
UBR: User-Centric QoE-Based Rate Adaptation for
Dynamic Network Conditions

Wangyu Choi and Jongwon Yoon∗
{wangyu92,jongwon}@hanyang.ac.kr
Hanyang University, Republic of Korea

ABSTRACT
The prevalence of video streaming applications has led to
an escalation in users’ demands for high-quality services.
Numerous endeavors have been undertaken in the realm
of quality-of-experience (QoE) models and adaptive bitrate
(ABR) algorithms to fulfill this demand. Nevertheless, the
existing QoE models exhibit a significant gap with users’
actual experience. ABR algorithms are vulnerable in dy-
namic network environments. We present an integrated
system with an accurate QoE model and an environment-
robust adaptation algorithm to ensure high user satisfaction
in dynamic network conditions. We define a QoE model
that accurately estimates the user’s QoE by considering the
viewing environment and video content. We then design
a meta-reinforcement learning-based adaptation algorithm
that adapts to dynamic network conditions. We systemat-
ically integrate them, allowing it to update its policy with
QoE feedback within a few shots.
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1 INTRODUCTION
Video streaming apps have grown in popularity, increasing
the need for enhanced video streaming services. Extensive
efforts have been made in various aspects such as adaptive bi-
trate (ABR) algorithms [4–6, 9], video quality modeling [1, 2],
and bandwidth estimation [4]. These efforts focus on inves-
tigating ABR algorithms and quality of experience (QoE)
models that directly improve user QoE.

Many efforts [1, 2] have been made to accurately estimate
the QoE, but there is still a significant gap due to indirect
approaches. Rather than measuring the quality of the ren-
dered video, existing QoEmodels often focus on the playback
buffer, such as downloaded segment size and buffer depletion.
Nevertheless, the QoE for the user is considerably influenced
by various factors that are inherent to the viewing process
(e.g., the viewport’s resolution, and motion size). To maxi-
mize user QoE, many ABR algorithms have been proposed, in
particular, learning-based approaches [4, 6] have emerged as
state-of-the-art solutions with the large-scale datasets. How-
ever, they have the limitation of environmental sensitivity,
making them vulnerable to network dynamics.

Unfortunately, there is a dearth of collaboration between
QoE models and ABR in the current literature. Despite the
advent of more sophisticated QoE models, contemporary
ABR solutions continue to target antiquated QoE models
that exhibit a significant gap with the user’s actual QoE. For
instance, the state-of-the-art algorithms, Pensieve [6], and
Fugu [4] try to maximize the sum of bitrate and adaptive
penalty, which is not directly related to user QoE.
We focus on key design points: (i) direct approach for

QoE modeling, (ii) robust learning-based algorithm, (iii) sys-
tematic integration of them. To this end, we first define a
user-centric QoE model, that directly estimates the actual
QoE. We then design a meta-reinforcement learning-based
adaptation algorithm, which is robust to dynamic environ-
ments. Finally, we introduce an integrated videos streaming
system, UBR, to maximize the user QoE directly. We com-
pare UBR to state-of-the-art ABR algorithms in a variety of
environments. UBR accurately estimates user QoE and is
robust to adapt within a few shots in user-specific networks.
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Figure 2: The training process of meta-RL in UBR.

2 DESIGN
Our goal is to design and implement a video adaptation
system that enhances the user’s actual QoE while ensur-
ing robustness in dynamic network conditions. Toward this,
we first define a user-centric QoE model, which accurately
models the user’s perceived quality. We then design a ro-
bust adaptation algorithm to dynamic network conditions
while maximizing the QoE model. We illustrate the system
overview of UBR in Figure 1. The user-centric QoE adopts
LSTM to capture the user’s past experience while considering
factors belonging to the viewing process.

2.1 User-Centric QoE Model
Visual quality. We train a neural network on large-scale
datasets. Specifically, we train the function 𝑞𝑣 (·) which maps
the factors that determine visual quality, 𝒙𝑣 , to the visual
quality, 𝑦𝑣 . The 𝒙𝑣 vector is made up of the following ele-
ments: bitrate, frame rate, perceived motion size, and per-
ceived resolution. A neural network for visual quality es-
timation is composed of an input layer, two hidden layers
with dropout to mitigate overfitting, and a fully-connected
layer. We adopt standard supervised learning to train a vi-
sual quality estimation model while minimizing the mean
squared error (MSE) between the output visual quality and
the subjective scores using stochastic gradient descent.
Adaptive penalty. After the establishment of the visual

quality estimation model, the subsequent step involves the
integration of the adaptive penalty to finalize the QoE. We
adopt LSTM network that takes into account information on
adaptive incidents as inputs and generates the estimated QoE
while considering past information. In particular, adaptive
incident information includes (i) a rebuffering indicator and
(ii) the time elapsed since the last rebuffering event. The
rebuffering indicator represents the duration of rebuffering
for the segment, which is equal to or greater than 0.

Let 𝒙𝑡 be the set of rebuffering indicators and time elapsed
since the last rebuffering event for the 𝑡-th segment. Then,
the estimated QoE𝑦𝑡 for 𝒙𝑡 is given by:𝑦𝑡 , 𝑐𝑡 , ℎ𝑡 = LSTM(𝒙𝑡 ,
𝑐𝑡−1, ℎ𝑡−1) where, 𝑐𝑡−1 and ℎ𝑡−1 represent the previous cell
state and hidden state, which contain past information, re-
spectively. We train a neural network to minimize the MSE
loss between the estimated𝑦𝑡 and the actual QoE𝑦𝑡 obtained
from several human-evaluated datasets.

2.2 Robust Adaptation
We aim to design an adaptation algorithm that maximizes
the QoE model while ensuring robustness to dynamic net-
work conditions. To effectively cope with dynamic network
conditions, we employ meta-learning in our model that con-
tinuously/quickly adapts to new environments.
Neural network. We utilize an actor-critic-based neu-

ral network architecture, which comprises an input layer, a
hidden layer, an actor head, and a critic head. The neural
network takes inputs 𝒔𝑡 and uses its parameter 𝜃 to generate
output 𝝅𝜃 (𝒔𝑡 , 𝒔𝑡) and 𝒗𝜋𝜃 (𝒔𝑡 , 𝒂𝑡 ) of the actor head and the
critic head, respectively. The input layer is composed of fully
connected (FC) layers and 1D convolutional neural networks
to extract the features. The 1-CNN has 64 filters of sizes 2
and 1, and FC has 64 neurons. All features are concatenated
and pass through the hidden layer, which is composed of 1
FC with 64 neurons and branches to each head.

Training. The ABR policy is designed to rapidly adapt to
new and unforeseen user-specific environments, distinguish-
ing it from traditional RL algorithms. Figure 2 provides an
overview of the training process, which involves construct-
ing various environments that closely mimic real-world sce-
narios. In this process, 𝑛-th RL agent samples one environ-
ment from the pool and updates its parameters to 𝜃 ′𝑛 through
interaction with the environment. We then perform a meta-
update by aggregating the updated parameters across differ-
ent environments. This meta-update specifically focuses on
extracting the sensitive parameters 𝜃 that significantly affect
the policy among the neural network parameters.
To find a parameter 𝜃 , we adopt a Model-Agnostic Meta

Learning (MAML) algorithm [3] that combines the models
obtained after training in different environments. The train-
ing process is divided into two phases: internal adaptation
and external adaptation. In the internal adaptation phase,
the RL agent updates its parameters to 𝜃 ′𝑖 in the environment
pool 𝑝 (T𝑖 ). We formulate this process as follows:

𝜃 ′𝑖 = 𝜃 − 𝛼∇𝜃LT𝑖 (𝜋𝜃 ) (1)

LT𝑖
(
𝜋𝜙

)
= −Es𝑡 ,a𝑡∼𝜋𝜙 ,𝑞T𝑖

[
𝐻∑︁
𝑡=1

𝑅𝑖 (s𝑡 , a𝑡 )
]

(2)

where, a𝑡 is the model’s output (i.e. bitrate), 𝑅𝑖 is the reward
function, and 𝐻 is the length of the episode. To update equa-
tion (2), we use Proximal Policy Optimization (PPO) [8], one
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Figure 3: Performance comparison under
user-specific network conditions.
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Figure 4: Accuracy comparison QoE model.
UC QoE stands for user-centric QoE model.
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Figure 5: Adaptability
of UBR

of the policy gradient algorithms known for its efficiency
in many complex tasks. In external adaptation, we calculate
the final meta parameter 𝜃 through meta update using 𝜃 ′𝑖
obtained from the internal update.

3 EVALUATION
Performance under user-specific networks.We evaluate
the performance of UBR under user-specific network condi-
tions. We collect the network traces of the two top viewers
from the Puffer website [4]. For each trace, we execute UBR
and the baseline algorithm for comparison. We consider the
following 4 baselines: BBA [5], RobustMPC [9], Fugu [4], and
Pensieve [6]. For the QoEmetric, we use our user-centric QoE
model, which closely reflects the user’s QoE. Figure 3 shows
the comparison results of the baseline algorithms and UBR.
We can see that UBR outperforms the baseline algorithms in
both network traces. The findings indicate that UBR adapts
to each user-specific network condition and provides direct
QoE improvements to users.

Accuracy of user-centric QoE model. To demonstrate
the effectiveness of our user-centric QoE model, we compare
it to existing QoE models. We consider the following as base-
line QoE models: KSQI [1], P.1203 [7], LSTM-QoE [2], which
are the recently proposed state-of-the-art QoE models. We
use Pearson Linear Correlation Coefficient (PLCC) and Spear-
man Rank Order Correlation Coefficient (SROCC), which
measure the correlation between any two datasets. Figure 4
shows a comparison of the accuracy of the user-centric QoE
model and the traditional QoE model. We can see that the
user-centric QoE model has higher accuracy than the tradi-
tional QoE model for both metrics (user-centric QoE is above
0.8 for both, while the baseline algorithms are below 0.7).
This result indicates that user-centric QoE is a more direct
reflection of the actual user’s perceived quality.

Adaptability of UBR. To demonstrate the adaptability of
our algorithm based on meta-RL, we measure how quickly
the algorithm improves QoE with new data under new net-
work conditions. For comparison, we adopt a traditional
RL-based Pensieve. Figure 5 compares the adaptability of

UBR and Pensieve. UBR improves QoE after only a few up-
dates (About 10% for 5 shots), while Pensieve has barely
improved QoE (0.4%) after 100 updates. Based on these re-
sults, we confirm the superiority of UBR based on meta RL.
This adaptability of UBR ensures high QoE for users in new,
unseen and time-varying environments robustly.

4 CONCLUSION
We propose a user-centric QoE model that directly estimates
the user’s experience in video streaming, and design and im-
plement a robust adaptation algorithm, UBR, under dynamic
network conditions. The user-centric QoE model considers
the user’s viewing environment and video content. The UBR
leverages meta-RL to maximize the user’s QoE, thus provid-
ing fast adaptation in dynamic network conditions.
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