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Abstract
Deploying high-spec cameras in video systems often falls
short of user expectations. Leveraging advancements in deep
learning, we propose a mobile, lightweight, real-time video
enhancement system. Our approach adopts cutting-edge
models and introduces novel optimization techniques for
real-time streaming, improving low-resolution, grayscale,
and low frame-rate videos. Preliminary evaluations show
significant improvements in PSNR and SSIM, while visual
assessments confirm substantial quality enhancements while
maintaining real-time processing requirements.

CCS Concepts
• Computer systems organization → Real-time sys-
tems.
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1 Introduction
With advancements in technologies such as networks, mo-
bile devices, and the Internet of Things (IoT), video camera
systems have become pervasive in our daily environments.
Surveillance cameras monitor security in smart homes, dash
cams and vehicle black boxes capture real-time footage for
accident investigations, and remote cameras allow wildlife
observation without disturbance. The ability to remotely
monitor and manage locations using smartphones signifi-
cantly enhances convenience and security.

Deploying video camera systems in suboptimal conditions
poses significant challenges. The compact hardware design
limits component size, and low-light environments or re-
liance on infrared sensors capturing only grayscale images
reduce quality. Power supply issues and size restrictions on
large image sensors further complicate deployment. In such
conditions, the shortcomings of low-resolution, grayscale
cameras become evident, necessitating improvements such
as upscaling and transitioning to high-resolution, color imag-
ing. Users accustomed to high-resolution, color footage often
find these limitations unacceptable, highlighting the need for
advanced image quality enhancements to meet expectations
while balancing hardware constraints.

Remarkable advancements in artificial intelligence and
deep learning over the past decade have enabled tasks like
super-resolution, colorization, and video frame interpolation
to transform low-quality videos into high-quality ones. We
explore enhancing low-quality video footage as a more effec-
tive alternative to using high-quality camera modules from
the outset. However, these models require substantial compu-
tational resources and time, posing a challenge for real-time
processing. Real-time capability is crucial in video camera
systems, but the computational demands of these tasks of-
ten limit their practicality for live video feeds, necessitating
more efficient solutions for real-time applications.
To address this challenge, we propose a mobile, light-

weight, real-time video enhancement system for video cam-
era applications. The system ensures real-time capability and
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Figure 1: System overview. The red and blue stripes rep-
resent deep learning models: red for super-resolution
and colorization, and blue for frame interpolation.

high-quality output by employing efficient deep-learning
models and optimized algorithms. By minimizing computa-
tional load and latency, our approach significantly enhances
video quality with minimal processing delay, maintaining
superior video quality and the responsiveness required for
real-time applications. This mobile, lightweight solution un-
derscores the importance of portability and efficiency in
achieving real-time video enhancement.

2 System Design
The goal of the system is to enhance low-quality video–
characterized by low resolution, grayscale, and low frame
rate–into high-resolution, color, and high frame rate video
in real-time. This work addresses the increasing user ex-
pectations driven by advancements in network and display
technologies, contrastedwith the difficulty of deploying high-
spec camera systems in constrained environments.

To bridge this gap, we employ three deep learning models:
super-resolution, colorization, and frame interpolation as
depicted in Figure 1. Although these models have achieved
remarkable performance, they face the challenge of process-
ing video at a rate of one second per second to maintain
real-time performance. To meet this constraint, we imple-
ment various optimization techniques, ensuring our system
delivers high-quality video enhancements within the strict
limits required for real-time applications.

Core enhancement models. To achieve real-time video
enhancement, we adopt three state-of-the-art deep learning
models: RIFE [1] for frame interpolation, a deep learning-
based model [4] for colorization, and SRGAN [2] for super-
resolution. These models are selected for their proven effi-
cacy and advanced methodologies. RIFE efficiently generates
temporally coherent intermediate frames, enabling smooth
motion in low frame-rate videos. The deep learning coloriza-
tion model transforms grayscale images into high-quality

colorized ones using a fully convolutional architecture. SR-
GAN enhances image details and texture, producing photo-
realistic high-resolution images from low-resolution inputs.
Integrating RIFE, the colorization model, and SRGAN allows
us to comprehensively enhance video quality in real time,
meeting modern user expectations and overcoming the limi-
tations of constrained camera systems.
Optimization for a real-time system. In a real-time

video enhancement system, the stringent requirement is to
process one second of video within one second. Achieving
this with all three enhancement modules—super-resolution,
colorization, and frame interpolation—is challenging. For
example, a 30 FPS video requires each frame to be processed
within approximately 33 milliseconds. This tight deadline
means any delays can interrupt video playback, especially
with varying frame arrival times or processing times due to
content complexity.

To address these challenges, we adopt state-of-the-art tech-
niques and propose novel optimizations. One optimization
is quantization, converting computations to 16-bit floating-
point operations to reduce processing time without sacrific-
ing quality. Additionally, we integrate super-resolution and
colorization into a single, efficient model to achieve shorter
inference times. To mitigate interruptions from processing
delays, as illustrated in Figure 1, we introduce an enhance-
ment buffer, ensuring a continuous flow of video frames even
with varying individual processing times. We also dynami-
cally adjust the final output frame rate based on the buffer
level, consistently meeting real-time processing deadlines
without noticeable disruptions to the user.

The adjustment process involves monitoring the buffer’s
fill level and dynamically modifying the output frame rate
to prevent overflow or underflow. When the buffer is nearly
full, indicating that frames are being processed faster than
they are consumed, the system slightly increases the output
frame rate, allowing more frames to be displayed per second.
Conversely, when the buffer level drops, indicating slower
processing, the system decreases the output frame rate to
avoid exhausting the buffer and causing playback interrup-
tions. This adaptive frame rate adjustment ensures a smooth
viewing experience, maintaining synchronization between
processing speed and playback.

3 Preliminary Evaluation and Conclusion
Experimental setup. For the experimental setup, we use the
original configurations and pretrained models of the three
enhancement models as specified in their respective papers.
We evaluate the proposed system by downloading various
videos from YouTube and collecting surveillance videos from
the VIRAT dataset [3]. To simulate low-spec video camera
conditions, we convert these videos to lower-quality settings:

86



Real-Time Enhancement of Low-Quality Video for Constrained Camera Systems ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

Table 1: Quantitative evaluation of the proposed sys-
tem compared to the original one.

Metric PSNR (dB) SSIM
Low quality video 21.34 ± 1.24 0.7163 ± 0.0532
Enhanced video 26.71 ± 2.23 0.8501 ± 0.0459

120p and 320p resolutions, grayscale, and frame rates of 1
FPS or 5 FPS. The 120p videos are upscaled to 480p, and
the 320p videos to 1280p. We assess the enhanced videos
using the Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM).

Inference time.We measure the time taken, in millisec-
onds, to enhance videos from 120p or 320p grayscale at 1FPS
or 5FPS to 480p or 1280p resolution, color, and frame rates of
10, 15, 20, and 30FPS. These results are illustrated in Figure 2.
A key observation is that converting a 320p video to 1280p
at 10 FPS meets the 1000 ms (1 second) deadline. For 120p
videos, the increase in inference time with higher output FPS
is negligible. These results demonstrate the feasibility of our
approach in real-time environments. This evaluation high-
lights that the system effectively enhance low-quality video
to meet the stringent real-time processing requirements, val-
idating its practical applicability.
Effectiveness of super-resolution, colorization. To

quantitatively evaluate the performance of the system, we
measure the PSNR and SSIM of the low-quality videos and
the enhanced videos against the original videos. The results
are presented in Table 1. The results indicate a significant im-
provement in video quality. The PSNR of the enhanced video
is 26.71dB, compared to 21.34dB for the low-quality video, in-
dicating a substantial reduction in distortion. Similarly, SSIM
of the enhanced video is 0.8501, compared to 0.7163 for the
low-quality video, demonstrating a notable enhancement in
structural similarity and visual quality. These improvements
underscore the effectiveness in enhancing video quality, val-
idating its potential for real-world applications.

Visual quality. Figure 3 illustrates frames from a video in
the surveillance video dataset, showcasing the visual quality
improvement. Despite the input being a very low-quality
120p video, the output at 480p demonstrates a significant en-
hancement in clarity and detail. Similarly, when enhancing
320p video to 1280p, there is a notable quality improvement.
The effectiveness of the proposed system is particularly pro-
nounced when enhancing lower-quality (120p) videos, high-
lighting its capability to substantially improve video clarity.
These results indicate that our system is highly suitable for
the low-spec camera video systems, providing considerable
visual quality improvements in real-time applications.

Conclusion. In this work, we propose a real-time video
enhancement system utilizing three state-of-the-art deep
learning models: super-resolution, colorization, and frame
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Figure 2: Inference time of the proposed system for
various video resolutions and frame rates.
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Figure 3: Visual quality comparison between low-
quality video and enhanced video.
interpolation. Our system effectively transforms low-quality
video into high-resolution, color, and high frame rate output,
meeting the demands of modern users and overcoming the
limitations of constrained camera systems. Experimental re-
sults demonstrate significant improvements in video quality,
validating the feasibility and effectiveness of our approach
for practical applications.
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