
A Parallel Implementation of Multiobjective Particle
Swarm Optimization Algorithm Based on

Decomposition

Jin-Zhou Li, *Wei-Neng Chen, Member IEEE, Jun Zhang, Senior Member, IEEE, Zhi-hui Zhan, Member, IEEE
Sun Yat-sen University, Guangzhou, China

Key Lab. Machine Intelligence and Advanced Computing, Ministry of Education, China
Collaborative Innovation Center of High Performance Computing, China

*Corresponding Author, Email: cwnraul634@aliyun.com

Abstract—Multiobjective particle swarm optimization based

on decomposition (MOPSO/D) is an effective algorithm for
multiobjective optimization problems (MOPs). This paper
proposes a parallel version of MOPSO/D algorithm using both
message passing interface (MPI) and OpenMP, which is
abbreviated as MO-MOPSO/D. It adopts an island model and
divides the whole population into several subspecies. Based on
the hybrid of distributed and shared-memory programming
models, the proposed algorithm can fully use the processing
power of today's multicore processors and even a cluster. The
experimental results show that MO-MOPSO/D can achieve
speedups of 2x on a personal computer equipped with a
dual-core four-thread CPU. In terms of the quality of solutions,
it can perform similarly to the serial MOPSO/D but greatly
outperform NSGA-II. An additional experiment is done on a
cluster, and the results show the speedup is not obvious for
small-scale MOPs and it is more suitable for solving highly
complex problems.

I. INTRODUCTION
A multiobjective optimization problem (MOP) involves

several objective functions which require simultaneous
optimization. For MOPs, the goal is to find a set of
non-dominated solutions which is named as Pareto Set (PS)
and the set of all the corresponding objective function values
of all solutions in PS is called the Pareto Front (PF) [1]-[3].
During the last decade, multiobjective evolutionary
algorithms (MOEAs) have become a popular research
direction in evolutionary computation community, and have
shown promising performance in MOPs [1]-[5].

Multiobjective Evolutionary Algorithm Based on
Decomposition (MOEA/D), proposed by Qingfu Zhang [6],
is an effective algorithm which adopts the main idea of that
an approximation of the PF can be decomposed into a
number of scalar objective optimization subproblems

[7]-[11].

In real world applications, there exists some
computational-intensive optimization problems that have a
large number of decision variables (i.e., high dimension) and
the computation of objective functions is time-consuming.
Due to the nature of EAs that using a population to generate
solutions iteratively, the computational cost of applying EAs
to such computational-intensive problems become too high.
Meanwhile, because of the inherent parallelism of EAs’
population architecture and the rapid development of parallel
and distributed computation, the parallel EAs attracted
researchers’ great attention.

Since most personal computers are now equipped with a
multicore CPU, some parallel PSO algorithms are based on
multicore CPUs with distributed memory model using MPI
and several parallel PSO implementations are based on
OpenMP or NVIDIA’s GPUs with shared memory model.
MPI is a cross-language communication protocol and it
defines some message passing interface. OpenMP is an API
that supports shared memory multithreading programming.

V. Roberge [12] implemented a basic MPI-PSO and K.
Deep [13] presented three versions of parallel PSO based on
MPI. K. Y. Tu [14] proposed a multithreading PSO
computation model and Y. Hung [15] introduced a
GPU-PSO algorithm. In the applications, parallel PSO
algorithms are used to solve the biomechanical system
identification problem [16] and the design optimization of
composite structures [17]. For MOPs, Y. Zhou and S.
Solomon proposed two parallel MOPSO algorithms using
GPU respectively [18] – [19]. However, there is no research
about MOEA/D’s parallelism and there is no parallel PSO
implementation using hybrid of MPI and OpenMP that fully
uses the processing power of today's multicore processors
with Hyper-Threading technology. For these reasons, we
implement a parallel version of it using MPI and OpenMP
(MO-MOPSO/D) based on the original MOPSO/D.
Compared to the original algorithm, our proposed
MO-MOPSO/D has the following features.

� The algorithm adopts an island model and the entire
population is divided into several subspecies based on

This work was supported in part by the NSFC projects Nos.
61379061, 61332002, 6141101191, in part by Natural Science
Foundation of Guangdong for Distinguished Young Scholars No.
2015A030306024, in part by the “Guangdong Special Support
Program” No. 2014TQ01X550, and in part by the Guangzhou Pearl
River New Star of Science and Technology No. 151700098.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.187

1310

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.187

1310

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

the needed number of their neighbors in the algorithm.
Each subspecies is regarded as an island and the all
particles in an island are neighbors to each other.

� Both MPI and OpenMP are used to implement the
algorithm. The evolution of one subspecies is
computed by one process and the updating of a
particle of the subspecies is done by one thread,
which can fully use the CPU’s power.

� In order to further reduce the MPI’s communication
cost, we only transfer the information of two particles
at left and right edges of a subspecies to its left and
right neighbors, respectively.

We run MOPSO/D and MO-MOPSO/D on a multicore
PC and a cluster, separately. The results show
MO-MOPSO/D can achieve a speedup of 2× while maintain
the nearly same quality of the final solutions compared with
MOPSO/D.

This paper is organized as follows. In Section II, a brief
review on MOEA/D and its one implementation based on
PSO (MOPSO/D) are presented. Section III introduces
MO-MOPSO/D. Section IV compares MO-MOPSO/D with
MOPSO/D. Section V presents more improvements on
MO-MOPSO/D. Section VI includes the discussion,
conclusions, and future research.

II. MOPSO/D REVIEW
MOEA/D decomposes a MOP into N scalar optimization

subproblems and solves them simultaneously. And there are
several ways to decompose the problem. In this section, we
first present a superior decomposing approach named
Tchebycheff Approach [6] briefly. In the following, we
introduce MOPSO/D algorithm employing Tchebycheff
decomposition approach.

In this approach, let ω1, … , ωN is a set of uniform spread
of N weight vectors of m objects, which are used to
decompose the MOP into N scalar optimization
subproblems. for each j = 1, … , N,
where for all i = 1, … , m and . Then
a scalar optimization subproblem is of the form

 (1)

subject to x X

where and .
is the best fitness value named reference point found by the
population so far. Each x that satisfies is a best
solution for the i-th objective function. The optimal solution
x are written gBesti in MOPSO/D and a gBest with size of m
is used to store all global best solutions found so far.

The sequential MOPSO/D works as follows:

Algorithm 1: MOPSO/D

Input: 1) MOP with m objective functions;
 2) The n-dimensional search space X;
 3) The number of subproblems(the number of population) N;
 4) The uniform spread of N weight vectors ;
 5) The number of neighbors of a weight vector T;
 6) A stopping criterion.
Output: All solutions of the population to N subproblems.
 Step 1) Initialization

1.1) Initialize the gBest with Φ;
1.2) Select T neighbors for each particle based on the Euclidean

distances between their weight vectors and store them into B(p) =
{p1, … ,pT}, p =1, … , N;

1.3) Randomly initialize x1, … , xN in the population;
1.4) Compute the initial objective fitness values

;
1.5) Generate the initial reference point vector by

comparing the initial objective fitness values.
 Step 2) Update

For i = 1 to N
2.1) Randomly select two neighbors from B(i), and generate a new

solution y using a genetic algorithm based on them and xi;
2.2) Produce a new solution y’ by applying a heuristic improvement

on y;
2.3) If the reference point for each j = 1, … , m, then

update and gBestj = y’;
2.4) For each neighbor j (j = 1, … , T) of particle i, if

, then update xj = y’;
End For

 Step 3) Check Stopping Criteria
Stop the algorithm and output all optimal solutions if the stopping

criteria is satisfied. Otherwise, go to Step 2).

III. MPI-OPENMP-BASED MOPSO/D
In order to fully use the processing power of multicore

processors with Hyper-Threading technology, we propose a
variant of MOPSO/D based on MPI and OpenMP
(MO-MOPSO/D) to accelerate the computation of it. In this
section, we analyze how to modify the original MOPSO/D
algorithm to be a parallel implementation.

A. Network Topology and Parallelism
A mix of master-slave paradigm and peer-to-peer model

can apply to the proposed parallel algorithm. Population are
divided into S subspecies and every subspecies contains T (T
= N/S) internal particles to solve T scalar optimization
subproblems and K external particles (EP) to store the
exchanged particles from two neighbor subspecies. Each
subspecies is regarded as an island and the computation of it
can be done by a single process. These T particles in a
subspecies are neighbors to each other. In order to simplify
the problem, we assume that N is divisible by S.

In the master-slave paradigm, Process 0 is the master node
and each other process is a slave node. All global
information of population should be stored and updated by
Process 0 and all other steps can be synchronously executed
should be done by each process in parallel.

Since a process does evolution computation for a
subspecies and a thread does it for a single particle in a
subspecies, both Step 1.3 and 1.4 of Algorithm 1 can be
parallel executed on thread level, while Step 1.5 can only be
parallel executed on process level.

In Step 2, since nearly every particle need exchange

13111311

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

Process 0

Process 1 Process 2 Process i Process S-1

Fig. 1. Topology of MO-MOPSO/D. The lines with arrows represent the information transmission. A mix paradigm of master-slave paradigm and peer-to-peer

model is applied to the architecture of MO-MOPSO/D.

Algorithm 2: MO-MOPSO/D
Input: 1) MOP with m objective functions;
 2) The n-dimensional search space X;
 3) The number of subproblems N;
 4) The uniform spread of N weight vectors ;
 5) The number of subspecies S;
 6) The number of particles in a subspecies T, which is equal to
N/S;
 7) The number of particles to exchange between two neighbor
subspecies K.
 8) A stopping criterion.
Output: All solutions of the population to N subproblems.
 Step 1) Initialization
 1.1) Initialize the gBest of process 0 with Φ;

1.2) Initialize the sBest of all processes with Φ in parallel;
1.3) Process 0 calculates all weight vectors for population and

distributes the needed components to each of the other processes using
MPI_Scatter function.

1.4) All particles in a process are its neighbors for each particle
and store them into B(p) = {p1, … ,pT}, p =1, … , N;

1.5) Randomly initialize x1, … , xS for each subspecies in
parallel;

1.6) Compute the initial objective fitness values
 in parallel;

1.7) Update sBest and the subspecies reference point vector
by comparing the initial objective fitness

values in parallel.
1.8) Update gBest and the global reference point vector

by comparing sBest.
 Step 2) Update

For i = 1 to N
2.1) Swap particles with left and right neighbor subspecies for

each subspecies and store them into EP.
2.2) Randomly select two neighbors from B(i), and generate a

new solution y by using evolution strategy in parallel;
2.3) Produce a new solution y’ by applying a perturbation on

y;
2.4) If the subspecies reference point , for each j =

1, … , m, then update and sBestj = y’;
2.5) Update gBest and the global reference points.
2.6) For each neighbor j (j = 1, … , T) of particle i, if

, then update xj = y’;
End For

 Step 3) Check Stopping Criteria
 Stop the algorithm and output all optimal solutions if the stopping
criteria is satisfied. Otherwise, go to Step 2).

solution information with other particles in the different
processes, the communication costs between particles are
enormous. Thus, the topology of information transmission of
particles can be revised to reduce communication costs on
the basis of ensuring the optimization results.

In order to reduce communication costs between particles
in neighbor processes, each process maintains K external
particles (EP) copied from neighbors. Half of EP come from
the left neighbor process and the others come from the right
one. If a process has no left or right neighbor, this process
should copy its first or last K/2 particles and store them into
the corresponding positions in EP, respectively. In this sense,
all processes are peers. The network topology of
MO-MOPSO/D is represented in Figure 1.

The proposed parallel algorithm uses not only two random
neighbor particles but EP to generate a new solution y. Then
a perturbation operator is employed to help the particle to
escape from local best and obtain a newer solution . Both
of the two steps can be parallel executed for every particle on
a thread level and the generation strategy is specifically
introduced in Part C.

Like gBest, a subspecies best (sBest) should be maintained
by each subspecies to lead the particles to fly. So the sBest
and the corresponding subspecies reference point are updated
after generating a new solution every time. The gBest and
global reference point, computed by comparing all sBests,
can be updated every several iterations to reduce
communication costs. If a neighbor’s current solution is
worse than the new solution of the particle, then update it
with the new solution. The update of sBest and gBest can be
executed on process level while updating neighbors can be
done in thread level, which is more efficient.

At last step, the algorithm checks if the stopping criteria is
satisfied. If it is satisfied, then stop it and output results;
otherwise, go to Step 2.

The algorithm is presented in Algorithm 2 and the flow
chart of MO-MOPSO/D is shown in Figure 2.

13121312

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

B. Particles Exchange Strategy
As is shown in Figure 1, each subspecies exchanges its K

particles with two neighbors. For one subspecies, its left half
particles are close to its left neighbor subspecies while its
right half particles are close to its right neighbor. Thus, when

it exchanges particles with its neighbors, K/2 particles which
are sent to its left neighbor should be randomly selected from
its left half particles and the other K/2 particles that are sent
to its right neighbor should be randomly selected from its
right half particles.

Start

 Initialize gBest and
global reference point

Initialize sBest and
subspecies reference point

Calculate and distribute
weight vectors

Initialize sBest and
subspecies reference point

Receive the weight
vectors

Randomly initialize the
internal particles (*)

Randomly initialize the
internal particles (*)

Evaluate fitness for all
internal particles (*)

Update sBest and subspecies
reference point

Evaluate fitness for all
internal particles (*)

Update sBest and subspecies
reference point

Update gBest and global
reference point

Copy particles from neighbors

and store them in EP
Copy particles from neighbors

and store them in EP

Randomly select two particles
from the subspecies (*)

Randomly select two particles
from the subspecies (*)

Generate a new solution y (*) Generate a new solution y (*)

Employ a perturbation
operation to y (*)

Employ a perturbation
operation to y (*)

Evaluate the objective
function values F(y) (*)

Update sBest and subspecies
reference point

Update gBest and global
reference point

Update the subspecies (*)

Evaluate the objective
function values F(y) (*)

Update sBest and
subspecies reference point

Update the subspecies (*)

Stopping? Stopping?

Stop Stop

End

Yes

No No No

Yes Yes

Process 0 Process 1 Process 2 ~ S-1

Fig. 2. Flow chart of MO-MOPSO/D. The solid lines represent the logical flow and the dashed arrows represent the information transmission. A step marked with
a star means it can execute in parallel on thread-level.

13131313

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

After selecting the particles to exchange, there are two
communication model to achieve the information
transmission using MPI: one is point-to-point
communication and the other one is collective
communication. The point-to-point communication manner
is intuitive that Process i send its information to the target
processes, then the target processes receive the information.
However, there are several disadvantages about
point-to-point communication manner using MPI.

� An unreasonable order of sending and receiving
information for processes can always cause system
deadlock. But it is extremely difficult to design a
reasonable flow of communication when there are
many point-to-point communications between the
processes.

� Compared with collective communications,
point-to-point communications are inefficient,
particularly when there exist extensive point-to-point
communications.

� Programming using point-to-point communications
is more complex, cumbersome and error-prone.

Based on above points, we adopt collective
communications to achieve the particles exchange between
neighbor subspecies in the proposed algorithm. In the
master-slave communication paradigm employed in this
paper, Process 0 is the master node and the other processes
are slave nodes.

C. Selecting Parent Particles
In the island model of MO-MOPSO/D, all particles in an

island are regarded as its neighbors for each other. However,
the true nearness relationships among all particles in the
population are defined by the distances between their weight
vectors of their subproblems. And the optimal solution of
two near subproblems should be similar. In order to avoid
particles in an island losing subspecies diversity and falling
into a local best point, the exchanged particles and two
randomly selected neighbors are used to generate a new
solution for every particle.

It is a more reasonable strategy in particle generation that
selecting parent particles from neighbor particles or
exchanged particles and even selecting which one from the
whole exchanged particles should be based on the position of
the particle in an island. At the first step, a probability is
defined based on its position to decide where to select the
parent particles used to generate a new solution.

 (2)

where p = 0, … , T-1 is the position of the particle in its
subspecies and T is the number of particles in a subspecies
defined in part A. So, a parent particle is selected from EP
and the other one is selected from two randomly selected
neighbors if a random value is less than Pr, whereas the

parent particles are both selected from neighbors at the rate
of 1 - Pr.

At the second step, if one parent particle should be
selected from EP, it is decided by the particle position that
selecting the particle from the first or last half of EP. If

, the target region is the first half of EP, otherwise,
that is the last half of it. Then randomly select a particle from
the target region as a parent.

D. Discussions
1) How to set T and K: T is the number of particles in a

subspecies and K is the number of exchanged particles
between two neighbor subspecies. In the proposed algorithm,
only the exchanged particles and neighbor particles are used
to generate a new solution for a subproblem. So the setting of
T and K is important for the optimal solutions. If T is too
small, two neighbor particles selected in Step 2.2 may be too
similar and the offspring particles will quickly converge to a
local best point. Meanwhile, If T is too large, those two
neighbor particles may be quite different from the current
subproblem, so their offspring can hardly find the best
solution of the subproblem. Since the exchanged particles
coming from neighbor subspecies, it ensures the diversity of
subspecies. However, if K is too large, much information
need be transferred from one subspecies to another
subspecies and the communication costs will be extensive.
Actually, the EP with small K can lead to enough ability to
explore the new solution areas.

2) Why the evolution of a subspecies is executed by a
single process: In the MO-MOPSO/D, a process creates T
threads and a thread executes the evolution of a particle.
Based on the power of the processors with Hyper-Threading
technology, two threads can run in a process simultaneously
at least. However, the number of threads that a process
allows to execute simultaneously is much less than the
number of particles in a subspecies. So these threads are
divided into several groups and they run in parallel within a
group and run sequentially among the groups. In order to
make all particle evolution can be executed in parallel, a
subspecies must be divided into several parts and each part
evolves on a separate process. The neighbors of a particle
will lived in several islands and it will result in huge cost of
communication when the particle needs the information of its
neighbors living in a different island.

E. Comparision of Computational Complexity of
MO-MOPSO/D and MOPSO/D

The major time consumption of the operators in
MO-MOPSO is in Step 2. Step 2 generates N solutions to
solve N scalar optimization subproblems in each generation.
Note that Step 2 can be executed for each subspecies in
parallel except Step 2.5. Step 2.1 just takes two particles
from neighboring subspecies, Step 2.2 and Step 2.3 require
O(T) operations to generate trial solutions, Step 2.4 needs
O(mT) time to update sBest, Step 2.5 needs O(mS) time to
update gBest, and Step 2.6 need time to update x.
Therefore, the ratio between the computational complexities
of two algorithms is

13141314

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

The MO-MOPSO/D has computational complexity
of MOPSO/D.

IV. COMPARISION OF MO-MOPSO/D WITH MOPSO/D
In this section, five benchmark functions are applied to

test the MO-MOPSO/D algorithm and MOPSO/D. Based on
the results of the experiment, we evaluate the performance of
MO-MOPSO/D and compare it with MOPSO/D.

A. Multiobjective Test Instances
Bi-objective ZDT test instances are widely used to test the

performance of many MOEAs and the original MOPSO/D
[20]. In order to compare their different performances
between MO-MOPSO/D and MOPSO/D, five ZDT test
instances are used in our paper. Since the experiment result
can be significantly influenced by how to construct
subspecies from population and this experiment focuses on
the feasibility of parallelization of MOPSO/D.

B. Experimental Platform
To fairly compare the different performances of

MOPSO/D and MO-MOPSO/D, we run these two
algorithms on a personal computer, separately. The details of
computer configuration are as follows.

� An Intel Core dual-core 4-thread i3-4150 CPU.

� 8 GB main memory.

� MS Windows 7 Professional operating system.

The above is the main hardware in this experimental
personal computer. In terms of software, MPI and OpenMP
are necessary for the experiment. MPICH2 v.1.4.1p1 for
Windows are used to implement MO-MOPSO/D. The
OpenMP version which shipped with VS2010 is used in the
implementation of the proposed algorithm.

C. Performance Metrics
The speedup Sp is used to present the speed performance

of a parallel algorithm and it is given by formula (3).

 (3)

where and are the run-time of the serial
algorithm and the parallel algorithm’s run-time, respectively.

Inverted Generational Distance (IGD) [6] is applied in this
paper to quantify the performances of solutions. IGD
measures the distance between the real Pareto front and the
approximate Pareto front obtained by an algorithm, and the
distance is used to evaluate the convergence and diversity of
the approximate PF. IGD can be calculated by formula (4),

 (4)

where ,

and are the max and min values on the m-th object in
set P, respectively. m = 1, … , M, P is the real Pareto
Solution Set and is the i-th solution in P. A
is the approximate Pareto Solution Set and ,
is the j-th solution in A.

D. Experimental Setting
The size of population N is set to be 100 for both

algorithms for all test instances. Because the information
communication among subspecies is few in the island model,
the speed of convergence of MO-MOPSO/D may decrease to
a certain extent. In order to guarantee the quality of solutions,
the number of particles generations needs to increase
accordingly. Table I shows the number of generations for
each test instance.

In order to reduce the communication costs between
processes, the number of particles to exchange with two
neighbor subspecies K is set to be 2. The number of particles
in a subspecies T is set to be 20 and the weight vectors

 are set based on Section II and III. The size
of the real Pareto Solution Set is set to be 1000 and the points
in it are constructed uniformly.

The distribution indexes in crossover operator and the
perturbation operator are both 20, the crossover rate is set to
be 1.00 and mutation rate is set to be 1/D, where D is the
dimension of variables. For each test instance, the above two
algorithms are executed 30 times independently.

E. Experimental Results
Table II shows the average wall clock time of

MO-MOPSO/D and the average CPU time of MOPSO/D
and the average speedup for each test instance. In general,
MO-MOPSO/D can reduce the run-time for all test instances.
MO-MOPSO/D runs about twice as fast as MOPSO/D for
ZDT1, ZDT2 and ZDT3, and only about 1.2 times for ZDT4
and ZDT6. However, in consideration of the number of
generations showed in Table I, MO-MOPSO/D can obtain a
3.2~3.5 times computing speedup for each instance, which is
consistent with the dual-core 4-thread CPU used in the
experiment.

TABLE I. GENERATIONS OF TEST INSTANCES FOR TWO ALGORITHMS

Test
Instance

Number of generations in
sequential
MOPSO/D MO-MOPSO/D

ZDT1 300 500
ZDT2 300 500
ZDT3 300 500
ZDT4 500 1500
ZDT6 500 1500

TABLE II. AVERAGE RUN-TIME AND SPEEDUP

Test
Instance

Average run-time (in
millisecond) used by Speedup Computing

Speedup MOPSO/D MO-MOPSO/D
ZDT1 1404 715 1.96 3.27
ZDT2 1349 662 2.04 3.40
ZDT3 1391 703 1.98 3.30
ZDT4 1449 1266 1.14 3.43
ZDT6 1495 1294 1.16 3.47

13151315

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III. COMPRARISION OF IGD AMONG THREE ALGORITHMS

Test
Instance MO-MOPSO/D MOPSO/D NSGA-II

ZDT1 1.32E-2 3.897E-3 1.892E-1
ZDT2 9.86E-3 3.826E-3 1.334E-1
ZDT3 7.76E-3 5.351E-3 1.003E-1
ZDT4 7.16E-3 4.051E-3 2.185E+0
ZDT6 8.10E-3 4.339E-3 1.426E-1

Table III shows the mean IGD obtained by
MO-MOPSO/D, MOPSO/D and NSGA-II for each test
instance. From Table III, the proposed algorithm gains a
slightly better solution on ZDT3 and a little worse solutions
on the other instances than MOPSO/D. Compared with
NSGA-II, MO-MOPSO/D has great advantage in the quality
of solutions.

From the above experiment results, we can conclude that
the proposed algorithm achieves a good performance on both
run-time and the quality of solutions compared with
NSGA-II. However, in order to evolve in parallel, the island
model is adopted in the algorithm and the entire population is
divided into several subspecies, thus MO-MOPSO/D can
only obtain slightly worse solutions than MOPSO/D while it
only costs much less run-time than the latter.

V. A FEW IMPROVEMENTS ON MO-MOPSO/D
In Section IV, we compare the performance of

MO-MOPSO/D and MOPSO/D, including average run-time
and the quality of solutions obtained by these two algorithms.
Revisiting Figure 3 and Table III, in terms of solution
uniformness, the proposed parallel algorithm performs worse
than the serial one on all test instances except ZDT3. So in
this section, using a new particle selecting strategy, we
improve the uniformness of solutions found by
MO-MOPSO/D without efficiency degradation. On the other
hand, we reduce the run-time of the parallel algorithm by
running it on a cluster.

A. Deterministically Selecting a Particle to Exchange
As introduced in Section III-B&C, the left particle and the

right one in a subspecies need be send to its left neighbor
subspecies and right neighbor, respectively. Meanwhile, this
particle can receive two particles from its left and right
neighbors, which are used for the evolutions of particles.
From this point of view, the exchanged particles have an
enormous influence upon the final solutions found by the
algorithm.

In the above experiment, we used a naive strategy that one
particle randomly selected from the left half of a subspecies
and the other one randomly selected from the right half of the
subspecies are used as the exchanged particles. While here
we deterministically select the first (left) particle and the last
(right) particle from a subspecies, then send them to its left
neighbor subspecies and right neighbor, respectively.

Table IV shows the mean IGD obtained by the improved
MO-MOPSO/D for each test instance. Compared with the
original MO-MOPSO/D, the improved MO-MOPSO/D
reduces IGD and improves the quality of the final solutions.
Fig. 3 represents the approximate Pareto front obtained by
the improved MO-MOPSO/D for each test instance.

TABLE IV. COMPARISON OF IGD BETWEEN TWO PARALLEL
ALGORITHMS WITH RANDOMLLY AND DETERMINISTICALLY SELECTING THE

EXCHANGED PARTICLES

Instance the Improved
Parallel Algorithm

the Original
Parallel Algorithm MOPSO/D

ZDT1 1.04E-2 1.32E-02 3.897E-3
ZDT2 5.24E-3 9.86E-03 3.826E-3
ZDT3 5.02E-3 7.76E-03 5.351E-3
ZDT4 6.97E-3 7.16E-03 4.051E-3
ZDT6 5.25E-3 8.10E-03 4.339E-3

Fig. 4. The final solutions obtained by the improved MO-MOPSO/D for

each test instance.

B. Running on the Cluster
To evaluate the performance of the parallel algorithm

without being constrained by the number of processors in a
PC, we execute the algorithm on a cluster. The specifications
of the cluster are as follows.

� Five nodes, each is equipped with an Intel Core
dual-core 4-thread i3-4150 CPU.

� 4 GB main memory per node.

� Gigabit network with FAST FS24 Switches

� Ubuntu Desktop 12.04 operating system.

Table V shows the average run-time of MO-MOPSO/D on
the cluster (cluster MOPSO/D). Compared with the parallel
MOPSO/D executed on a single machine, there is not
significant decrease in the run-time for cluster MOPSO/D.
Since the increase of communication costs on the cluster
offsets the decrease of operation costs, so the total run-time
is not greatly reduced. However, cluster can be highly
necessary to solve the extremely complex multiobjective
optimization problems.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f1

f2

ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT6

Instance the Improved
Parallel Algorithm

the Original
Parallel Algorithm MOPSO/D

ZDT1 1.04E-2 1.32E-02 3.897E-3
ZDT2 5.24E-3 9.86E-03 3.826E-3
ZDT3 5.02E-3 7.76E-03 5.351E-3
ZDT4 6.97E-3 7.16E-03 4.051E-3
ZDT6 5.25E-3 8.10E-03 4.339E-3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f1

f2

ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT6

13161316

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

TABLE V. AVERAGE RUN-TIME OF CLUSTER MOPSO/D AND SPEEDUP

Instance
Average run-time (in millisecond) used by

Speedup cluster MOPSO/D stand-alone
MOPSO/D serial MOPSO/D

ZDT1 626 715 1404 2.24
ZDT2 656 662 1349 2.06
ZDT3 677 703 1391 2.05
ZDT4 1075 1266 1449 1.35
ZDT6 1038 1294 1495 1.44

VI. CONCLUSION
Multiobjective Particle Swarm Optimization Based on
Decomposition (MOPSO/D), an implementation of
MOEA/D using PSO, is an effective algorithm for solving
MOPs. In this paper, based on MPI and OpenMP parallel
programming platforms, we proposed a parallel algorithm
called MO- MOPSO/D. The algorithm combined
distributed-memory and shared-memory programming
models into an algorithm, which can fully use the processing
power of multicore processors with Hyper-Threading
technology and a cluster.

The proposed algorithm first decomposes the MOP into
many scalar optimization subproblems, each of which can be
solved by a single particle. Then the particles are
decomposed into several subspecies based on the distances
of their weight vectors. The evolution of a subspecies is
executed by a single process and they communicate with
each other by using MPI communication functions. In the
process, threads are used to improve the evolution efficiency.
In terms of the quality of solutions, the experiment results
show MO-MOPSO/D can obtain the final solutions which
are slightly worse than those of MOPSO/D but better than
those of NSGA-II. As for the run-time, the algorithm can
achieve speedups of 2x on the single PC equipped with a
dual-core four-thread CPU.

Since the uniformness of solutions is not good, the
deterministic particle selecting strategy is used in the
improved parallel algorithm. The results have shown the
strategy highly improved the uniformness of solutions. We
have also executed the improved parallel algorithm on a
cluster to reduce its run-time. And the result showed that
running the algorithm on a cluster can boost its efficiency a
bit for these simple test instances, since the communication
costs is higher than its operation costs. However, it also
suggested that a cluster is more suitable for the complex
MOPs. Our future attempts will be in solving the complex
MOPs on clusters based MO-MOPSO/D.

REFRENCES
[1] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.

New York: Wiley, 2001.
[2] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont,

Evolutionary Algorithms for Solving Multi-Objective Problems.
Norwell, MA: Kluwer, 2002.

[3] K. Tan, E. Khor, and T. Lee, Multiobjective Evolutionary Algorithms
and Applications, ser. Advanced Information and Knowledge
Processing. Berlin, Germany: Springer-Verlag, 2005.

[4] K. Deb, Multiobjective Optimization Using Evolutionary Algorithms,
New York: Wiley, 2001.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput, vol. 6, no. 2, pp. 182-197, Apr. 2002.

[6] Q. Zhang and H. Li. MOEA/D: A Multiobjective Evolutionary
Algorithm Based on Decomposition. IEEE Trans. on EvoL Comp.,
vol. 11 , pp. 712-731, 2007.

[7] L. Paquete and T. Stützle, A two-phase local search for the
biobjective traveling salesman problem. Proc. Evol. Multi-Criterion
Optim., 2003, pp. 479–493.

[8] E. J. Hughes, Multiple single objective Pareto sampling. Proc. Congr.
Evol. Comput., Canberra, Australia, 2003, pp. 2678–2684.

[9] Y. Jin, T. Okabe, and B. Sendhoff, Adapting weighted aggregation for
multiobjective evolutionary strategies. Evolutionary Multicriterion
Optimization. Springer, 2001, vol. 1993, LNCS, pp. 96–110.

[10] H. Ishibuchi and T. Murata, Multi-objective genetic local search
algorithm and its application to flowshop scheduling. IEEE Trans.
Syst., Man, Cybern., vol. 28, pp. 392–403, Aug. 1998.

[11] A. Jaszkiewicz, On the performance of multiple-objective genetic
local search on the 0/1 knapsack problem – A comparative
experiment. IEEE Trans. Evol. Comput., vol. 6, no. 4, pp. 402–412,
Aug. 2002.

[12] V. Roberge, M. Tarbouchi, Comparison of parallel particle swarm
optimizers for graphical processing units and multicore processors.
International Journal of Computational Intelligence and Applications,
vol. 12, no. 01, 2013.

[13] K. Deep, S. Sharma, M. Pant, Modifid Parallel Particle Swarm
Optimization for Global Optimization Using Message Passing
Interface. Bio-Inspired Computing: Theories and Applications
(BIC-TA), IEEE Fifth International Conference, pp. 1451-1458, 2010.

[14] K. Y. Tu and Z. C. Liang, Parallel computation models of particle
swarm optimization implemented by multiple threads. J. Expert Syst.
Appl. Vol. 38, no. 5, 2011, pp. 5858-5866.

[15] Y. Hung and W. Wang, Accelerating parallel particle swarm
optimization via GPU. Optimization Methods and Software, 2012, pp.
33-51.

[16] J. F. Schutte, B. J. Fregly, R. T. Haftka and A. D. George, A Parallel
Particle Swarm Optimizer. FLORIDA UNIV GAINESVILLE
MECHANICAL AND AEROSPACE ENGINEERING, 2003.

[17] S. N. Omkar, A. Venkatesh, M. Mudigere, MPI-based parallel
synchronous vector evaluated particle swarm optimization for
multi-objective design optimization of composite structures.
Engineering Applications of Artificial Intelligence, vol. 25, pp. 1611–
1627, 2012.

[18] Y. Zhou and Y. Tan, GPU-Based Parallel Multi-objective Particle
Swarm Optimization. International Journal of Artificial Intelligence,
2011, pp. 125-141.

[19] Proceedings of the 13th annual conference on Genetic and
evolutionary computation. ACM, 2011.

[20] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evol. Comput, vol. 8, no.
2, pp. 173–195, 2000.

13171317

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore. Restrictions apply.

