual 
with small probability and are regarded as successful 
parameters. The poor parameters may mislead the parameter 
control. So, in this paper, we propose a novel approach to 
distinguish between good and poor parameters in successful 
parameters. In order to speed up the convergence of algorithm 
and find more “good” parameters, we propose a dichotomy 
adaptive DE (DADE), in which the successful parameters are 
divided into two parts and only the part with higher success rate 
is used for parameter adaptation control. Simulation results 
show that DADE is competitive to other classic or adaptive DE 
algorithms on a set of benchmark problem and IEEE CEC 2014 
test suite. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods. 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 

Adaptive parameter control; dichotomy-guided; differential 
evolution; evolutionary optimization 

1. INTRODUCTION 
Differential evolution (DE) is a stochastic evolutionary 
algorithm, which is designed for real parameter optimization 
problems [1]. Optimization is a challenging area in mathematics. 
DE has been extensively studied and has been applied to lots of 
practical problems because of its relative simplicity and 
competitiveness [2][3]. However, the search performance of DE 
algorithms depends greatly on control parameter settings [4] 
such as population size NP, scaling factor F, and crossover rate 
CR. The optimal settings of these parameters are problem-
dependent. A great amount of research work analyzes the effects 
of these parameters and proposes some suggestion of suitable 
parameters. The trial-and-error method for tuning the control 
parameters usually requires tedious optimization trials, so many 
adaptive or self-adaptive mechanisms have been proposed to 
update the control parameters during the evolutionary process 
[5][6][7][8][10][11], with adaptive selection of mutation 
strategies [9][12][13], and dynamic population size selection 
[14][15][16][17] to update the control parameters during the 
evolutionary process. The adaptive and self-adaptive 
mechanisms outperformed the classical DE algorithms in terms 
of the rate of convergence for many benchmark problems. 

The mechanisms of adaptive parameter control can be 
categorized into three classes [18] as: deterministic parameter 
control in which parameters are changed based on deterministic 
rules such as the time-dependent change of the mutation rates 
proposed by Holland [19], adaptive parameter control based on 
learning from evolution process [9], and self-adaptive parameter 
control in which parameters are associated with individuals and 
undergo recombination. Adaptive parameter control mechanism 
updates the parameters according to the historic successful 
experience [10] or the current population state [20][21]. The 
successful parameters are believed to direct the individuals 
towards optima in the next generation. Some success history 
experience based adaptive parameter control strategies have 
been proposed. 

JADE is a well-known effective DE algorithm which uses a 
novel mutation strategy called current-pbest/1 and an external 
archive for storing the inferior solutions. Each individual has its 
own parameters F and CR which are generated by probability 
distribution of Cauchy and Gaussian based on µF and µCR, 
respectively. Therein, µF and µCR are updated generation by 
generation according to the historical accumulation and the F 
and CR values of the successful individuals in current 
generation. Since the excellent performance of JADE, some 
extension researches on JADE have been proposed. In order to 
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improve the reliability of JADE, Peng et al. [22] modify the 
control parameter adaptation strategy of JADE by adding a 
weighting strategy and apply a “restart with knowledge transfer” 
strategy to guide the subsequent search. Yang et al. [23] applied 
JADE to optimize the weight vector in adaptive weighting 
process for large scale optimization problems. Gong et al. [24] 
proposed an approach combining strategy adaptation 
mechanism with JADE for numerical optimization. In order to 
improve the robustness of JADE, Tanabe et al. [25] proposed 
Success-History based Adaptive DE (SHADE), an improved 
version of JADE based on a historical record of successful 
parameter settings. In each generation, SHADE selects µF and 
µCR from the memory of a diverse set of parameters randomly 
and updates the memory according to the successful parameters 
with a weighting strategy. 

JADE updates the control parameters according to all the 
successful parameters in the last generation, which may include 
some poor parameters. That is, some parameters may be not 
good themselves, but the individual successes in improving the 
solution quality, mainly due to other factors rather than 
parameters. These poor parameters, however, may disturb the 
parameter adaptive control process. The weighting strategy at 
the ratio of improvement is one way to reduce the noise. 
Abandoning the poor and remaining the good is another way. In 
this paper, we proposed a different approach, Dichotomy-guided 
adaptive DE (DADE), which is a variant of JADE. DADE 
divides the successful F and CR into two parts according to the 
mean µF and µCR of last generation, respectively. Instead of 
based on all the successful F and CR like in JADE, the update of 
µF and µCR only related to the part with higher success rate. The 
population is divided into two parts according to the mean of F 
and CR, and the success rate is considered as the ratio of the 
number of individuals successfully entering the next generation 
to the number of individuals in this part. 

The contributions of this work are: 

1) Propose the idea of quality discrimination of successful 
parameters. The good parameters are distinguished from 
the poor parameters. 

2) Propose a novel dichotomy-guided adaptive approach to 
select the good parameters from all the successful 
parameter for parameter adaptive process. The poor 
parameters are abandoned. 

The rest of the paper is organized as follows. In Section 2, we 
review the base DE algorithm. Section 3 introduces some 
adaptive DE algorithms and JADE algorithm, which is the base 
of our algorithm. Section 4 develops DADE in detail. 
Experiments are carried out in Section 0 and test results are 
compared with other algorithms. Finally, conclusions are 
summarized in Section 6 and future work is highlighted. 

2. DIFFERENTIAL EVOLUTION 
As a branch of evolutionary algorithm, DE [1], first proposed by 
Storn and Price, is an effective and efficient global optimization 
algorithm. Just like genetic algorithm, DE performs mutation, 
crossover, and selection on population. The initial population 
{xi,0 = (x1i, x2i, …, xD,i)|i = 1, 2, ,…, NP} is randomly generated 
according to a uniform distribution on the search space as (1), 
where NP represents the size of population and D is the 
dimension of problem. 

      , ,min ,max ,minrand(0,1) ( )j i j j jx x x x        (1.) 

where xj,min and xj,max are the predefined lower and upper bounds 
of the jth dimension, rand(0,1) is a random number in range 
[0,1]. Then DE generates new population by mutation, 
crossover, and selection operations repeatedly until reaching the 
terminal condition. The operations are described below. 

Mutation: At each generation g, a mutant vector vi,g is created 
by mutation operation for each individual xi,g. The five 
frequently used mutation strategies are listed as follows: 

DE/rand/1 

, 1, 2, 3,( )i g r g r g r gv x F x x                                        (2.) 

DE/rand/2 

   , 1, 2, 3, 4, 5,( ) ( )i g r g r g r g r g r gv x F x x F x x         (3.) 

DE/best//1 

     , best, 1, 2,( )i g g r g r gv x F x x                                   (4.) 

DE/best/2 

     , best, 1, 2, 3, 4,( ) ( )i g g r g r g r g r gv x F x x F x x        (5.) 

DE/current-to-best/1 

      , , best, , 1, 2,( ) ( )i g i g g i g r g r gv x F x x F x x         (6.) 

where the indices r1, r2, r3, and r4 are distinct random integers 
selected from [1, 2, …, NP]. The factor F is a positive control 
parameter for scaling the difference vectors. The base vector 
xbest,g is the individual with best fitness in generation g. The 
above mutation strategies can be generalized by DE/-/k scheme, 
where k is a positive integer representing the number of 
difference vectors. vi,g combines a base vector with k difference 
vectors multiplied by F.  

Crossover: In order to enhance the diversity of the 
population, a binomial crossover operation forms a trial vector 
ui,g = (u1,i,g, u2,i,g, …, uD,i,g) as: 
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where rand(0,1) is a uniform random number on the interval 
[0,1], and jrand is a uniform integer selected from [1, 2, …, D], 
which is used to ensure that trial vector has at least one 
component different from xi,g. The crossover probability CR ∈
[0,1] is another control parameter corresponding to the average 
fraction of vector components inherited from trial vector. 
Selection: To determine the new individual surviving in the next 
generation g+1, the trial vector ui,g is compared to the target 
vector xi,g. The vector with better fitness enters the next 
generation. For example, for a minimization problem, the 
selected vector is given by: 
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           (8.) 

where f(x) is the fitness evaluation function.  

3. RELATED WORK 
This section briefly reviews some adaptive DE algorithms that 
dynamically update control parameters as the evolutionary 
search proceeds. 

3.1 SaDE 
Qin et al. [9] proposed SaDE to simultaneously implement four 
mutation strategies “DE/rand/1/bin”, “DE/rand-to-best/2/bin”, 
“DE/rand/2/bin”, and “DE/current-to-rand/1”. The probability of 
applying four mutation strategies to generate trial vector is 
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adapted based on their success rate in the past LP (a constant) 
generations. The more suitable mutation strategy for the 
problem under consideration contributes more at different 
learning stages. In addition, the scaling factors F are 
independently generated by normal distribution N(0.5, 0.3) for 
different individuals in the current population at each 
generation. It shows that this scheme keeps both the local (with 
smaller F value) and global search (with larger F value) ability 
to generate potentially good mutation vectors throughout the 
evolution process. The crossover probabilities are randomly 
generated in range [0,1] according to normal distribution with 
mean CRm and standard deviation 0.1 for each 5 generations. 
The mean CRm of different strategies are calculated according 
to the successful CR which are used for the corresponding 
strategy. At each generation, the CR values associated with the 
trial vectors entering the next generation are recorded. After LP 
generations, CRm is recalculated according to the recorded CR 
values. 

3.2 jDE 
Brest et al. [8] proposed a new version of self-adaptive DE, 

jDE, which uses the classic DE/rand/1/bin strategy. The key 
idea is that the better values of control parameters lead to better 
individuals, which are more likely to survive and produce 
offspring, so that the good F and CR are propagated to the next 
generation. The population size is fixed but the control 
parameters Fi and CRi of each individual are updated during the 
optimization. At the beginning, Fi of each individual is set as 0.5 
and CRi as 0.9. Instead of generating Fi and CRi by normal 
distributions and updating CRm by recorded successful values in 
SaDE, jDE regenerated Fi and CRi with probabilities τ1 by 
uniform distributions on [0.1,0.9] and [0,1], respectively. The 
rules for self-adapting control parameters F and CR are quite 
simple. Experimental results suggest that jDE performs better 
than DE/rand/1/bin. 

3.3 JADE 
In this subsection, we describe JADE [10], which is the basis 

of our algorithm DADE. Its main features are a new mutation 
strategy current-to-pbest/1, parameter adaptation, and adoption 
of external archive. 
3.3.1 Currrent-to-pbest/1 

Current-to-best/1 strategy uses a greedy mechanism, 
directing the trial vectors towards the best individual in the 
population. The greedy strategy leads to the quick convergence 
to local optimum. Current-to-best/1 strategy performs well on 
unimodal problems, but poorly on multimodal problems. In 
view of the fast convergence but less reliable performance of 
current-to-best strategy, Zhang et al. [10] proposed the current-
to-pbest strategy with p greediness as: 
     , , best, , 1, 2,( ) ( )i g i g i p g i g i r g r gv x F x x F x x         (9.) 

where xpbest,g is randomly selected from the top NP×p (p∈[0,1]) 
individuals in generation g, r1 and r2 are random integers in 
range of [1, 2, …, NP] different from i and pbest. Fi is the F 
parameter of individual i. Current-to-best is the special case of 
(9) when p is 1/NP. For each dimension j, if vj,i,g is outside the 
bounds of [xj,min, xj,max], the component is set to be the middle of 
the violated bounds and the corresponding component of the 
target vector as: 

         , , , , ,min , , ,min

, , , , ,max , , ,max

( ) / 2,

( ) / 2,

j i g j i g j j i g j

j i g j i g j j i g j

v x x if v x

v x x if v x

  

  
     (

10.) 
3.3.2 Parameter adaptation 

Each individual has its own Fi and CRi parameters, which are 
generated by probability distribution as: 

    randn ( ,0.1)i i CRCR                                 (11.) 

       randc ( ,0.1)i i FF                                (12.) 

where randni(μCR,0.1), randci(μF,0.1) are the random number 
generated according to normal distribution of (μCR, 0.1) and 
Cauchy distribution of (μF,0.1). CRi is truncated to [0, 1]. If 
CRi > 1 or < 0, CRi is set as 1 or 0. Fi is truncated to (0,1]. Fi is 
truncated as 1 when Fi >1 and regenerated when Fi ≤ 0. Both 
μCR and μF are initialized to 0.5 at the beginning, and updated at 
the end of each generation. The Fi and CRi generated trial 
vectors entering the next generation successfully at the current 
generation are recorded in the set SF and SCR respectively. The 
uF and uCR are calculated according to the successful F and CR 
as: 

          (1 ) mean ( )CR CR A CRc c S            (13.) 

          (1 ) mean ( )F F L Fc c S                       (14.) 

where c is a predefined constant between 0 and 1, meanA(SCR) is 
the arithmetic mean of CR in SCR, and meanL(SF) is the Lehmer 
mean as: 

2

mean ( ) F

F

F S

L F

F S

F
S

F








                     (15.) 

3.3.3 External Archive 
In order to make use of the promising progress direction 
information, the inferior solutions xi,g which did not enter the 
next generation are recorded in an archive A. Define the current 
population as P. In the current-to-pbest/1 with archive, r2 in 
Eq.(9) is randomly selected from the union, P∪A, of the 
population and archive. Archive is empty at the beginning, and 
then the inferior solutions are added into it for each generation. 
The maximal size of archive is set as NP. If the archive is full, 
the new member replaces the randomly selected member in 
archive. 

4. DICHOTOMY-GUIDED ADAPTIVE DE 
Good F and CR guide the individual towards the optimum. 

JADE updates μF and μCR according to the successful SF and SCR 
to move towards good F and CR values slowly. In order to 
speed up the parameter update process to get more good F and 
CR, we proposed a dichotomy-guided adaptive DE (DADE), a 
variant of JADE which uses a different parameter adaptation 
mechanism based on dichotomy-guided. In DADE, the F and 
CR in SF and SCR are divide into two parts. In contrast to JADE, 
which uses all the successful F and CR values to guide 
parameter adaptation, DADE picks a part of successful 
parameters with higher success rate to guide control parameter 
adaptation as search progresses. The individuals of the whole 
population are divided into two parts according to the mean of F 
and CR which are used to generate F and CR, the part with 
higher success rate is selected to update parameter. The success 
rate is defined as the ratio of the number of individuals 
successfully entering the next generation to the number of 
individuals in this part. 
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4.1 Dichotomy-Guided Parameter 
Adaption 
The key idea of dichotomy guided parameter adaption is to 

move the mean μF and μCR for F and CR towards the part with 
higher success rate. In each generation, the control parameters 
CRi and Fi used by each individual are generated by Eqs.(10) 
and (11) according to the procedure described above for JADE 
in Section 3. As with JADE, SF and SCR record the successful F 
and CR in the current generation. All F and CR of the entire 
population are recorded in PF and PCR. At the end of each 
generation, SF and SCR are divided into two parts by μF and μCR. 
If F is smaller than μF, F is inserted into the LSF. If F is larger 
than μF, F is inserted into RSF. If F is equal to μF, F is inserted 
into both LSF and RSF.  Similar to SF, the SCR are also divided 
into two parts LSCR and RSCR which record the small and large 
CR respectively. The same dichotomy is applied on the PF and 
PCR of the population, which produces LPF and RPF, LPCR and 
RPCR, respectively. The update of μCR and μF is as: 

(1 ) mean ( ), if

(1 ) mean ( ),otherwise
CR A SCR SCR PCR SCR PCR

CR

CR A SCR

c c L L L R R

c c R






      
   

    (16.) 

(1 ) mean ( ), if

(1 ) mean ( ),otherwise
F L SF SF PF SF PF

F

F L SF

c c L L L R R

c c R





      

   

    (17.) 

MINC (MAXC MINC) * / FESfesc                  (18.) 

where MINC and MAXC are constant, which are set as 0.01 and 
0.1 in this paper. FES is the max function evaluation number 
throughout the searching process, and fes is the current function 
evaluation times used at the current time. c is a parameter in 
[0.01,0.1], increases linearly with increasing of function 
evaluation number. |LSCR| is the number of elements in LSCR, 
meanA(LSCR) is the usual arithmetic mean, meanL is the Lehmer 
mean as Eq.(14). Both μF and μCR are initialized to 0.5 at the 
beginning. The pseudo code of update process is described in 
Algorithm I. If the success rate of two part of LSF and RSF is near, 
the selection of anyone part may cause the misleading of F and 
CR. So in order to lessen the risk of misleading, we add a 
threshold CF and CCR to control the selection. Only when the 

difference of success rate between left and right is larger than 
the threshold, Eqs.(16) and (17) are carried out to calculate μF 
and μCR. Otherwise, all the F and CR in SF and SCR are used to 
calculate μF and μCR as Eqs.(13) and (14). 

4.2 Overall Algorithm 
The overall DADE algorithm is shown in Algorithm II. The 

procedure of DADE is the same as JADE except for the 
adaptation of parameters. DADE adopts the current-to-pbest/1 
strategy. The individuals of the population are generated 
randomly in the searching space. After the initialization, in each 
generation, Fi of individual i is generated by Cauchy 
distribution of mean μF and CRi is generated by normal 
distribution of mean μCR. Both μF and μCR are initialized to 0.5 at 
the beginning. For each individual, trial vector is generated by 
crossover and mutation operations. Then the vector with better 
fitness value between trial and target vectors is selected and 
enters the next generation. At the end of each generation, the μF 
and μCR are updated according to the dichotomy approach 
described in Algorithm I. The parameters are divided into two 
parts and the part with higher success rate is selected to 
calculate μF and μCR. DADE regenerates new population 
repeatedly until reaching the terminal conditions. The 
population size is fixed throughout the evolutionary process. 

5. EXPERIMENTS AND COMPARISIONS 
5.1 Experimental Settings 

In this section, DADE is applied to minimize a set of 42 
scalable benchmark functions of dimensions D = 30 chosen 
from [26][27][28] and [29], as shown in Table I. The benchmark 
functions of f1-f12 have an optimal value f*=0, which have 
different characteristics. f1-f4 are continuous unimodal functions. 
f5 is the Rosenbrock function which is unimodal functions for 2 
dimension but multimodal for high dimension. f6 is a 
discontinuous step function, and f7 is a noisy quartic function. f8 
is separable multimodal functions. f9-f12 are nonseparable 
multimodal functions. The last 30 functions are taken from the 
CEC 2014 competition [29]. F1-F3 are rotated unimodal 
function, F4-F16 are simple multimodal functions, F17-F22 are 

ALGORITHM I. PSEUDO CODE OF MEAN OF F AND CR UPDATE IN DADE 

Algorithm 1: Update μF and μCR in DADE 

1. c = MINC + (MAXC-MINC)*fes/FES 
2. If SCR≠∅ and SF≠∅ then 
3.    For i = 1 to | SCR| 
4.        If CRi ≤μCR then CRi→LSCR 
5.        If CRi ≥μCR then CRi→RSCR 
6.    For i = 1 to | SF| 
7.        If Fi ≤μF then Fi→LSF 
8.        If Fi ≥μF then Fi→RSF 
9.    If || LSCR |/| LPCR |-| RSCR |/| RPCR | |>CCR  then 
10.        If | LSCR |/| LPCR | ≥| RSCR |/| RPCR | then 
11.            μCR =(1-c)·μCR +c·meanA(LSCR) 
12.        Else  
13.            μCR =(1-c)·μCR +c·meanA(RSCR) 
14.    Else 
15.           μCR =(1-c)·μCR +c·meanA(SCR) 
16.  
17.    If || LSF |/| LPF |-| RSF |/| RPF ||>CF  then 
18.        If | LSF |/| LPF | ≥| RSF |/| RPF |  then 
19.           μF =(1-c)·μF +c·meanL(LSF) 
20.        Else  
21.           μF =(1-c)·μF +c·meanL(RSF) 
22.    Else 
23.        μF =(1-c)·μF +c·meanL(SF) 
24. Else 
25. μF and μCR remain unchanged 

 

ALGORITHM II. PSEUDO CODE OF DADE ALGORITHM 

Algorithm 2: DADE algorithm 

// Initialization phase 

1. g=0; μF = 0.5; μCR = 0.5; A = ∅ 
2. Initialize population P0 = {x1,0,x2,0, …, xNP,0} randomly; 
// Main loop 

3. While the termination criteria are not met do 
4.     SCR=∅, SF =∅ , LPF=∅, RPF=∅, LPCR=∅, RPCR=∅; 
5.     For i = 1 to NP do 
6.         Fi = randci(μF,0.1); 
7.         CRi = randni(μCR,0.1); 
8.         If Fi ≤μF then Fi→LPF 
9.         If Fi ≥μF then Fi→RPF 
10.             If CRi ≤μCR then CRi→LPCR 
11.         If CRi ≥μCR then CRi→RPCR 
12.         Generate trial vector ui,g by current-to-pbest/1/bin 
13.         If  f(xi,g) ≤ f(ui,g) then 
14.             xi,g+1 = xi,g 
15.         Else  
16.             xi,g+1 = ui,g, xi,g→A, CRi→SCR, Fi→SF 
17.         End if 
18.     End for 
19.     Randomly remove solutions from A so that |A|≤NP 
20.     Update μF and μCR (Algorithm 1); 
21.     g ++; 
22.   End 
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hybrid functions, and F23-F30 are composition functions. 
Obviously, the last 30 functions are much more complex. 
DADE is compared with two other adaptive DE algorithms 
SaDE and jDE, the classic DE/rand/1/bin. For fair comparison, 
we set the parameters of DADE to be fixed, p = 0.05 and 
MINC=0.01, MAXC=0.1, CF=0.3 and CCR=0.15 in all 
simulation. We follow the parameter settings in the original 
paper of JADE [10], SaDE [9], jDE [8]. The parameters of 
DE/rand/1/bin are set to F = 0.5 and CR = 0.9. 

In all simulations, we set the population size NP to be 100 for 
30D problems. All algorithms runs in 50 times for each function. 
The results reported are the mean of 50 runs. For clarity, the 
results of the best and second best algorithms are marked in 
boldface and italic, respectively. In addition, we use 
Wilcoxon’s rank sum test at α = 0.05 to evaluate the statistical 
significance of the results. The ≈,+, - indicate whether a given 
algorithm performed significantly not different (≈), better(+) or 
worse(-) compared to DADE according the Wilcoxon rank-sum 
test. 

5.2 Experimental Results 

5.2.1 Classic Functions: f1-f12 
The mean and standard deviation of the results obtained by each 
algorithm for f1-f12 are summarized in Table II. These statistics 
are calculated at the end of the optimization. As shown in Table 
II, DADE performs the best or the second best in all functions. 
For f1 and f2, DADE performs best compared with JADE, jDE, 
SaDE, and DE. Compare with jDE, DADE performs better on 
10 functions except for f6 and f9. DADE obtains better results on 
7 functions than SaDE, while the results of the other functions 
are not significantly different. For DE, DADE performs better 
on 9 functions except for 3 functions which are not significantly 
different. So, we can conclude that DADE performs better than 
jDE, SaDE, and DE. Compared with JADE, DADE performs 
better on functions f1 and f2 but worse on 3 functions f3, f4, and f7. 
DADE takes only part of the successful F and CR values to 
update the mean μF and μCR while JADE use all successful F and 
CR. DADE performs better than JADE on f1 and f2, which 

TABLE I. TEST FUNCTIONS OF DIMENSION D 

Name Test functions Initial range 

Sphere 2
1 1
( )

D

ii
f x x


  [-100,100]D 

Schewefel 2.22 2 1
1
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D

D

i ii
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f x x x
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3 1 1
( )

D i

ji j
f x x
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Schewefel 2.21  4 maxi if x  [-100,100]D 
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5 11
( ) 100 1

D
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Step 
2

6 1
( ) 0.5

D

ii
f x x
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7 1
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D

ii
f x ix rand
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8 1
( ) 10cos(2 ) 10

D

i ii
f x x x
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9 1 1

1 1
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2

10 1
1

1
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D
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shows that some F and CR disturb the parameter adaptive 
control. 

In Table III, we summarize the success rate (SR) of each 
algorithm and the average number of function evaluations over 
successful runs (FEs). An experiment is considered as 
successful if the best solution is found with acceptable accuracy. 

FEs and SR are useful to compare the convergence rate (in 
successful runs) and reliability of different algorithms. The 
ranks in the table are evaluated based on the descending order of 
the success rates and the ascending order of FEs. From Table III, 
we find that all the algorithm perform high success rate on most 
functions. In particular, DADE 100% successfully finds the 
acceptable solutions on all functions. Only DADE can find 
achieve the near-global optimum for f5, while JADE, jDE, and 
SaDE sometimes fails to obtain the optimum. From the aspect of 
search speed, DADE and JADE uses a smaller FEs to reach the 
acceptable solution than jDE and SaDE. DADE ranks the first 
and is the fastest in most of the functions. For all the multimodal 
nonseprable functions f5 and f9-f12, DADE ranks the first and 
performs the best. Overall, DADE performs the best on most 
functions in f1-f12. The results show that the dichotomy guided 
parameter adaptive approach speeds up the search process, and 
move to good F and CR quickly. 

5.2.2 IEEE CEC 2014 Competition: F1-F30 
Table IV compares on the five algorithms on IEEE CEC 2014 
competition function set. All the functions are shifted, rotated, 
hybrid, or composition functions. These functions are difficult 
for most of the optimization algorithms. It can be seen that no 
algorithm is able to obtain a near-global optimum on all 
functions. DADE obtains better results on more functions. 
DADE performs better than JADE, jDE, SaDE, and DE on 10, 
20, 20, and 20 functions, respectively. Conversely, JADE, jDE, 
SaDE, and DE perform better than DADE on 5, 4, 7, and 8 
functions, respectively. Overall, DADE performs the best. For 
simple functions F1-F16, DADE performs better on 6 but worse 
than JADE on 3 functions. And DADE performs better than 
JADE on hybrid functions F17-F22 especially for F18, F20, and 
F21. For compose functions, DADE performs worse than JADE 
on F28 and F29 but better on F26 and an equivalent effect on 
other functions. DADE outperforms JADE on simple and hybrid 
functions, but not on composition functions on more occasions. 

6. CONCLUSION 
This paper proposed DADE, a dichotomy-guided based 

adaptive DE which extends JADE. DADE takes only higher 
success rate part of the successful F and CR to update the mean 
μF and μCR to get more good parameters. DADE was shown to 
outperform JADE, jDE, SaDE, and DE/rand/1/bin on most cases 

TABLE III. SUCCESS RATE AND SEARCH SPEED COMPARISONS ON 30-
DIMENSIONAL PROBLEMS f1-f12 

fun 
Acceptable  
accuracy 

 DADE JADE jDE SaDE 

f1 1E-6 
SR 100 100 100 100 
FEs 22503 25580 49996 33106 
Rank 1 2 4 3 

f2 1E-6 
SR 100 100 100 100 
FEs 35266 44078 65232 52438 
Rank 1 2 4 3 

f3 1E-6 
SR 100 100 100 100 
FEs 100036 62324 289720 111152 
Rank 2 1 4 3 

f4 1E-6 
SR 100 100 0 100 
FEs 73893 61670 N/A 172498 
Rank 2 1 4 3 

f5 1E-6 
SR 100 98 96 90 
FEs 143366 104438 536256 199920 
Rank 1 2 3 4 

f6 0 
SR 100 100 100 100 
FEs 10733 11588 21942 14722 
Rank 1 2 4 3 

f7 1E-2 
SR 100 100 100 100 
FEs 29733 28744 103474 53178 
Rank 2 1 4 3 

f8 1E-6 
SR 100 100 100 100 
FEs 147996 116920 102216 132116 
Rank 4 2 1 3 

f9 1E-6 
SR 100 100 100 100 
FEs 32693 37716 73174 48982 
Rank 1 2 4 3 

f10 1E-6 
SR 100 96 100 96 
FEs 24596 29172 53458 36431 
Rank 1 3 2 4 

f11 1E-6 
SR 100 100 100 100 
FEs 20543 24012 44762 29700 
Rank 1 2 4 3 

f12 1E-6 
SR 100 100 100 100 
FEs 22520 25964 48746 31876 
Rank 1 2 4 3 

Avg_Rank 1.38 1.69 3.23 2.92 

TABLE II. EXPERIMENTAL RESULTS OF 30-DIMENSIONAL PROBLEMS F1-F12, AVERAGED OVER 50 INDEPENDENT RUNS 

≈,+, - indicates whether a given algorithm performed significantly not different, better or worse compared to DADE according the Wilcoxon rank-sum 
test 

fun Gen 
DADE JADE jDE SaDE DE/rand/1/bin 

Mean Std Mean Std Mean Std Mean Std Mean Std 
f1 1500 1.81E-77 4.34E-77 2.58E-59(-) 1.15E-58 1.26E-28(-) 1.25E-28 5.93E-38(-) 1.13E-37 7.85E-14(-) 9.31E-14 
f2 2000 4.49E-50 1.18E-49 2.46E-20(-) 1.68E-19 9.02E-24(-) 6.60E-24 5.50E-25(-) 1.23E-24 1.16E-09(-) 7.86E-10 
f3 5000 6.02E-72 1.29E-71 2.73E-86(+) 1.15E-85 8.31E-14(-) 1.35E-13 1.49E-44(-) 1.05E-43 5.54E-11(-) 8.40E-11 
f4 5000 7.73E-56 3.72E-55 2.05E-65(+) 5.16E-65 7.99E-01(-) 9.55E-01 2.44E-19(-) 5.30E-19 5.28E-01(-) 9.63E-01 
f5 20000 1.60E-30 5.12E-30 7.97E-02(≈) 5.64E-01 1.59E-01(-) 7.89E-01 3.99E-01(-) 1.21E+00 3.47E-31(≈) 2.45E-30 
f6 1500 0.00E+00 0.00E+00 0.00E+00(≈) 0.00E+00 0.00E+00(≈) 0.00E+00 0.00E+00(≈) 0.00E+00 0.00E+00(≈) 0.00E+00 
f7 3000 7.56E-04 2.64E-04 6.97E-04(+) 3.68E-04 3.41E-03(-) 8.16E-04 1.88E-03(-) 6.92E-04 4.60E-03(-) 1.23E-03 
f8 5000 0.00E+00 0.00E+00 0.00E+00(≈) 0.00E+00 0.00E+00(≈) 0.00E+00 0.00E+00(≈) 0.00E+00 6.75E+01(-) 3.22E+01 
f9 2000 3.41E-15 0.00E+00 3.41E-15(≈) 0.00E+00 7.89E-15(-) 1.73E-15 3.41E-15(≈) 0.00E+00 9.26E-08(-) 3.92E-08 

f10 3000 7.23E-21 1.87E-20 1.48E-04(≈) 0.00E+00 1.08E-21(-) 7.67E-21 2.96E-04(-) 1.46E-03 1.97E-04(≈) 1.39E-03 
f11 1500 1.57E-32 2.78E-48 1.57E-32(≈) 1.66E-47 8.77E-30(-) 1.20E-29 1.57E-32(≈) 1.66E-47 7.17E-15(-) 5.56E-15 
f12 1500 1.35E-32 5.57E-48 1.35E-32(≈) 8.29E-48 8.47E-29(-) 1.07E-28 1.35E-32(≈) 8.29E-48 4.38E-14(-) 3.46E-14 

+(better than DADE) 2 0 0 0 
-(worse than DADE) 3 10 7 9 

≈(no sig.) 7 2 5 3 
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of 12 benchmark functions and 30 complex functions of CEC 
2014 competition. Although DADE may find the near solution 
as JADE, DADE uses a smaller function evaluation times than 
JADE. DADE runs faster on most functions. The dichotomy 
guided approach moves the parameter towards the part with 
higher success rate, and speeds up the searching process. The 
experiment results show that the idea of taking part of 

successful F and CR for parameter control is reasonable. Only 
taking the good parameters for the parameter update process, the 
algorithm speeds up. There are some poor F and CR of 
successful individual which may disturb parameter control. 
Further research work includes 1) analyzing the parameter 
control process further; 2) finding other methods to pick the 
good F and CR for parameter adaptive control. 

TABLE IV. EXPERIMENTAL RESULTS OF 30-DIMENSIONAL PROBLEMS F1-F30, AVERAGED OVER 50 INDEPENDENT RUNS 

fun 
DADE JADE jDE SaDE DE/rand/1/bin 

Mean Std Mean Std Mean Std Mean Std Mean Std 

F1 2197.59 2373.15 2334.58(-) 1417.61 83957.9(-) 86118.3 87778.9(-) 64379.6 82601.1(-) 92570 

F2 1.23E-14 1.43E-14 1.95E-14(≈) 1.33E-14 3.41E-15(+) 9.33E-15 0(+) 0 3.41E-15(+) 9.33E-15 

F3 6.63E-14 2.15E-14 0.000369(-) 0.001803 1.82E-14(+) 2.68E-14 0(+) 0 7.96E-15(+) 1.99E-14 

F4 2.01E-13 4.55E-13 7.47E-14(+) 2.90E-14 11.8499(-) 23.221 0.945987(-) 5.20477 1.54154(-) 8.92808 

F5 20.309 0.0448103 20.2896(+) 0.030424 20.3635(-) 
0.034700

5 
20.8342(-) 

0.058462
9 

20.913(-) 0.0492376 

F6 0.520859 1.25853 9.51302(-) 2.11086 8.97849(-) 5.17562 4.61054(-) 7.50528 4.78853(-) 2.42099 

F7 4.17E-14 5.57E-14 2.01E-14(≈) 4.38E-14 9.09E-14(-) 4.59E-14 0(+) 0 0.00014 (≈) 
0.0010459

6 

F8 0 0 0(≈) 0 0.0198992(≈) 0.140708 1.08613(-) 1.78133 127.885(-) 23.7552 

F9 18.9327 3.13409 26.9342(-) 4.59556 44.032(-) 6.77148 120.631(-) 8.98442 178.66(-) 11.0678 

F10 0.00902167 0.011832 0.009797(≈) 0.012034 3.60701(-) 3.54782 395.372(-) 78.1793 3949.23(-) 718.258 

F11 1571.45 235.326 1656.61(≈) 209.396 2809.69(-) 301.751 5864.01(-) 331.763 6790.67(-) 295.158 

F12 0.29049 0.0438903 0.258242(+) 0.04569 0.497145(-) 
0.070566

1 
1.7974(-) 0.232437 2.3848(-) 0.248515 

F13 0.168534 0.0232873 0.21185(-) 0.03296 0.288649(-) 
0.038680

8 
0.293576(-) 

0.036854
1 

0.36334(-) 0.0380017 

F14 0.226569 0.034456 0.236031(≈) 0.032342 0.305864(-) 
0.038581

4 
0.269278(-) 

0.029665
1 

0.267298(-) 0.0295258 

F15 3.1928 0.442603 3.06125(≈) 0.415325 5.79822(-) 0.564672 11.6375(-) 0.969501 15.5367(-) 1.0396 

F16 9.16391 0.384313 9.33009(-) 0.432232 10.3873(-) 0.345541 12.3589(-) 0.200787 12.6395(-) 0.261038 

F17 1240.11 362.124 1196.01(≈) 331.88 1530.1(≈) 981.534 1043.72(+) 314.034 1474(-) 168.889 

F18 80.8564 30.2393 147.674(-) 453.766 18.4001(+) 9.85452 90.5753(-) 25.3154 53.0875(+) 7.21286 

F19 4.54948 0.975606 4.62783(≈) 0.788838 5.4887(-) 0.715036 5.75106(-) 0.509561 5.03464(-) 0.6568 

F20 22.9696 77.2491 2793.38(-) 2444.79 12.3273(-) 3.56416 37.1735(-) 7.75455 32.9986(-) 7.49414 

F21 294.969 133.987 15951.5(-) 59467.3 303.584(≈) 198.642 786.735(-) 200.888 683.399(-) 150.878 

F22 144.494 56.3702 143.033(≈) 61.9006 142.043(≈) 58.9894 122.325(+) 45.0506 75.1894(+) 68.9857 

F23 315.244 5.78E-14 315.244(≈) 4.02E-13 315.244(≈) 4.16E-13 315.244(≈) 3.60E-13 315.244(≈) 4.02E-13 

F24 224.703 2.35238 224.913(≈) 2.15984 225.343(-) 1.85919 223.865(≈) 0.902074 216.895(+) 10.3466 

F25 204.257 1.12724 203.823(≈) 1.10005 203.369(+) 0.646241 203.275(+) 1.13723 202.634(+) 0.119261 

F26 100.168 0.027169 102.171(-) 13.9746 100.29(-) 
0.046103

1 
100.294(-) 

0.037284
8 

100.342(-) 0.041282 

F27 327.274 45.8999 336.618(≈) 46.5475 391.229(-) 24.2412 321.56(+) 37.4329 351.65(-) 56.7135 

F28 817.208 49.724 786.422(+) 42.283 825.959(≈) 19.222 835.533(-) 32.5592 823.013(-) 25.3954 

F29 733.661 16.7342 175687(+) 
1.25E+0

6 
830.088(-) 78.4253 760.115(-) 38.1916 699189(+) 2.39E+06 

F30 
1663.1
2 

619.81
2 

1682.65(≈) 699.958 2528.91(-) 921.983 1774.41(≈) 921.505 1408.09(+) 751.981 

+(better than DADE) 5 4 7 8 

-(worse than DADE) 10 20 20 20 

≈ 15 6 3 2 

≈,+, - indicates whether a given algorithm performed significantly not different (≈), better(+) or worse(-) compared to DADE according the Wilcoxon rank-
sum test. 
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