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Abstract—Multiobjective particle swarm optimization based 

on decomposition (MOPSO/D) is an effective algorithm for 
multiobjective optimization problems (MOPs). This paper 
proposes a parallel version of MOPSO/D algorithm using both 
message passing interface (MPI) and OpenMP, which is 
abbreviated as MO-MOPSO/D. It adopts an island model and 
divides the whole population into several subspecies. Based on 
the hybrid of distributed and shared-memory programming 
models, the proposed algorithm can fully use the processing 
power of today's multicore processors and even a cluster. The 
experimental results show that MO-MOPSO/D can achieve 
speedups of 2x on a personal computer equipped with a 
dual-core four-thread CPU. In terms of the quality of solutions, 
it can perform similarly to the serial MOPSO/D but greatly 
outperform NSGA-II. An additional experiment is done on a 
cluster, and the results show the speedup is not obvious for 
small-scale MOPs and it is more suitable for solving highly 
complex problems. 

I. INTRODUCTION 
A multiobjective optimization problem (MOP) involves 

several objective functions which require simultaneous 
optimization. For MOPs, the goal is to find a set of 
non-dominated solutions which is named as Pareto Set (PS) 
and the set of all the corresponding objective function values 
of all solutions in PS is called the Pareto Front (PF) [1]-[3]. 
During the last decade, multiobjective evolutionary 
algorithms (MOEAs) have become a popular research 
direction in evolutionary computation community, and have 
shown promising performance in MOPs [1]-[5]. 

Multiobjective Evolutionary Algorithm Based on 
Decomposition (MOEA/D), proposed by Qingfu Zhang [6], 
is an effective algorithm which adopts the main idea of that 
an approximation of the PF can be decomposed into a 
number of scalar objective optimization subproblems  

[7]-[11].  

In real world applications, there exists some 
computational-intensive optimization problems that have a 
large number of decision variables (i.e., high dimension) and 
the computation of objective functions is time-consuming. 
Due to the nature of EAs that using a population to generate 
solutions iteratively, the computational cost of applying EAs 
to such computational-intensive problems become too high. 
Meanwhile, because of the inherent parallelism of EAs’ 
population architecture and the rapid development of parallel 
and distributed computation, the parallel EAs attracted 
researchers’ great attention. 

Since most personal computers are now equipped with a 
multicore CPU, some parallel PSO algorithms are based on 
multicore CPUs with distributed memory model using MPI 
and several parallel PSO implementations are based on 
OpenMP or NVIDIA’s GPUs with shared memory model. 
MPI is a cross-language communication protocol and it 
defines some message passing interface. OpenMP is an API 
that supports shared memory multithreading programming. 

V. Roberge [12] implemented a basic MPI-PSO and K. 
Deep [13] presented three versions of parallel PSO based on 
MPI. K. Y. Tu [14] proposed a multithreading PSO 
computation model and Y. Hung [15] introduced a 
GPU-PSO algorithm. In the applications, parallel PSO 
algorithms are used to solve the biomechanical system 
identification problem [16] and the design optimization of 
composite structures [17]. For MOPs, Y. Zhou and S. 
Solomon proposed two parallel MOPSO algorithms using 
GPU respectively [18] – [19]. However, there is no research 
about MOEA/D’s parallelism  and there is no parallel PSO 
implementation using hybrid of MPI and OpenMP that fully 
uses the processing power of today's multicore processors 
with Hyper-Threading technology. For these reasons, we 
implement a parallel version of it using MPI and OpenMP 
(MO-MOPSO/D) based on the original MOPSO/D. 
Compared to the original algorithm, our proposed 
MO-MOPSO/D has the following features. 

� The algorithm adopts an island model and the entire 
population is divided into several subspecies based on 

This work was supported in part by the NSFC projects Nos. 
61379061, 61332002, 6141101191, in part by Natural Science 
Foundation of Guangdong for Distinguished Young Scholars No. 
2015A030306024, in part by the “Guangdong Special Support 
Program” No. 2014TQ01X550, and in part by the Guangzhou Pearl 
River New Star of Science and Technology No. 151700098. 

 
 

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.187

1310

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.187

1310

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore.  Restrictions apply. 



the needed number of their neighbors in the algorithm. 
Each subspecies is regarded as an island and the all 
particles in an island are neighbors to each other. 

� Both MPI and OpenMP are used to implement the 
algorithm. The evolution of one subspecies is 
computed by one process and the updating of a 
particle of the subspecies is done by one thread, 
which can fully use the CPU’s power. 

� In order to further reduce the MPI’s communication 
cost, we only transfer the information of two particles 
at left and right edges of a subspecies to its left and 
right neighbors, respectively. 

We run MOPSO/D and MO-MOPSO/D on a multicore 
PC and a cluster, separately. The results show 
MO-MOPSO/D can achieve a speedup of 2× while maintain 
the nearly same quality of the final solutions compared with 
MOPSO/D. 

This paper is organized as follows. In Section II, a brief 
review on MOEA/D and its one implementation based on 
PSO (MOPSO/D) are presented. Section III introduces 
MO-MOPSO/D. Section IV compares MO-MOPSO/D with 
MOPSO/D. Section V presents more improvements on 
MO-MOPSO/D. Section VI includes the discussion, 
conclusions, and future research. 

II. MOPSO/D REVIEW 
MOEA/D decomposes a MOP into N scalar optimization 

subproblems and solves them simultaneously. And there are 
several ways to decompose the problem. In this section, we 
first present a superior decomposing approach named 
Tchebycheff Approach [6] briefly. In the following, we 
introduce MOPSO/D algorithm employing Tchebycheff 
decomposition approach. 

In this approach, let ω1, … , ωN is a set of uniform spread 
of N weight vectors of m objects, which are used to 
decompose the MOP into N scalar optimization 
subproblems.  for each j = 1, … , N, 
where  for all i = 1, … , m  and . Then 
a scalar optimization subproblem is of the form 

    (1) 

subject to x X 

where  and .  
is the best fitness value named reference point found by the 
population so far. Each x that satisfies  is a best 
solution for the i-th objective function. The optimal solution 
x are written gBesti in MOPSO/D and a gBest with size of m 
is used to store all global best solutions found so far. 

The sequential MOPSO/D works as follows: 

 
Algorithm 1: MOPSO/D 

Input: 1) MOP with m objective functions; 
      2) The n-dimensional search space X; 
      3) The number of subproblems( the number of population) N; 
      4) The uniform spread of N weight vectors ; 
      5) The number of neighbors of a weight vector T; 
      6) A stopping criterion. 
Output: All solutions of the population to N subproblems. 
  Step 1) Initialization 

1.1) Initialize the gBest with Φ; 
1.2) Select T neighbors for each particle based on the Euclidean 

distances between their weight vectors and store them into B(p) = 
{p1, … ,pT}, p =1, … , N; 

1.3) Randomly initialize x1, … , xN in the population; 
1.4) Compute the initial objective fitness values 

; 
1.5) Generate the initial reference point vector by 

comparing the initial objective fitness values. 
  Step 2) Update 

For i = 1 to N 
2.1) Randomly select two neighbors from B(i), and generate a new 

solution y using a genetic algorithm based on them and xi; 
2.2) Produce a new solution y’ by applying a heuristic improvement 

on y; 
2.3) If the reference point  for each j = 1, … , m, then 

update  and gBestj = y’; 
2.4) For each neighbor j (j = 1, … , T) of particle i, if 

, then update xj = y’; 
End For 

  Step 3) Check Stopping Criteria 
Stop the algorithm and output all optimal solutions if the stopping 

criteria is satisfied. Otherwise, go to Step 2). 

III. MPI-OPENMP-BASED MOPSO/D 
In order to fully use the processing power of multicore 

processors with Hyper-Threading technology, we propose a 
variant of MOPSO/D based on MPI and OpenMP 
(MO-MOPSO/D) to accelerate the computation of it. In this 
section, we analyze how to modify the original MOPSO/D 
algorithm to be a parallel implementation. 

A. Network Topology and Parallelism 
A mix of master-slave paradigm and peer-to-peer model  

can apply to the proposed parallel algorithm. Population are 
divided into S subspecies and every subspecies contains T (T 
= N/S) internal particles to solve T scalar optimization 
subproblems and K external particles (EP) to store the 
exchanged particles from two neighbor subspecies. Each 
subspecies is regarded as an island and the computation of it 
can be done by a single process. These T particles in a 
subspecies are neighbors to each other. In order to simplify 
the problem, we assume that N is divisible by S. 

In the master-slave paradigm, Process 0 is the master node 
and each other process is a slave node. All global 
information of population should be stored and updated by 
Process 0 and all other steps can be synchronously executed 
should be done by each process in parallel.  

Since a process does evolution computation for a 
subspecies and a thread does it for a single particle in a 
subspecies, both Step 1.3 and 1.4 of Algorithm 1 can be 
parallel executed on thread level, while Step 1.5 can only be 
parallel executed on process level. 

In Step 2, since nearly every particle need exchange  
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Process 0

Process 1 Process 2 Process i Process S-1

 
Fig. 1.  Topology of MO-MOPSO/D. The lines with arrows represent the information transmission. A mix paradigm of master-slave paradigm and peer-to-peer 

model is applied to the architecture of MO-MOPSO/D. 

Algorithm 2: MO-MOPSO/D 
Input: 1) MOP with m objective functions; 
      2) The n-dimensional search space X; 
      3) The number of subproblems N; 
      4) The uniform spread of N weight vectors ; 
      5) The number of subspecies S; 
      6) The number of particles in a subspecies T, which is equal to 
N/S; 
      7) The number of particles to exchange between two neighbor 
subspecies K. 
      8) A stopping criterion. 
Output: All solutions of the population to N subproblems. 
  Step 1) Initialization 
    1.1) Initialize the gBest of process 0 with Φ; 

1.2) Initialize the sBest of all processes with Φ in parallel; 
1.3) Process 0 calculates all weight vectors for population and 

distributes the needed components to each of the other processes using 
MPI_Scatter function. 

1.4) All particles in a process are its neighbors for each particle 
and store them into B(p) = {p1, … ,pT}, p =1, … , N; 

1.5) Randomly initialize x1, … , xS for each subspecies in 
parallel; 

1.6) Compute the initial objective fitness values 
 in parallel; 

1.7) Update sBest and the subspecies reference point vector 
by comparing the initial objective fitness 

values in parallel. 
1.8) Update gBest and the global reference point vector 

by comparing sBest. 
  Step 2) Update 

For i = 1 to N 
2.1) Swap particles with left and right neighbor subspecies for 

each subspecies and store them into EP. 
2.2) Randomly select two neighbors from B(i), and generate a 

new solution y by using evolution strategy in parallel; 
2.3) Produce a new solution y’ by applying a perturbation on 

y; 
2.4) If the subspecies reference point , for each j = 

1, … , m, then update  and sBestj = y’; 
2.5) Update gBest and the global reference points. 
2.6) For each neighbor j (j = 1, … , T) of particle i, if 

, then update xj = y’; 
End For 

  Step 3) Check Stopping Criteria 
    Stop the algorithm and output all optimal solutions if the stopping 
criteria is satisfied. Otherwise, go to Step 2). 

 

solution information with other particles in the different 
processes, the communication costs between particles are 
enormous. Thus, the topology of information transmission of 
particles can be revised to reduce communication costs on 
the basis of ensuring the optimization results. 

In order to reduce communication costs between particles 
in neighbor processes, each process maintains K external 
particles (EP) copied from neighbors. Half of EP come from 
the left neighbor process and the others come from the right 
one. If a process has no left or right neighbor, this process 
should copy its first or last K/2 particles and store them into 
the corresponding positions in EP, respectively. In this sense, 
all processes are peers. The network topology of 
MO-MOPSO/D is represented in Figure 1. 

The proposed parallel algorithm uses not only two random 
neighbor particles but EP to generate a new solution y. Then 
a perturbation operator is employed to help the particle to 
escape from local best and obtain a newer solution . Both 
of the two steps can be parallel executed for every particle on 
a thread level and the generation strategy is specifically 
introduced in Part C. 

Like gBest, a subspecies best (sBest) should be maintained 
by each subspecies to lead the particles to fly. So the sBest 
and the corresponding subspecies reference point are updated 
after generating a new solution every time. The gBest and 
global reference point, computed by comparing all sBests, 
can be updated every several iterations to reduce 
communication costs. If a neighbor’s current solution is 
worse than the new solution of the particle, then update it 
with the new solution. The update of sBest and gBest can be 
executed on process level while updating neighbors can be 
done in thread level, which is more efficient. 

At last step, the algorithm checks if the stopping criteria is 
satisfied. If it is satisfied, then stop it and output results; 
otherwise, go to Step 2. 

The algorithm is presented in Algorithm 2 and the flow 
chart of MO-MOPSO/D is shown in Figure 2. 
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B. Particles Exchange Strategy 
As is shown in Figure 1, each subspecies exchanges its K 

particles with two neighbors. For one subspecies, its left half 
particles are close to its left neighbor subspecies while its 
right half particles are close to its right neighbor. Thus, when 

it exchanges particles with its neighbors, K/2 particles which 
are sent to its left neighbor should be randomly selected from 
its left half particles and the other K/2 particles that are sent 
to its right neighbor should be randomly selected from its 
right half particles. 

 

Start

  Initialize gBest and 
global reference point

Initialize sBest and 
subspecies reference point

Calculate and distribute 
weight vectors

Initialize sBest and 
subspecies reference point

Receive the weight 
vectors

 

 

Randomly initialize the 
internal particles (*)

Randomly initialize the 
internal particles (*)

Evaluate fitness for all 
internal particles (*)

Update sBest and subspecies 
reference point

Evaluate fitness for all 
internal particles (*)

Update sBest and subspecies 
reference point

Update gBest and global 
reference point

 

 

 

 
Copy particles from neighbors 

and store them in EP
Copy particles from neighbors 

and store them in EP

Randomly select two particles 
from the subspecies (*)

Randomly select two particles 
from the subspecies  (*)

Generate a new solution y  (*) Generate a new solution  y (*)

Employ a perturbation 
operation to y (*)

Employ a perturbation 
operation to y (*)

Evaluate the objective 
function values F(y) (*)

Update sBest and subspecies 
reference point

Update gBest and global 
reference point

Update the subspecies (*)

Evaluate the objective 
function values F(y) (*)

Update sBest and 
subspecies reference point

Update the subspecies (*)

Stopping? Stopping?

 

 

 

 

 

 

 

Stop Stop  

End

Yes 

No No No

Yes Yes 

Process 0 Process 1 Process 2 ~ S-1

Fig. 2. Flow chart of MO-MOPSO/D. The solid lines represent the logical flow and the dashed arrows represent the information transmission. A step marked with 
a star means it can execute in parallel on thread-level. 
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After selecting the particles to exchange, there are two 
communication model to achieve the information 
transmission using MPI: one is point-to-point 
communication and the other one is collective 
communication. The point-to-point communication manner 
is intuitive that Process i send its information to the target 
processes, then the target processes receive the information. 
However, there are several disadvantages about 
point-to-point communication manner using MPI. 

� An unreasonable order of sending and receiving 
information for processes can always cause system 
deadlock. But it is extremely difficult to design a 
reasonable flow of communication when there are 
many point-to-point communications between the 
processes. 

� Compared with collective communications, 
point-to-point communications are inefficient, 
particularly when there exist extensive point-to-point 
communications. 

� Programming using point-to-point communications 
is more complex, cumbersome and error-prone. 

Based on above points, we adopt collective 
communications to achieve the particles exchange between 
neighbor subspecies in the proposed algorithm. In the 
master-slave communication paradigm employed in this 
paper, Process 0 is the master node and the other processes 
are slave nodes.  

C. Selecting Parent Particles 
In the island model of MO-MOPSO/D, all particles in an 

island are regarded as its neighbors for each other. However, 
the true nearness relationships among all particles in the 
population are defined by the distances between their weight 
vectors of their subproblems. And the optimal solution of 
two near subproblems should be similar. In order to avoid 
particles in an island losing subspecies diversity and falling 
into a local best point, the exchanged particles and two 
randomly selected neighbors are used to generate a new 
solution for every particle. 

It is a more reasonable strategy in particle generation that 
selecting parent particles from neighbor particles or 
exchanged particles and even selecting which one from the 
whole exchanged particles should be based on the position of 
the particle in an island. At the first step, a probability  is 
defined based on its position to decide where to select the 
parent particles used to generate a new solution. 

              (2) 

where p = 0, … , T-1 is the position of the particle in its 
subspecies and T is the number of particles in a subspecies 
defined in part A. So, a parent particle is selected from EP 
and the other one is selected from two randomly selected 
neighbors if a random value is less than Pr, whereas the 

parent particles are both selected from neighbors at the rate 
of 1 - Pr. 

At the second step, if one parent particle should be 
selected from EP, it is decided by the particle position that 
selecting the particle from the first or last half of EP. If 

, the target region is the first half of EP, otherwise, 
that is the last half of it. Then randomly select a particle from 
the target region as a parent. 

D. Discussions 
1) How to set T and K: T is the number of particles in a 

subspecies and K is the number of exchanged particles 
between two neighbor subspecies. In the proposed algorithm, 
only the exchanged particles and neighbor particles are used 
to generate a new solution for a subproblem. So the setting of 
T and K is important for the optimal solutions. If T is too 
small, two neighbor particles selected in Step 2.2 may be too 
similar and the offspring particles will quickly converge to a 
local best point. Meanwhile, If T is too large, those two 
neighbor particles may be quite different from the current 
subproblem, so their offspring can hardly find the best 
solution of the subproblem. Since the exchanged particles 
coming from neighbor subspecies, it ensures the diversity of 
subspecies. However, if K is too large, much information 
need be transferred from one subspecies to another 
subspecies and the communication costs will be extensive. 
Actually, the EP with small K can lead to enough ability to 
explore the new solution areas. 

2) Why the evolution of a subspecies is executed by a 
single process: In the MO-MOPSO/D, a process creates T 
threads and a thread executes the evolution of a particle. 
Based on the power of the processors with Hyper-Threading 
technology, two threads can run in a process simultaneously 
at least. However, the number of threads that a process 
allows to execute simultaneously is much less than the 
number of particles in a subspecies. So these threads are 
divided into several groups and they run in parallel within a 
group and run sequentially among the groups. In order to 
make all particle evolution can be executed in parallel, a 
subspecies must be divided into several parts and each part 
evolves on a separate process. The neighbors of a particle 
will lived in several islands and it will result in huge cost of 
communication when the particle needs the information of its 
neighbors living in a different island.  

E. Comparision of Computational Complexity of 
MO-MOPSO/D and MOPSO/D 

The major time consumption of the operators in 
MO-MOPSO is in Step 2. Step 2 generates N solutions to 
solve N scalar optimization subproblems in each generation. 
Note that Step 2 can be executed for each subspecies in 
parallel except Step 2.5. Step 2.1 just takes two particles 
from neighboring subspecies, Step 2.2 and Step 2.3 require 
O(T) operations to generate trial solutions, Step 2.4 needs 
O(mT) time to update sBest, Step 2.5 needs O(mS) time to 
update gBest, and Step 2.6 need  time to update x. 
Therefore, the ratio between the computational complexities 
of two algorithms is 
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The MO-MOPSO/D has computational complexity 
of MOPSO/D. 

IV. COMPARISION OF MO-MOPSO/D WITH MOPSO/D 
In this section, five benchmark functions are applied to 

test the MO-MOPSO/D algorithm and MOPSO/D. Based on 
the results of the experiment, we evaluate the performance of 
MO-MOPSO/D and compare it with MOPSO/D. 

A. Multiobjective Test Instances 
Bi-objective ZDT test instances are widely used to test the 

performance of many MOEAs and the original MOPSO/D 
[20]. In order to compare their different performances 
between MO-MOPSO/D and MOPSO/D, five ZDT test 
instances are used in  our paper. Since the experiment result 
can be significantly influenced by how to construct 
subspecies from population and this experiment focuses on 
the feasibility of parallelization of MOPSO/D.  

B. Experimental Platform  
To fairly compare the different performances of  

MOPSO/D and MO-MOPSO/D, we run these two 
algorithms on a personal computer, separately. The details of 
computer configuration are as follows. 

� An Intel Core dual-core 4-thread i3-4150 CPU. 

� 8 GB main memory. 

� MS Windows 7 Professional operating system. 

The above is the main hardware in this experimental 
personal computer. In terms of software, MPI and OpenMP 
are necessary for the experiment. MPICH2 v.1.4.1p1 for 
Windows are used to implement MO-MOPSO/D. The 
OpenMP version which shipped with VS2010 is used in the 
implementation of the proposed algorithm. 

C. Performance Metrics 
The speedup Sp is used to present the speed performance 

of a parallel algorithm and it is given by formula (3). 

                  (3) 

where  and  are the run-time of the serial 
algorithm and the parallel algorithm’s run-time, respectively. 

Inverted Generational Distance (IGD) [6] is applied in this 
paper to quantify the performances of solutions. IGD 
measures the distance between the real Pareto front and the 
approximate Pareto front obtained by an algorithm, and the 
distance is used to evaluate the convergence and diversity of 
the approximate PF. IGD can be calculated by formula (4), 

                (4) 

where ,  

and  are the max and min values on the m-th object in 
set P, respectively. m = 1, … , M, P is the real Pareto 
Solution Set and  is the i-th solution in P. A 
is the approximate Pareto Solution Set and , 
is the j-th solution in A. 

D. Experimental Setting 
The size of population N is set to be 100 for both 

algorithms for all test instances. Because the information 
communication among subspecies is few in the island model, 
the speed of convergence of MO-MOPSO/D may decrease to 
a certain extent. In order to guarantee the quality of solutions, 
the number of particles generations needs to increase 
accordingly. Table I shows the number of generations for 
each test instance.  

In order to reduce the communication costs between 
processes, the number of particles to exchange with two 
neighbor subspecies K is set to be 2. The number of particles 
in a subspecies T is set to be 20 and the weight vectors 

 are set based on Section II and III. The size 
of the real Pareto Solution Set is set to be 1000 and the points 
in it are constructed uniformly. 

The distribution indexes in crossover operator and the 
perturbation operator are both 20, the crossover rate is set to 
be 1.00 and mutation rate is set to be 1/D, where D is the 
dimension of variables. For each test instance, the above two 
algorithms are executed 30 times independently. 

E. Experimental Results 
Table II shows the average wall clock time of 

MO-MOPSO/D and the average CPU time of MOPSO/D 
and the average speedup for each test instance. In general, 
MO-MOPSO/D can reduce the run-time for all test instances. 
MO-MOPSO/D runs about twice as fast as MOPSO/D for 
ZDT1, ZDT2 and ZDT3, and only about 1.2 times for ZDT4 
and ZDT6. However, in consideration of the number of 
generations showed in Table I, MO-MOPSO/D can obtain a 
3.2~3.5 times computing speedup for each instance, which is 
consistent with the dual-core 4-thread CPU used in the 
experiment. 

TABLE I.  GENERATIONS OF TEST INSTANCES FOR TWO ALGORITHMS 

Test 
Instance 

Number of generations in 
sequential 
MOPSO/D MO-MOPSO/D 

ZDT1 300 500 
ZDT2 300 500 
ZDT3 300 500 
ZDT4 500 1500 
ZDT6 500 1500 

TABLE II.  AVERAGE RUN-TIME AND SPEEDUP 

Test 
Instance 

Average run-time (in 
millisecond) used by Speedup Computing 

Speedup MOPSO/D MO-MOPSO/D 
ZDT1 1404 715 1.96 3.27 
ZDT2 1349 662 2.04 3.40 
ZDT3 1391 703 1.98 3.30 
ZDT4 1449 1266 1.14 3.43 
ZDT6 1495 1294 1.16 3.47 

13151315

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III.  COMPRARISION OF IGD AMONG THREE ALGORITHMS 

Test 
Instance MO-MOPSO/D MOPSO/D NSGA-II 

ZDT1 1.32E-2 3.897E-3 1.892E-1 
ZDT2 9.86E-3 3.826E-3 1.334E-1 
ZDT3 7.76E-3 5.351E-3 1.003E-1 
ZDT4 7.16E-3 4.051E-3 2.185E+0 
ZDT6 8.10E-3 4.339E-3 1.426E-1 

Table III shows the mean IGD obtained by 
MO-MOPSO/D, MOPSO/D and NSGA-II for each test 
instance. From Table III, the proposed algorithm gains a 
slightly better solution on ZDT3 and a little worse solutions 
on the other instances than MOPSO/D. Compared with 
NSGA-II, MO-MOPSO/D has great advantage in the quality 
of solutions. 

From the above experiment results, we can conclude that 
the proposed algorithm achieves a good performance on both 
run-time and the quality of solutions compared with 
NSGA-II. However, in order to evolve in parallel, the island 
model is adopted in the algorithm and the entire population is 
divided into several subspecies, thus MO-MOPSO/D can 
only obtain slightly worse solutions than MOPSO/D while it 
only costs much less run-time than the latter. 

V. A FEW IMPROVEMENTS ON MO-MOPSO/D 
In Section IV, we compare the performance of 

MO-MOPSO/D and MOPSO/D, including average run-time 
and the quality of solutions obtained by these two algorithms. 
Revisiting Figure 3 and Table III, in terms of solution 
uniformness, the proposed parallel algorithm performs worse 
than the serial one on all test instances except ZDT3. So in 
this section, using a new particle selecting strategy, we 
improve the uniformness of solutions found by 
MO-MOPSO/D without efficiency degradation. On the other 
hand, we reduce the run-time of the parallel algorithm by 
running it on a cluster. 

A. Deterministically Selecting a Particle to Exchange 
As introduced in Section III-B&C, the left particle and the 

right one in a subspecies need be send to its left neighbor 
subspecies and right neighbor, respectively. Meanwhile, this 
particle can receive two particles from its left and right 
neighbors, which are used for the evolutions of particles. 
From this point of view, the exchanged particles have an 
enormous influence upon the final solutions found by the 
algorithm. 

In the above experiment, we used a naive strategy that one 
particle randomly selected from the left half of a subspecies 
and the other one randomly selected from the right half of the 
subspecies are used as the exchanged particles. While here 
we deterministically select the first (left) particle and the last 
(right) particle from a subspecies, then send them to its left 
neighbor subspecies and right neighbor, respectively. 

Table IV shows the mean IGD obtained by the improved 
MO-MOPSO/D for each test instance. Compared with the 
original MO-MOPSO/D, the improved MO-MOPSO/D 
reduces IGD and improves the quality of the final solutions. 
Fig. 3 represents the approximate Pareto front obtained by 
the improved MO-MOPSO/D for each test instance.  

TABLE IV.  COMPARISON OF IGD BETWEEN TWO PARALLEL 
ALGORITHMS WITH RANDOMLLY AND DETERMINISTICALLY SELECTING THE 

EXCHANGED PARTICLES 

Instance the Improved 
Parallel Algorithm 

the Original 
Parallel Algorithm MOPSO/D 

ZDT1 1.04E-2 1.32E-02 3.897E-3 
ZDT2 5.24E-3 9.86E-03 3.826E-3 
ZDT3 5.02E-3 7.76E-03 5.351E-3 
ZDT4 6.97E-3 7.16E-03 4.051E-3 
ZDT6 5.25E-3 8.10E-03 4.339E-3 

 
Fig. 4. The final solutions obtained by the improved MO-MOPSO/D for 

each test instance. 

B. Running on the Cluster 
To evaluate the performance of the parallel algorithm 

without being constrained by the number of processors in a 
PC, we execute the algorithm on a cluster. The specifications 
of the cluster are as follows. 

� Five nodes, each is equipped with an Intel Core 
dual-core 4-thread i3-4150 CPU. 

� 4 GB main memory per node. 

� Gigabit network with FAST FS24 Switches 

� Ubuntu Desktop 12.04 operating system. 

Table V shows the average run-time of MO-MOPSO/D on 
the cluster (cluster MOPSO/D). Compared with the parallel 
MOPSO/D executed on a single machine, there is not 
significant decrease in the run-time for cluster MOPSO/D. 
Since the increase of communication costs on the cluster 
offsets the decrease of operation costs, so the total run-time 
is not greatly reduced. However, cluster can be highly 
necessary to solve the extremely complex multiobjective 
optimization problems. 
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f1

f2

ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT6

13161316

Authorized licensed use limited to: Hanyang University. Downloaded on December 26,2023 at 05:46:43 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V.  AVERAGE RUN-TIME OF CLUSTER MOPSO/D AND SPEEDUP 

Instance 
Average run-time (in millisecond) used by 

Speedup cluster MOPSO/D stand-alone 
MOPSO/D serial MOPSO/D 

ZDT1 626 715 1404 2.24  
ZDT2 656 662 1349 2.06  
ZDT3 677 703 1391 2.05  
ZDT4 1075 1266 1449 1.35  
ZDT6 1038 1294 1495 1.44  

VI. CONCLUSION 
Multiobjective Particle Swarm Optimization Based on 
Decomposition (MOPSO/D), an implementation of 
MOEA/D using PSO, is an effective algorithm for solving 
MOPs. In this paper, based on MPI and OpenMP parallel 
programming platforms, we proposed a parallel algorithm 
called MO- MOPSO/D. The algorithm combined 
distributed-memory and shared-memory programming 
models into an algorithm, which can fully use the processing 
power of multicore processors with Hyper-Threading 
technology and a cluster. 

The proposed algorithm first decomposes the MOP into 
many scalar optimization subproblems, each of which can be 
solved by a single particle. Then the particles are 
decomposed into several subspecies based on the distances 
of their weight vectors. The evolution of a subspecies is 
executed by a single process and they communicate with 
each other by using MPI communication functions. In the 
process, threads are used to improve the evolution efficiency. 
In terms of the quality of solutions, the experiment results 
show MO-MOPSO/D can obtain the final solutions which 
are slightly worse than those of MOPSO/D but better than 
those of NSGA-II. As for the run-time, the algorithm can 
achieve speedups of 2x on the single PC equipped with a 
dual-core four-thread CPU.  

Since the uniformness of solutions is not good, the 
deterministic particle selecting strategy is used in the 
improved parallel algorithm. The results have shown the 
strategy highly improved the uniformness of solutions. We 
have also executed the improved parallel algorithm on a 
cluster to reduce its run-time. And the result showed that 
running the algorithm on a cluster can boost its efficiency a 
bit for these simple test instances, since the communication 
costs is higher than its operation costs. However, it also 
suggested that a cluster is more suitable for the complex 
MOPs. Our future attempts will be in solving the complex 
MOPs on clusters based MO-MOPSO/D. 
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