
StrongPose: Bottom-up and Strong Keypoint Heat
Map Based Pose Estimation

1st Niaz Ahmad
Department of Computer Science and Engineering

Hanyang University, Korea
niazahmad89@gmail.com

2nd Jongwon Yoon
Department of Computer Science and Engineering

Hanyang University, Korea
jongwon@hanyang.ac.kr

Abstract—The adaptation of deep convolutional neural net-
work has made revolutionary advances in human body posture
estimation. Various applications utilizing deep neural network
for pose estimation have drawn considerable attention in recent
years. However, prediction and localization of keypoints in single-
person and multi-person images is still a challenging problem.
Towards this, we propose a bottom-up approach to pose estima-
tion and motion recognition. We present StrongPose system that
deals with object-part associations using part-based modeling.
The convolution network in our model detects strong keypoint
heat maps and predicts their comparative displacements, allowing
keypoints to be grouped into human instances. Further, it utilizes
the keypoints to generate body heat maps that can determine the
position of the human body in the image. The StrongPose system
is based on fully convolutional engineering and makes proficient
inferences while maintaining runtime regardless of the number
of individuals in the image. We train and test the StrongPose on
the COCO dataset. Evaluation results show that our framework
achieves average precision of 0.708 using ResNet-101 and 0.725
using ResNet-152. Our results considerably outperform prior
bottom-up frameworks.

Index Terms—Body heat map, Pose estimation, Strong key-
point heat map.

I. INTRODUCTION

Recent advances in computer vision have empowered re-
searchers to go beyond classic methods, such as box-level face
and body detection, to a comprehensive visual understanding
of people in unregulated environments. A deep visual under-
standing of people is also important in many computer vision
applications such as video surveillance, people and activity
recognition, human and computer interaction, motion capture
and robotics. Human pose estimation is a major cornerstone
for achieving a specific goal, described by the two-dimensional
positioning of a person’s joints, torso and facial keypoints.
It is desirable to identify individuals by taking into account
the actions they engage in and activities they perform. Recent
developments in the estimation of human body have been
achieved by improving the efficiency of complex convolu-
tional neural networks (CNNs) and large-scale pose estimation
datasets such as MPII [1] and COCO [2].

2D estimation of human posture is a challenging problem.
Inferring the poses of multiple people, especially those who
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Fig. 1. (a) StrongPose generates a strong keypoints heat map (SKHM) for
pose detection. (b) Based on the SKHM, a body heat map (BHM) is created
to determine the body position. (c) StrongPose creates 2D plot with kinematic
graph based on the SKHM.

are socially engaged, comes with much more difficulty due
to the following reasons. First, an image can have an unde-
fined number of individuals that can appear at any location
and distance. Second, human-to-human interactions induce
complex spatial interference due to contacts, obstruction and
articulations of the limbs, making it difficult to associate body
parts. Third, the complexity and runtime tend to increase with
the number of people in the image, leading to the performance
issues.

Recent approaches in this domain include a person detector
that performs pose estimation for each individual. However,
this top-down approach has several problems. The perfor-
mance of a person detector directly depends on the number of
existing individuals in the image. In particular, the larger the
crowd, the higher the computing cost, as it requires a single
person pose estimator to run iteratively for each detection.
When the person detector fails (usually in the case of a crowd),
there is no recovery to estimate the pose.

In contrast, a bottom-up approach is attractive because it
provides robustness to the problems of a top-down approach
and reduces run-time complexity. In practice, methods in [3,
4] fail to maintain the efficiency because the final analysis
requires costly global inference. The authors in [3] proposed
a method that jointly solves the tasks of detection and pose
estimation. However, solving the problem of integral linear
programming on a fully connected graph is an NP-hard and
takes several hours. Although DeeperCut [4] improved body
part detector for effective proposals and group these into valid
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human pose configurations, the process time is still in minutes
per image. The methods proposed in [5, 6] first predict the
human bounding box, then find the keypoints within the box.
Specifically, the human keypoints are obtained by transforming
the feature map of the detected human bounding box. They
require a two-step process of detecting individuals and making
poses of detected individuals, leading to double computational
power and time. Moreover, addressing the hard keypoints, e.g.,
torso, knees and ankles, is a difficult problem [7, 8, 9].

We propose StrongPose framework to address the difficulties
in pose estimation. In particular, StrongPose predicts every
keypoint of each individual in a completely convolutional man-
ner. Our system introduces strong keypoint heat map (SKHM,
shown in Figure 1(a)) scheme that estimates the relative
displacement between each pair of keypoints and significantly
improves the precision of long range, occluded and close
proximity keypoints. Once the keypoints are localized, a fast
pose plotting algorithm is used to organize them into instances.
Our method starts with the most obvious identification, as
opposed to starting with the dominant body parts such as the
nose, therefore it always work well even with debris or unclear
visibility. Our framework can successfully process the pose
estimation of both single-person and multi-person scenarios.

We evaluate the performance of StrongPose on the COCO
keypoint dataset annotated by multiple persons with 5 facial
and 12 body keypoints. StrongPose surpasses the best prior
bottom-up technique [7] by increasing the average precision
from 0.696 to 0.725. In addition, producing body heat map
(BHM, shown in Figure 1(b)) help to localize the human body
and improves the keypoint confidence in the scene. Our algo-
rithm is very fast and simple because it does not require two-
step box-based refinement nor clustering. With this reason,
we believe StrongPose is quite useful for various applications,
such as AR/VR, video surveillance, action recognition and
many others. Our contributions are multi-fold:
• We propose a novel and efficient approach StrongPose,

which generate SKHM for both soft and hard keypoints.
• Using SKHM, StrongPose generates BHM in order to

localize the individuals in the image.
• We investigate the effects of various factors that con-

tribute to single and multi-person pose estimation in
bottom-up approach.

• The performance of StrongPose on challenging COCO
keypoint benchmark is 0.708 average precision (AP)
using ResNet-101 and 0.725 AP using ResNet-152.

The rest of this paper is organized as follows. We discuss
related works on pose estimation in Section II. Section III
describes our StrongPose system and key algorithm for pose
estimation. We present implementation details and evaluation
results in Section IV. Section V concludes the paper.

II. RELATED WORK

Early human posture prediction relies on the inference
mechanism of part-dependent graphical model where humans
are defined by a set of configurable parts [10, 11]. In these
years, the trend toward deep convolutional neural networks

(CNN) is increasing [12, 13]. In the deep CNN domain,
[14, 15, 16] proposed tractable inference algorithms to solve
the energy minimization of abundant dependency among body
parts. Model-based large-scale convolutional networks have
achieved state-of-the art performance in both single-person and
multi person-pose estimation. In StrongPose, the forward in-
ference method differs from these early deformable part-based
models; we follow a bottom-up methodology for individual
keypoints detection and group them into individual instances.

Mainly, there are two approaches for estimating human
posture; bottom-up (parts first) and top-down (person first).
The top-down approach identifies keypoints surrounded by
bounding box detector. The bottom-up method first detects all
human keypoints (e.g., ears, eyes, nose and joints) in the whole
image, and then groups these keypoints into human instance.

Examples of bottom-up approach are [4] and [17], both
are based on ResNet [18]. The algorithms generate powerful
part detectors and the image is dependent on pairwise scores,
which improves the process and runtime. However, these
methods take time in minutes to perform pose estimation for
each image if the number of proposals is small. Pishchulin
et al. [3] formulate a multi-person pose estimation problem
with labeling and part-grouping through a linear program
on a fully connected graph that is an NP-hard problem and
requires significant computational power. The authors in [7]
propose an associative embedding for the identification of
keypoint detections from the same individual. Coa et al. [19]
map associations between keypoints into Part Affinity Fields
(PAF) and groups candidate joints into a person using greedy
algorithm.

In general, a top-down approach predicts the locations
of keypoints inside boundary boxes obtained from a person
detector (e.g., Fast-RCNN [20], Faster-RCNN [21] and R-
FCN [22]). Mask R-CNN [5] extends the Faster R-CNN [21]
by adding a predicting segmentation masks to each region of
interest, however its processing time is 5 frames per second,
which is not compatible with real-time scenario. Iqbal et al.
[23] address the joint-to-person association problem using a
densely connected graphical model. They first crop image
regions using a person detector, then process the cropped area
with integer linear programming. Their algorithm is based on
HOG system that relies heavily on training data, however it
does not perform well at handling various pose estimations.
Chen et al. [6] propose a two-level Cascaded Pyramid Network
(CPN) consists of GlobalNet and RefineNet to address the
hard-joint problem. The downside of hard-keypoints is that
they require more context than nearby features. Fang et al.
[24] propose a framework, Symmetric Spatial Transformer
Network (SSTN), to extract high quality single-person region
from inaccurate bounding boxes. The SSTN depends on the
concept of a bounding box that requires processing time for
pose estimation. The authors in [25] address the robustness
problem of keypoint localization using a fully convolutional
inception network [26] and build both coarse-part and fine-part
detectors for feature extraction. The coarse detector can yield
accurate location of keypoints with distinctive shape, however
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Fig. 2. The CNN model in StrongPose predicts two heat maps, strong keypoints heat maps (SKHM) and body heat map (BHM). The first prediction identifies
keypoints to detect a person’s poses, and the second prediction generates the human body heat map to localize each person in the picture.

often fail to detect keypoints with ambiguous appearance. Li
et al. [27] propose a Multi-Stage Pose estimation Network
(MSPN) adopting the GlobalNet of CPN [6]. GlobalNet pro-
vides high spatial resolution for localization but low semantic
information for recognition.

III. SYSTEM OVERVIEW

Figure 2 depicts an overview of the StrongPose system
which consists of the ResNet, a pose estimation module and
a pose plotting module. The CNN model takes a picture as
an input and passes it to the backbone network ResNet. It
generates keypoint proposals for each labeled keypoint. These
keypoint proposals help with keypoint localization and are
fetched into the pose estimation module. The pose estimation
module then generates strong keypoint heat maps (SKHM)
based on the keypoint proposals and combines the SKHMs.
The pose estimation module also produces a body heat map
(BHM) utilizing the SKHM in order to identify the position
of each individual in the scene. We avoid bounding box level
detection due to the BHM. When both the SKHM and the
BHM are obtained, the pose estimation module predicts each
individual’s keypoints and use the L1 loss function to minimize
the loss between the prediction and the ground truth. The
output of the pose estimation module feeds into the pose
plotting module (inspired by [9]) to create a perfect pose for
each person in the image.

A. Bottom-Up Approach used in StrongPose

The current-state-of-art of human pose recognition and
estimation can be divided into two classes; the bottom-up
and top-down approach. The bottom-up approach first finds
all person keypoints (e.g. eyes, ears, joints and etc.) in the
entire image and then groups them into human instances to
create a kinematic graph (human tree-structure). In contrast,
top-down method starts with human detection and identifies
keypoints within the detection bounding boxes. This is based
on the assumption that each bounding box contains at most
one keypoint per keypoint class.

Fig. 3. Example of strong keypoints heat map generated by StrongPose.

In StrongPose, we adopt the bottom-up approach, which
is more suitable for crowded scenario, because it processes
the entire image at once and its runtime is independent of
the number of individuals in the image. StrongPose first
detects body parts and then groups these parts into human
instances. In this manner, StrongPose is able to reduce per
image processing time, save computational power for training
and achieve confident result in crowded scene.

B. Strong Keypoint

Strong keypoint detection is the core engine of StrongPose.
In an instance-agnostic manner, it detects all visible keypoint
proposals that belong to every individuals in the image. In
order to detect all keypoint proposals, we significantly modi-
fied the hybrid classification and regression approach used in
[28] and adopted it into the multi-person framework. Figure 3
presents an example of the SKHM generated by StrongPose.

The system generates the SKHM using keypoint offsets, two
channels per keypoint for vertical and horizontal displacement.
Suppose pi is the position of the 2D keypoint in the image,
where i = 1, . . . , N is the indexing position of the image and
N is the number of pixels. Let DR(q) = {p : ‖p–q‖ ≤ R} is a
disk of radius R centered on q. Let qjk is the 2D position of the
k-th keypoint of the j-th person instance (with j = 1, . . . , I ,
where I is the number of person instances in the image). For
each keypoint k = 1, ...,K, a binary classification task is set
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Fig. 4. Keypoint disk around the keypoint positions. L1 loss function is used to minimize the error,
which is the sum of all absolute differences between the ground truth and predicted keypoint values.

Fig. 5. StrongPose defines keypoints and body
parts association.

as follows. The predicted keypoint heat map pk(h) = 1 if
h ∈ DR for every person instance j, otherwise pk(h) = 0.
Thus, for each keypoint type we have K independent dense
binary classification tasks. The radius value is set to R = 16
pixels to predict a disk of radius R around a particular keypoint
of any person in the image (we empirically obtain the R value
and set it to 16 which reaches nearest to the ground truth).
The value R is constant for all experiments reported in this
paper. In order to equally weigh all person instances in the
classification, we choose a disk radius which does not scale
according to the instance size. While training the network, the
keypoint heat map loss is computed as the average logistic loss
based on the image position. It then back-propagates across the
entire image, excluding the range that includes individuals who
are not fully annotated with keypoints (e.g., crowded areas and
small individual segments).

In expansion to the heat maps, StrongPose also predicts the
vector of keypoint offsets Vk(x) which is used to increase
the precision of keypoint localization. The keypoint offset
2D vector Vk(x) = qjk − p for each position pi inside the
keypoint disk and for each keypoint type k. It focuses the
picture position p to the k-th keypoint of the closest individual
instance j. It also generates vector fields V while solving the
2D regression problem at each picture position and keypoint.
During training, the prediction error of the keypoint offset is
penalized by the L1 loss. As presented in Figure 4, the error is
averaged and back-propagated only at the positions p ∈ DR,
where the ground truth keypoint position is Gk. We reduce
the errors in the keypoint offset (radius R = 16 pixels) by
normalizing them and making a dynamic range compatible
with the heat map classification loss.

C. Pose Plotting

StrongPose utilizes a pose plotting algorithm to collect all
keypoints and turn them into individual instances. Initially, a
queue stores all K keypoints along with the keypoint position
xi and type k. However, two or more keypoints can be selected
for one keypoint (x and y coordinates). For all these local

maxima (two or more keypoints) within the keypoint heat map
hk(x), a Gaussian filter with a threshold value of 1.0 is used
to select the keypoint with high intensity. These points are
used as building blocks to detect instances. It then gradually
connects adjacent pairs of keypoints along the edges of the
kinematic graph depicted in Figure 5. At each iteration, if the
location xi of the current detection point of type k is inside a
disk DR(qj′,k) of instance j′, then algorithm skips such point
because it is already recognized. It usually occurs when two
keypoints overlap or partially touch. For this matter, we utilize
a non-maximum suppression. Then a new detection instance j
starts with the k-th keypoint at location qjk = xi and delivers
it to the new point.

Other approaches of plotting poses based on the torso or
nose keypoints sometimes fail to plot individuals when they
are not clearly visible in the image. Although our decoding
(and plotting) algorithm does not take into account both kinds
of keypoints, we found that StrongPose easily identifies the
frontal face of an individual (from facial keypoints). Moreover,
it manages rigorous situations where a significant part of the
individual is not visible.

D. Confidence Score

We have experimented with various strategies for assigning
keypoint confidence scores to detections generated by our fast
pose plotting algorithm. We adopted the method used in [28]
and assigned a confidence score sjk = hk(qjk) to each key
point, however there was a fairness issue in our configurations.
Specifically, well-localized facial keypoints generally obtain
significantly higher score than poorly positioned keypoints
such as hip or knee. Therefore, we calculate the score of
various kinds of keypoints inspired by the object keypoint
similarity (OKS) evaluation metric used in COCO. We use
precision threshold Tk to penalize localization errors at differ-
ent types of keypoints.

For keypoint confidence score, we adopt non-maximum
suppression (NMS) and utilize the average of the keypoint
scores as the instance level score shj = (1/k)

∑
k sjk. The
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tests are conducted on both hard OKS-based NMS [28] and
soft-NMS schemes [29]. We use the sum of the keypoint
scores, not claimed by the higher scored instances, as the final
instance-level score. It is also normalized to the total number
of keypoints as follows:

sj = (1/k)
∑

k=1:K

sjk[||qjk − qj′k|| > r,∀j′ < j] (1)

where the NMS-radius r = 10. Experimental results are
presented with the best Expected-OKS and soft-NMS scores
in Section IV.

E. Undefined Keypoint Annotation

The COCO dataset does not provide keypoint annotations
for small instances of the training dataset, and hence our
model avoids them during evaluation. However, for such small
instances, our system includes the segmentation annotation and
evaluates the mask prediction. Since keypoint annotations are
required for training the model, we crop around the ground
truth box annotations of these small-person instances to define
the missing keypoint annotations, and then execute the single-
person pose estimator. We treat these keypoints as systematic
training annotations while training the StrongPose model.
The keypoint annotations mentioned above are particularly
important for StrongPose’s performance on small instances.
Note that unlike [30], we do not use any data in this process
other than the split images and annotations from the COCO
train dataset. The performance of the StrongPose can be
further improved by purifying the data of additional images
as described in [30].

TABLE I
PERFORMANCE COMPARISON WITH HOURGLASS [33], CPN [6],

HRNET-W48 [31], CMU-POSE [19] AND PERSONLAB [9] ON COCO
VAL2017 DATASET (COMPARISON RESULTS ARE CITED FROM [6, 31]).

Method Backbone Input Size OHKM AP AR
Top-down:
8-stage Hourglass - 256 × 192 7 0.669 -
8-stage Hourglass - 256 × 256 7 0.671 -
CPN ResNet-50 256 × 192 7 0.686 -
CPN ResNet-50 384 × 288 7 0.706 -
CPN ResNet-50 256 × 192 3 0.694 -
CPN ResNet-50 384 × 288 3 0.716 -
HRNet-W48 HRNet-W48 384 × 288 7 0.763 0.812
Bottom-up:
CMU-Pose - - 7 0.618 -
PersonLab (single-scale) ResNet-152 - 7 0.665 0.707
PersonLab (multi-scale) ResNet-152 - 7 0.687 -
StrongPose ResNet-101 - 7 0.690 0.757
StrongPose ResNet-152 - 7 0.728 0.800

IV. EXPERIMENTS AND RESULTS

A. Dataset and Evaluation Metric

We assess the performance of the StrongPose framework
on the standard COCO keypoint dataset (person class alone).
The COCO keypoint contains the challenge of localizing
multi-person keypoint in complex uncontrolled environment.
The COCO training, validation, and testing dataset contains
over 200K images and 250K human instances labeled with
keypoints. In addition, 150K keypoints are open to the public
for training and evaluation. Our model is trained only on the

TABLE II
THE PERFORMANCE OF AP ON THE COCO KEYPOINT TEST-DEV SPLIT.

AP AT IOU=.5:.05:.95, AP.50 AT IOU=.50 (PASCAL VOC METRIC), AP.75

AT IOU=.75 (STRICT METRIC), APM CORRESPONDS TO AP FOR MEDIUM
OBJECTS: 322 < AREA < 962 , AND APL CORRESPONDS TO AP FOR

LARGE OBJECTS: AREA > 962 .

Method AP AP.50 AP .75 APM APL

Top-down:
Mask-RCNN [5] 0.631 0.873 0.687 0.578 0.714
G-RMI COCO-only [28] 0.649 0.855 0.713 0.623 0.700
CPN [6] 0.721 0.914 0.800 0.687 0.772
Bottom-up:
CMU-Pose [19] (+refine) 0.618 0.849 0.675 0.571 0.682
Assoc. Embed. [7] (multi-scale) 0.630 0.857 0.689 0.580 0.704
Assoc. Embed. [7] (mscale, refine) 0.655 0.879 0.777 0.690 0.752
PersonLab [9] (single-scale) 0.665 0.880 0.726 0.624 0.723
PersonLab [9] (multi-scale) 0.687 0.890 0.754 0.641 0.755
MultiPoseNet [8] 0.696 0.863 0.766 0.650 0.763
StrongPose:
ResNet101 0.708 0.889 0.752 0.652 0.753
ResNet152 0.725 0.891 0.778 0.671 0.762

TABLE III
THE PERFORMANCE OF AR ON THE COCO KEYPOINTS TEST-DEV SPLIT.

Method AR AR.50 AR .75 ARM ARL

Top-down:
Mask-RCNN [5] 0.697 0.916 0.749 0.637 0.778
G-RMI COCO-only [28] 0.697 0.887 0.755 0.644 0.771
CPN [6] 0.785 - - - -
Bottom-up:
CMU-Pose [19] (+refine) 0.665 0.872 0.718 0.606 0.746
Assoc. Embed. [7] (multi-scale) - - - - -
Assoc. Embed. [7] (mscale, refine) 0.758 0.912 0.819 0.714 0.820
PersonLab [9] (single-scale) 0.710 0.903 0.766 0.661 0.777
PersonLab [9] (multi-scale) 0.754 0.927 0.812 0.697 0.830
MultiPoseNet [8] 0.735 - - - -
StrongPose:
ResNet101 0.721 0.904 0.782 0.670 0.771
ResNet152 0.751 0.919 0.802 0.690 0.813

COCO train 2017 dataset which includes 57K images and
150K instances of people without any additional data. The
ablation is studied on the COCO val2017 dataset. For a fair
comparison, we present the results for the test-dev2017 set
using a bottom-up approach with the state-of-the-art results
[7], [8], [9], [19]. The COCO evaluation determines the object
keypoint similarity (OKS) and uses both the average precision
(AP) and average recall (AR) for 10 OKS thresholds as the
evaluation metric [32]. The performance is determined from
the difference between the predicted point and the ground
truth, normalized to the person’s scale.

B. Training Model

We use CNN backbone models ResNet-101 and ResNet-152
[18] for training and testing. The ResNet backbone network
is initialized with pre-training on ImageNet classification task
[34]. We set the learning rate for training to 1×e−3. An image
size of 401×401 is fed into the network, while the batch
size of two images is processed on NVIDIA GeForce GTX
1080 Ti (GPU is powerful enough to process multiple images
at once). We conduct synchronous training for 5000 epochs
with stochastic gradient descent, momentum value set to 0.9,
and Polyak-Ruppert model parameter averaging. We fix the
ResNet activation statistics to ImageNet values with batch
normalization [35]. Our ResNet CNN backbone network uses
an output stride of 16 during training and reduces to 8 during
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Fig. 6. Visualization of COCO val and test images.

evaluation using atrous convolution [36]. To speed up training,
we make model predictions during training using the feature
activation from a layer in the middle of the network, which we
found empirically. For evaluation, we present results of two
models trained on ResNet-101 and ResNet-152. The system
uses the TensorFlow [37] platform for implementation and all
results are obtained from the same model. The algorithm of
StrongPose is open to the public [38].

C. COCO Keypoints Evaluation

Table I shows the results on COCO val2017 dataset com-
pared with 8-stage Hourglass [33], CPN [6], HRNet-W48 [31],

CMU-Pose [19] and PersonLab [9]. The first three methods
use a top-down approach for estimating keypoints, while
the last two use a bottom-up approach. StrongPose increases
average precision (AP) by 0.057 compared to Hourglass. Both
methods have no Online Hard Keypoints Mining (OHKM)
involved. We can see that StrongPose outperforms CPN by AP
of 0.022 when OHKM is not used and by AP of 0.012 when
OHKM is used. In addition, our model provides significant
performance improvement over the bottom-up method, CMU-
Pose and PersonLab. Specifically, StrongPose improves AP of
0.063 and AR of 0.093 compared to PersonLab.

Table II and Table III show the performance of AP and AR
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on COCO keypoint test-dev2017 dataset, respectively. We can
see that StrongPose outperforms bottom-up approaches, CMU-
Pose, Associative Embedding, PersonLab and MultiPoseNet.
Specifically, our best result yields 0.725 AP on the ResNet-
152 base architecture. Some of the bottom-up approaches
mentioned above perform multi-scale inference and optimize
their results using a single-person pose estimation (adding the
results on top of their bottom-up identification proposals).
The test results also show that StrongPose surpasses the
performance of top-down approaches such as Mask-RCNN
and G-RMI.

In Figure 6, we present the visualization results generated
by StrongPose using COCO val and test images. The first two
rows show the results of the single-person pose estimation
(uncrowded scenarios) and the last two rows show the results
of the multi-person pose estimation (crowded scenarios). We
can confirm that StrongPose accurately predicts the human
posture regardless of the number of individuals in the image.

V. CONCLUSION

We proposed a bottom-up approach using unified part-
based modeling to jointly solve pose estimation and person
detection problem. StrongPose generates both strong keypoints
heat maps and body heat map to accurately predict the
keypoints. The effectiveness of StrongPose is evaluated on the
COCO 2017 keypoint challenging dataset and shows cutting-
edge results. We believe that StrongPose model is simple
yet effective architecture for identifying human actions. We
can also improve our model while enhancing the algorithm
performance and training on multiple datasets. Take the advan-
tages of StrongPose model, we plan to develop an autonomous
system that recognizes human actions in real-time scenarios in
future work.
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