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Abstract: The quality of the processed products in CNC machining centers is a critical factor
in manufacturing equipment. The anomaly detection and predictive maintenance functions
are essential for improving efficiency and reducing time and costs. This study aims to
strengthen service competitiveness by reducing quality assurance costs and implementing
Al-based predictive maintenance services, as well as establishing a predictive maintenance
system for CNC manufacturing equipment. The proposed system integrates preventive
maintenance, time-based maintenance, and condition-based maintenance strategies. Using
continuous learning based on long short-term memory (LSTM), the system enables anomaly
detection, failure prediction, cause analysis, root cause identification, remaining useful
life (RUL) prediction, and optimal maintenance timing decisions. In addition, this study
focuses on roller-cutting devices that are essential in packaging processes, such as food,
pharmaceutical, and cosmetic production. When rolling pins are machining with CNC
equipment, a sensor system is installed to collect acoustic data, analyze failure patterns, and
apply RUL prediction algorithms. The Al-based predictive maintenance system developed
ensures the reliability and operational efficiency of CNC equipment, while also laying the
foundation for a smart factory monitoring platform, thus enhancing competitiveness in
intelligent manufacturing environments.

Keywords: CNC machining centers; f~AnoGAN; LSTM; latent ODE; VAE; CBM; PdM

MSC: 26-04; 68T01

1. Introduction

Computerized Numerical Control (CNC) machining centers [1] have become essential
equipment in modern manufacturing, performing precise machining operations with high
accuracy and productivity. These machines require reliable operation, and the importance
of maintenance strategies has been increasingly emphasized. In particular, in intelligent
manufacturing environments such as smart factories, the early detection of anomalies, fault
prediction, and the implementation of efficient maintenance strategies are crucial.

To explain more specifically the impact of various factors on the results in CNC
machining, several elements such as the material’s mechanical properties, cutting speed,
tool shape, and whether cutting fluid is used play significant roles. Materials with high
hardness accelerate tool wear, affecting cutting quality, and if the cutting speed is too high,
increased heat generation can shorten tool life and degrade surface roughness. In our study,
we extracted these characteristics and collected and labeled data on the characteristic sound
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generated when a machining press molds materials (SKD-11) [2,3] through field engineers,
utilizing field experience data.

Previous studies have focused on condition-based maintenance (CBM) [4,5] and time
series data analysis to monitor equipment conditions and detect anomalies. The advent
of deep learning techniques, such as long short-term memory (LSTM) [6,7] networks, has
significantly improved the precision of time series data processing for maintenance. Re-
cently, unsupervised learning methods like AnoGAN (Anomaly Detection using Generative
Adversarial Networks) [8-11] have been introduced, minimizing human intervention and
advancing automated maintenance systems.

Despite these advancements, several challenges remain: (1) Most existing algorithms
require data preprocessing, which necessitates additional time and user intervention in
processing raw data. (2) Current CBM approaches face limitations in accurately predict-
ing equipment failures, lacking effective optimization models for predictive maintenance.
(3) The usage of other forms of manufacturing data, such as acoustic data, remains in-
adequately analyzed and used. (4) Existing maintenance systems struggle to integrate
seamlessly with smart-factory platforms, reducing their competitiveness in intelligent
manufacturing environments.

LSTM excels at learning time series patterns but lacks reconstruction-based anomaly
detection, relying solely on prediction errors. In contrast, f~AnoGAN [12] leverages GAN-
based [13] learning to detect anomalies using reconstruction errors and the discriminator’s
judgment, enabling efficient detection with limited data. However, it does not capture
temporal dependencies. Combining LSTM with f-AnoGAN enhances anomaly detection
by learning sequential patterns, allowing for more precise anomaly identification. This
approach integrates LSTM's prediction error, f~AnoGAN’s reconstruction error, and the dis-
criminator’s judgment, strengthening the anomaly detection criteria for improved accuracy.

To address these issues, this study proposes the following innovative approaches:
An Al-based predictive maintenance framework was developed to enhance the reliability
and operational efficiency of CNC machining centers. An LSTM+latent ODE [11,14,15]
algorithm was designed that goes beyond CBM to optimize predictive maintenance for
time series data. On top of that, a fully unsupervised anomaly detection method was
implemented using LSTM-+f-AnoGAN [12,16] algorithms, enabling complete automation
with raw data and no preprocessing, followed by a fault pattern analysis and remaining
useful life (RUL) [17,18] prediction algorithms using acoustic data from CNC-processed
roller-cutting workpieces. In addition, we integrated predictive maintenance capabilities
into a smart factory’s monitoring platform, strengthening intelligent manufacturing com-
petitiveness. The findings of this research are expected to significantly contribute to the
advancement of intelligent maintenance systems in manufacturing environments while
enhancing the competitiveness of smart factories. Figure 1 presents the workflow that we
have developed.

The key contributions of this study are as follows:

* We developed an Al-based anomaly detection method and predictive mainte-
nance framework to enhance the reliability and operational efficiency of CNC
machining centers.

*  An LSTM+latent ODE algorithm was proposed to optimize predictive maintenance,
going beyond traditional condition-based maintenance for time series data.

* A fully unsupervised anomaly detection method was implemented using LSTM+{-
AnoGAN algorithms, enabling automated detection and diagnosis without user inter-
vention by utilizing raw data without preprocessing.

*  An analysis of failure patterns and a prediction algorithm using acoustic data from
CNC machining equipment for roller-blade processing were implemented.
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¢  The predictive maintenance capabilities were integrated into a smart factory’s moni-
toring platform, strengthening intelligent manufacturing competitiveness.

Operator CNC Machining Center 14 hours raw record data Time series data preprocess
and data collection Sequence data ‘ CNC noise
T
Feature Sequence data CNC noise
‘ 1 Feature ~ Feature  Feature  Feature | Target (Y)
2 2 2 2 2 21
3 3 3 3 3 2
4 4 4 4 4 23
V‘; ‘ N, Noise Data 5 5 5 5 5 24
‘l C B 2 : 6 6 6 6 25
/ 31,738
LOLIN D32 373 20 20 20 20 39
Pro Audio sensor ot
A Predictive maintenanc
/ [ A / Condition based maintenance
ecoder> Anothaly detected -AnoGAN
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Figure 1. The sound sensor (raw data) was measured every 50 ms and had 1 s of data for each row.
Using unsupervised learning with condition-based maintenance (CBM) and LSTM, we analyzed
the temporal patterns of anomalies to perform anomaly detection (f~AnoGAN) and determine
the anomaly status of machine conditions. When anomalies were detected, the information was
visualized and forwarded to the decision-making module. To predict data for predictive maintenance
(PdM), an LSTM network was utilized to estimate the latent trajectory of the system based on time
series data derived from latent ODEs. This step predicted the future operational states of the machine
based on its normal condition. Based on the information generated in these two stages, operators can
understand the current state of the machine and assess future risks through visualized data, enabling
them to decide on appropriate maintenance actions.

2. Related Work

Maintenance methods in smart factories can be broadly classified into reactive main-
tenance and preventive maintenance. Reactive maintenance involves repairing equip-
ment after a failure has occurred. While it has lower initial maintenance costs, it can
lead to unexpected downtime, reduced productivity, and increased operational expenses.
On the other hand, preventive maintenance aims to prevent equipment failures in ad-
vance. It is further divided into time-based maintenance, condition-based maintenance,
and predictive maintenance.

2.1. Time-Based Maintenance

This method involves conducting regular inspections and replacing parts based on
fixed time intervals (e.g., usage hours, operational cycles). It is a preventive maintenance
approach where regular inspections and maintenance are performed to prevent equipment
or system failures [5,19,20]. Actions are taken based on a fixed inspection cycle, with the
primary focus on reducing the risk of breakdowns. Preventive maintenance can extend the
lifespan of equipment, prevent unexpected failures, and reduce long-term maintenance
costs. However, the initial costs may be higher due to the regular and fixed nature of
the maintenance.

In addition, corrective maintenance is a repair strategy implemented after a breakdown.
It is a reactive approach that responds only when a failure occurs. The primary drawback
of this method is its 100% failure risk, as actions are only taken after the breakdown. This
can lead to exorbitant maintenance costs. Reactive maintenance is often used for urgent
repairs, but it can also result in unexpected downtime and high repair costs.



Mathematics 2025, 13, 1093

40f21

2.2. Condition-Based Maintenance

Condition-based maintenance (CBM) [11,21,22] is a strategy that involves monitoring
the condition of equipment or systems and making maintenance decisions based on the col-
lected signals and data. This approach continuously monitors the condition of equipment to
reduce the risk of failure and performs maintenance only when necessary, thereby reducing
maintenance costs. By detecting signs of failure before they occur, CBM [23] allows for
proactive measures, increasing equipment uptime and minimizing unexpected downtime.

By analyzing various signals and data (such as vibration, temperature, pressure, etc.)
that indicate the condition of the equipment, the likelihood of failure can be predicted,
and maintenance tasks can be performed based on this analysis, reducing the risk of failure.
This also helps to minimize unnecessary preventive maintenance and reduce maintenance
costs by replacing only the necessary parts when a failure occurs. Furthermore, by mini-
mizing production disruptions caused by unexpected equipment failures, productivity is
improved, and the equipment’s lifespan is extended by accurately assessing and managing
its condition.

2.3. Predictive Maintenance

Predictive maintenance (PdM) [24-26] is a technique that monitors the condition
of CNC machining centers to predict potential failures and take preventive measures.
By implementing PdM, it is possible to prevent up to 70% of system failures and reduce
unnecessary maintenance costs by approximately one-third. In particular, the use of Al
techniques like LSTM can reduce reliance on expert engineers and expand the market for
PdM [27-30] solutions.

However, PdM faces several challenges, including the need for vast quantities of
data, the analysis of fault mechanisms, and the development of solutions for anomalies.
Additionally, it requires highly skilled experts and significant investment in technology.

In conclusion, while PdAM is an effective method to increase equipment uptime and re-
duce costs, successful implementation requires data analysis capabilities, skilled personnel,
and appropriate technology investment. Companies should carefully evaluate the pros and
cons of PAM and develop optimal strategies tailored to their specific environments.

To address these issues, we used a residual analysis technique among anomaly de-
tection methods to create a model that predicts normal behavior. By analyzing the differ-
ence (residual) between the actual observations and the values predicted by the model,
we detected anomalous states. Additionally, by combining machine learning and deep
learning-based anomaly detection technologies (such as f~AnoGAN, LSTM-based models,
latent ODE, etc.), a more sophisticated analysis became possible.

In CNC machining [31,32], various factors influence the results, with key variables
including the material’s mechanical properties, cutting speed, tool geometry, and the use
of cutting fluid. Harder materials accelerate tool wear, affecting cutting quality, while
excessively high cutting speeds increase heat generation, leading to reduced tool life and
deteriorated surface roughness [33,34]. In this study, we analyzed these characteristics by
collecting and labeling data on the characteristic sounds generated during the machining
of press mold material (SKD-11) through field engineers, utilizing field experience data.

2.4. General Framework

Variational Autoencoders (VAEs) [35-37] are a type of generative model that learn
to model the distribution of data and generate new samples from that distribution. They
extend the basic Autoencoder (AE) [38,39] concept by incorporating probabilistic elements
to create a more flexible and powerful generative model.
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A VAE can generate new data by sampling from the latent space and has stronger gen-
eralization capabilities by modeling the probabilistic distribution of the data. It effectively
captures the complex structure of the data and can model a variety of distributions. Due to
these advantages, VAEs are widely used in various fields, such as image generation, data
augmentation, and anomaly detection.

An LSTM network is used for handling sequential data and learning patterns over time,
such as time series forecasting or sequence classification. The LSTM network calculates the
output for a given input sequence x; as follows:

]’lt = LSTM(xt,ht_1> (1)

Here, h; is the output of the LSTM network at time step ¢, and x; is the input sequence
data. This output h; captures important temporal patterns from the sequence.
f-AnoGAN [40] is an anomaly detection model based on a GAN that learns the distri-
bution of normal data and detects anomalies by comparing new data to this distribution.
f-AnoGAN consists of a generator G, a discriminator D, and an encoder E. The generator
creates fake data that mimic normal data, the discriminator classifies the data as real or
fake, and the encoder maps input data to the latent space for faster anomaly detection
(Equation (2)).
Generator G: G(z;0g) = % (2)

where z is the latent vector, § are the parameters of the generator, and £ is the generated
data (Equation (2)).
Encoder E: E(x;0g) =z 3)

The encoder E maps input data x to the latent space z, where 6 denotes the parameters
of the encoder (Equation (3)).

Discriminator D: D(x) = (W - £ +b) (4)

The discriminator D represents the probability that the data x are real (normal), and o
is the sigmoid activation function (Equation (4)).

The key difference in f-AnoGAN is the introduction of an encoder, which efficiently
calculates the latent vector of new data. Anomalies are detected based on the distance in
the latent space and reconstruction error.

A Variational Autoencoder (VAE) compresses input data x into a latent space repre-
sentation z and reconstructs it back to its original space.

The encoder transforms the input x from a high-dimensional space to a lower-
dimensional latent space z, estimating the mean (1) and variance (¢%) of the latent variable z:

h = ReLU(W,x + be)

(5)
w=Wyh+by,, log(r2 = Wiogoh + biog o

To sample the latent variable z, the reparameterization trick is applied to ensure the
sampling process is differentiable:

z=pu+e-o, e~N(,I) (6)

where ¢ = exp(0.5 - log 0?), and I is the identity matrix.
The decoder reconstructs the original input £ from the latent variable z:

£ = ReLU(W,z 4 b,)
92 = ReLU(Wd/J? + bd’)
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The VAE loss consists of two components: the reconstruction loss and the KL
divergence loss:
Lrecon = ||x — 92“%

i = —2 Y (14 log? — i — o ®
KL——EZ ogo — - —0°)

The overall loss is given by £ = Liecon + LKL-

A latent ODE models the latent variable z as a continuous trajectory over time using
ordinary differential equations (ODEs).

The change in the latent state over time is modeled using an ODE function:

=~ fzo) ©)

where f(z;6) is a neural network consisting of a Tanh activation function and linear
transformations:
f(Z,‘ 9) = tanh(le —+ bl)WZ + bz (10)

Given the initial state zp and a time range ¢, the ODE is solved as:
z¢ = ODEINT(f, zo, t) (11)

Here, ODEINT is a numerical solver that computes the latent state z; over time.
The trajectory of z; over time is plotted to visualize the evolution of the latent space.

3. Proposed Model
3.1. State-Based Anomaly Detection Method

LSTM+f-AnoGAN combined: The LSTM network processes sequential data and
extracts features, while f~AnoGAN detects anomalies in these features using an encoder,
generator, and discriminator. The output /; of the LSTM network is passed to f~AnoGAN
for anomaly detection. First, the sequential data x; are passed through the LSTM network
to produce the output h;:

ht = LSTM(xt,ht,ﬁ (12)

This h; is then mapped to the latent space z using the encoder E:
z = E(ht; 0) (13)
The latent vector z is input to the f-AnoGAN'’s generator G to generate a normal pattern:
ht = G(z;6c) (14)
The generated /; is evaluated by the discriminator D:
D (ht> - a(w e+ b) (15)

The encoder, generator, and discriminator work together to detect anomalies. Anoma-
lies are identified based on the distance between h; and fi; as well as the output of the
discriminator D. This combined model enhances anomaly detection in sequential data by
leveraging LSTM'’s feature extraction and f-AnoGAN’s efficient anomaly scoring.

The LSTM loss function is defined based on the difference between the predicted and

actual values:
T

Lrstm = t; (ﬁt - ht)z (16)
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Here, h; is the actual value, and ftt is the predicted value.
The f-AnoGAN loss function combines reconstruction loss and feature mapping loss:

‘Cf—AnoGAN = ﬁrecon + D‘Efm (17)

where Lyecon = ||x — G(z)||?
the input x and the generator output G(z). L = || fp(x) — fp(G(2))|)? is the feature

mapping loss, evaluating the difference in discriminator feature representations fp(-
ppmg g P

is the reconstruction loss, measuring the difference between

between the input x and the generated output G(z). « is a hyperparameter that balances
the two loss terms.
The total loss function for the combined model can be written as:

Liotal = Lr5TM + AL AnGAN (18)

where A is a hyperparameter that balances the importance of the two loss terms.

The LSTM network processes sequential data and extracts meaningful temporal fea-
tures, while f-AnoGAN combines reconstruction loss and feature mapping loss to detect
anomalies. The combined model uses the LSTM output to generate normal data with the
f-AnoGAN generator, and the discriminator evaluates the anomaly score of these gener-
ated data. This approach enhances anomaly detection performance in time series data by
leveraging the temporal pattern recognition of LSTM and the advanced anomaly detection
capabilities of f-AnoGAN. The LSTM network learns time-dependent features, and unlike
the original f-AnoGAN, which analyzes individual samples, it learns the normal flow in
continuous time-series patterns and can detect anomalies by setting thresholds based on
this learning.

3.2. Prediction-Based Detection Methods

Combining latent ODEs, a VAE, and LSTM networks involves using a Variational
Autoencoder (VAE) to encode observations into a latent probabilistic space, latent ODEs to
model continuous latent dynamics, and LSTM networks to refine the states with discrete
sequential observations. Below is the mathematical representation of the process.

Combining VAE, latent ODEs, and LSTM
The combination of VAE, latent ODE, and LSTM involves the following steps:

- Latent state initialization: encode the input data x( into the latent probabilistic space

using the VAE encoder:
z(to) ~ g9 (2 | x0) (19)
- Continuous state modeling: use latent ODEs to predict the continuous latent state:
z(t;) = ODESolve(z(t;1), fo, ti-1,ti) (20)

- State update with LSTM: update the state using LSTM with the observation x; and the
latent state z(¢;):

hi; = LSTM([xy;, z(t;)], ht,_,) @

- Reinitialize latent state: map the LSTM output /i, back to the latent space for the next
ODE step:

z(tiy1) = g(hyy) (22)
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Final Mathematical Formulation

The combined process can be summarized as follows:

z(tiy1) = ODESolve(z(t)), fo, ti, tiv1),
hti+1 = LSTM( [xtiﬂ, Z(ti+l)] ’ hti)/ (23)
z(tipo) = g(hfm)

This hybrid approach enables probabilistic modeling of latent states (via the VAE),
continuous time dynamics (via latent ODEs), and discrete time series updates (via LSTM).
It enhances the detection of anomalies in irregularly sampled time series data by leveraging
the strengths of each component. Figure 2 shows the overall process of the model we
designed, presented step by step.

Generator | Discriminator [  Inference Anomaly detected
| Feature number | | Feature number | | Anomaly score |
B | LSTM | | Hiddenstate | | Threshold |
<
A | Hidden state | | fully connected | | BCELoss |
5
_g* x | fully connected | | ReLU I
l/L § 58 | Sigmoid |
5]
d 5] Yms
Tnpe T‘? | d VAE — Latent ODE |— LSTM Latent trajectory
series| 43
‘2" | Encoder | | ODEsolver | [ VAElatent |
§ | Linear, ReLU | | t | | Hidden state | di
| Decoder | | z (latent) | | fully connected |
| Linear, ReLU | | z (differential) | | RelLU |

Figure 2. This is a model for anomaly detection in time series data. After performing data prepro-
cessing using techniques such as MinMaxScaler and StandardScaler, the LSTM x f-AnoGAN learns
and generates features of the time series data, calculates anomaly scores based on the discriminator’s
judgment, and detects anomalies when the score exceeds a threshold. The LSTM x latent ODE
model compresses and reconstructs VAE time series data into a low-dimensional latent space, while
modeling data changes within the latent ODE’s latent space. In the LSTM layer, the future of the
time series data is predicted based on the results of the latent ODE. Finally, anomalies are detected,
and data changes are visualized.

4. Experiments

This section describes the overall design of the experimental setup for the CNC
equipment used in this study, focusing on the installation of factory devices and sensor
nodes. We designed experiments to answer the following questions:

Anomaly detection accuracy: How accurately can the LSTM-based f-AnoGAN, trained
in an unsupervised manner without preprocessing, distinguish between normal and abnor-
mal data by setting a threshold (operating threshold)?

Anomaly prediction accuracy: In time series data without preprocessing and labels,
how well can the LSTM-based latent ODE identify and predict abnormal segments?

Verification of model generalization: Do the f-AnoGAN combined with LSTM and
latent ODE (VAE) models successfully detect anomalies in the Yahoo Anomaly Dataset?



Mathematics 2025, 13, 1093

9 of 21

4.1. Data Collection

Sensor node setup. To collect real-time data from the CNC machining process, a sensor
node was designed and implemented using the following components:

e Microcontroller board: A LOLIN D32 (Arduino IDE 2.0) Pro [41] board was utilized to
handle data acquisition and processing.

*  Microphone sensor: A MAX4466 (Adafruit, Brooklyn, NY, USA) microphone sensor
was employed to collect acoustic signals, specifically focusing on noise generated dur-
ing the machining process. Designed by Analog Devices and manufactured in China.

Material specifications and machining details. For the experiments, shaping and
processing were performed on SKD 11 material with the following specifications:

*  Material: high-strength steel (SKD 11) [42] commonly used in industrial applications.

e  Dimensions: the material block measured 300 x 115 mm.

*  Machining time: the total machining process spanned 48 h, including 7~8 h for drilling
operations.

*  Dirilling details: number of drills used: 1~2 tungsten carbide end mills (typically 1).

¢ Drill specifications: tungsten carbide end mill with a diameter of 10 mm and a corner
radius of 1 mm.

Power supply. The sensor node and logging system were powered using the following:

¢  Battery pack: a 1000 mAh battery connected to the LOLIN D32 Pro board.
*  Operating current: the setup consumed approximately 700 mA during operation.

Data logger operation: to ensure continuous data recording, the data logger was
designed to operate for 14 h per session, allowing for extended monitoring of the machining
process without interruptions.

Edge server setup: For temporary data storage and transmission within the factory,
the Nvidia Jetson Xavier was used as the server, which could be replaced with a Jetson
Nano or Raspberry Pi. The edge server received sensor data via BLE and transmitted data
to the main server using Wi-Fi or LTE-M.

Main server setup: For data transmission and database management, a cloud server
(OCI or AWS) was used. Additionally, an SSL certificate issuance and automatic renewal
system was implemented to enable HTTPS security. A time series database was set up
to store sensor data, and data reception and transmission features were provided via a
RESTful API service. InfluxDB was used to store sensor data, and OracleDB was used to
manage authentication data.

Noise data collection results: The sound sensor measured data at 50 ms intervals,
with each row containing one second of data. Each data row followed the structure shown
below in Figure 3, which also displays the result of its visualization. Table 1 provides
information about the CNC noise dataset used in this experiment.

This overall design enabled effective data acquisition and analysis, providing a ro-
bust foundation for anomaly detection and predictive maintenance experiments in CNC
machining environments.

Additionally, while this study focused on an Al-based analysis, we also explored a
method that could be implemented in real-time systems. Two approaches were used for
applying it in a real-time system. The first was to implement it directly on an edge server,
enabling real-time push notifications and monitoring for users. The second approach
involved training the model on a high-performance computer in a cloud server and then
delivering the results to users. Sensor data collected in real time by the data logger were
stored through a buffer set with a transmission speed of 4 ms, and the storage duration
could be adjusted between 1 and 3 s. The stored data were then sequentially fed into the
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LSTM+f-AnoGAN model. Another approach was to apply an algorithm that analyzed
the MinMax cycle of a specific signal instead of storing data based on time, allowing only
characteristic signals to be stored from the start to the end point. The combination of the
LSTM+f-AnoGAN model integrated time-based storage methods with Al applications,
while the LSTM+latent ODE model, which predicted specific signals, proposed a MinMax-
based preprocessing approach. Finally, a Python script was used to execute the pkl file
containing the trained model and all relevant parameters [37].

(a) CNC setup (b) Dataset file check
No. Noise Data
0 19171, "1933", "1901°, "1939', "1914', "1884...
1 [1917, "1889’, "1904', "1881", "1915", "1895...
2 [(1885', "1921°, "1897', "1904', "1913’, "1930...
3 [1872',"1968', "1950', "1937", "1920', "1931...
4 [1963°, "1960', "1937', "1941°, "1937", "1927...
31,738  [1922','1922',"1925', "1915', "1915’, "1915...
31,739 [1907°, "1923°, "1914', "1904', "1918", "1907...
31,740 [1919, "1916', "1910', "1925', "1913’, "1919...
31,741 [1797',"1817°, "1841°, "1872’, "'2007", "1985...
31,742 ['1927,°1903', "1919°, "1915’, "1918’, '1930...

(d) 1 second sample of data

H 1975
o 0 oo |l mo o o ~ \\,,,// \\ )
|H‘ N\ / \ | NUZERN
1900 /| |
\ //‘
1825
T T T T T T %
3000 2500 2000 1500 1000 500 0 10

Figure 3. (a) Internal view of the data logger installed in the actual CNC equipment and the coolant
oil being sprayed during the shaping process. In (b,c), the data structure can be analyzed using a box
plot, and (d) presents the visualization of data over a one-second period.

Table 1. Information about the CNC Noise Dataset used in this experiment. The dataset size is the
sum of the number of rows and columns, and the anomaly section is approximately between 13,000
and 45,000. *: information about the Yahoo Anomaly Dataset.

Attribute Data Type Range Data Size Notes
Time Time series 14h 634,860 31,743 x 20
Temperature Real number 26.2 27,504 Average (Celsius)
Processing time Time series 7h 317,430 15,872 x 20
Failure status Time series 3h 13,000~45,000 6802 x 20

* The Yahoo Anomaly Dataset has 1420 rows of real-valued data.

4.2. LSTM Based f~AnoGAN

This paper proposes an LSTM-based f~AnoGAN model to detect time series anomalies
in CNC packaging and cutting processing equipment. The model learns normal time series
data and performs anomaly detection. It consists of two main stages: the model training
phase and the anomaly detection phase.

In the model training phase, the normal time series data are learned in an unsuper-
vised manner without preprocessing to understand the data distribution. In the anomaly
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detection phase, the model determines whether the test time series data conform to the
distribution of the learned normal data and identifies anomalies by calculating anomaly
scores for each data point.

Similar to the previously introduced LSTM-based f-AnoGAN architecture, this model
takes the entire time-series data as input to learn temporal dependencies. LSTM networks
are used in the encoder, generator, and discriminator to enhance the performance of f-
AnoGAN. Instead of using fixed-length sequences, the entire input sequence is utilized,
with the encoder transforming it into a vector in the latent space. The generator uses
this latent vector to create new sequences, and the discriminator determines whether the
generated sequence follows the distribution of the real data.

Experimental setup. This experiment aimed to develop and validate a regression
model for anomaly detection based on acoustic data from manufacturing equipment.
The data were preprocessed and split into training and test sets, followed by conversion
into a tensor format for use with a PyTorch-based (torch 2.6.0) LSTM model. The input
features (X) considered all columns except the last as predictors, while the 10th column
of the dataset (y) was used as the primary metric for anomaly detection. Feature scaling
was performed using StandardScaler to normalize the feature matrix (X) to have a mean of
zero and a variance of one. Target variable scaling was performed using MinMaxScaler to
transform the target variable (y) into the range [0, 1]. The training set comprised 80% of the
data, while the test set accounted for the remaining 20%.

Evaluation on CNC Dataset

Result. The blue section in Figure 4 represents normal data generated from the opera-
tional noise of the machine in the CNC Noise Dataset. The purple curve in (b) represents the
anomaly score for each sample, while the red dotted line indicates the threshold. Anomaly
scores exceeding this threshold were considered anomalies. In (a,b), the orange dots repre-
sent anomalies that exceeded the threshold. In panel (a)~(c), a significantly high anomaly
score is observed within the 1000~7000 sample range, indicating major anomalies de-
tected in that segment. Beyond that range, the data appear relatively stable, with sporadic
anomalies accurately identified. This pattern suggests that mechanical issues or noise were
concentrated in specific intervals.

CNC noise dataset
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Figure 4. This is the result of comparing time series prediction and anomaly detection performance
using an LSTM-based model combined with other models. (a) Result of using the LSTM model alone.
The difference between the orange (predicted data) and blue (actual data) represents the prediction
error, highlighting the model’s limitation in clearly distinguishing anomaly data. (b) Result of
combining LSTM with f-AnoGAN, visualizing the detection of anomaly data using an anomaly
detection threshold. In each plot, the ability to clearly detect anomalies based on the anomaly score is
demonstrated. (c) Result of combining LSTM with an Autoencoder (AE), where the time series data
are predicted more accurately. By additionally using the AE, the model effectively detects anomaly
data and improves prediction performance.



Mathematics 2025, 13, 1093

12 of 21

4.3. Question 2. LSTM-Based Latent ODE

LSTM is suitable for learning long-term dependencies in time series data and can
effectively model the nonlinear and dynamic characteristics of CNC machine operation
data. In this experiment, the input data consisted of sensor data (e.g., vibration noise)
collected from CNC machines, while the output data included anomaly scores representing
normal and abnormal machine states.

The latent ODE learned the latent representation of continuous time series data and
predicted future states using an ODE (ordinary differential equation) solver. In latent space,
the operational state of the CNC machine was represented by a low-dimensional latent
vector, and the ODE solver modeled the change in this latent vector over time to predict
future data.

In the combined model architecture, the LSTM encoder took sensor data as input,
extracted time series features, and transformed them into latent space. The latent ODE
module predicted future latent states based on the extracted latent vector, and the decoder
transformed the predicted latent states back into the original data space to reconstruct the
time series data and compute anomaly scores.

Experimental setup. StandardScaler performed normalization on the input features X
with a mean of zero and a standard deviation of one. This eliminated differences in units or
ranges among features and prevented specific features from having more influence during
the training process. MinMaxScaler transformed the target variable Y to values between
zero and one. The sequence length was set to 19, meaning the model used 19 past data
points to make predictions. The gap between the past data and the future time step to
predict was also set to 19, so the model took 10 past data points as input and predicted the
value 10 steps ahead. Input data were generated using a sliding-window approach with
the window_size length. To generate the predicted value, the gap was applied after the
window_size to extract the prediction. The dataset was split into training and testing data,
with 20% allocated for testing and the remaining 80% used for training.

Evaluation on CNC Dataset

Result. In Figure 5a, the LSTM+latent ODE model, which was responsible for pre-
dictive maintenance based on noise data from manufacturing equipment (CNC Noise
Dataset), was used to process time series data. The X-axis (time) represents the flow of time
in the data, and the prediction model learned and evaluated the data along the time axis.
The Y-axis (value) shows the normalized or scaled sound intensity of the recorded sound
data from the equipment. The blue line (actual data) represents the actual sound data
collected, which served as the reference data for model training and evaluation. The orange
line (predicted data) shows the values predicted by the model, which were compared to
the actual data to assess the model’s performance. The red vertical line (train/test split)
indicates the point where the dataset was divided into training and testing sets. To the left
of that line are the data the model learned from, while the right side comprises data that
the model had not seen before.

In the initial segment (training data), the predicted data (orange) closely matched the
actual data (blue). Even in the test data segment, the model showed stable performance
without significant deviation. There was a large amplitude fluctuation in the initial segment
on the left side of the graph, which represents the portion where anomalies (noise) of the
equipment were recorded, and this part was the focus of the prediction in this experiment.
The stability of the results is shown in the testing segment (right side of the red dashed
line), where the predicted values (orange) consistently follow a pattern similar to the actual
values (blue), indicating that the model predicted noise effectively.
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Figure 5. This study compares the performance of various LSTM-based model variants for time series
data prediction on two datasets: (a) the CNC Noise Dataset and (b) the Yahoo Anomaly Dataset.
The results highlight the differences in model performance across the datasets, with the LSTM+-latent
ODE (VAE) model consistently demonstrating the best performance on both datasets. In particular,
the prediction detection capability shown in the red rectangular box of the Yahoo Anomaly Dataset
demonstrated that this model could achieve highly advanced results when dealing with outliers and
continuous complex patterns. The red vertical dotted line divided the entire dataset with an 8:2 ratio,
with the left side used for training the model and the right side for validating the prediction model.

The goal of that experiment with the manufacturing equipment data was to enable
the detection and prediction of anomalies based on the amount of noise in the fluctuating
initial segment without additional filtering or preprocessing techniques, and the results
showed that the model performed well in this regard. Additionally, optimizing the LSTM
hyperparameters (such as the number of hidden nodes, number of layers) or the structure of
the latent ODE further improved the model’s performance. These results demonstrate the
utility of the model in predicting normal and abnormal states based on the noise generated
by the manufacturing equipment.

4.4. Question 3. Verification of Model Generalization

Our experiment combined LSTM with the anomaly detection model (CBM) f~-AnoGAN
and the time series prediction model (PdM), and it seemed to proceed smoothly without
any major issues. However, during the process of validating the model’s generalization
performance using the Yahoo Anomaly Datasets [21], we had to change the model com-
bination. The manufacturing equipment’s CNC Noise Dataset, as shown in the Figure 3
so far, had a simple structure. As shown in Figure 5a with LSTM+AE, the results were
very good even without selecting a complex model algorithm. However, the detection of
anomalies in Figure 5b did not perform well on the challenging Yahoo Anomaly Datasets.
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Therefore, to achieve satisfactory performance across all cases, we attempted to solve the
problem by combining algorithms, as shown in the red dashed box (LSTM-latent ODE
(VAE)) in Figure 5, and achieved improved results.

f-AnoGAN Evaluation on Yahoo Dataset

Result. Figure 6a shows the Yahoo Anomaly Dataset, which is primarily designed
for detecting anomalies in time series data and includes traffic, user activity, or web log
data. Similar to panel (a), the purple curve shows the anomaly scores, while the green
dashed line marks the threshold. Orange dots represent anomalies exceeding the threshold.
In panel (b), a particularly high anomaly score is observed between the 200~-400 sample
range, indicating major anomalies detected in this interval. Subsequent data are generally
stable, with a few minor anomalies sporadically detected near the threshold. This suggests
that abnormal data patterns occurred within specific time intervals.

Both datasets demonstrated the effective anomaly detection capability of the f-
AnoGAN and LSTM models. The threshold-based anomaly detection approach performed
well in identifying outliers. In the CNC Noise Dataset, anomalies were primarily concen-
trated in specific segments, while the Yahoo Anomaly Dataset showed dispersed anomalies.
These results reflect differences in the datasets’ characteristics and the underlying causes of
anomalies. Moreover, they highlight the model’s adaptability to various datasets, showcas-
ing its potential for flexible application.

Yahoo anomaly dataset
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Figure 6. (a) The Yahoo Anomaly Dataset is primarily designed for detecting anomalies in time series
data. In (b), the purple curve represents the anomaly score, while the green dashed line indicates
the threshold. The orange dots represent anomalies that exceed the threshold. In other words, as a
condition-based maintenance approach, anomalies can be detected by setting a threshold to identify
signs of failure before they occur. Therefore, all values exceeding the green dotted line indicate
abnormal signs.
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LSTM+Latent ODE Evaluation on Yahoo Dataset

Result. Figure 5b shows the results of using a high-dimensional time series dataset
to objectively evaluate the proposed algorithm. As described above, the blue line (actual
data) represents the actual observed data, which served as the reference for evaluating the
model’s performance. The orange line (predicted data) represents the values predicted by
the model. The vertical red dashed line (train/test split) indicates the division of the dataset
into 80% training and 20% testing. The left side of the dashed line shows the data the
model was trained on, while the right side shows the data predicted by the model. The red
rectangle on the right represents the results predicted by our proposed LSTM+-latent ODE
(VAE) algorithm, and by comparing this with other models, we confirmed that our model
achieved better accuracy.

In the training data section (before the red dashed line), the blue line (actual data) and
the orange line (predicted data) align relatively well, indicating that the model effectively
learned the normal patterns from the training data. In the test data section (after the
red dashed line), the blue and orange lines also exhibit similar patterns, though minor
discrepancies are observed in certain sections. In particular, in anomaly sections, where
values increase or decrease rapidly, the orange line (predicted data) deviates slightly from
the blue line (actual data). This suggests that the model may not have fully adapted to the
anomaly sections or that additional data training is required.

The Yahoo Anomaly Dataset used in this study is characterized by frequent fluc-
tuations and numerous anomalies, making anomaly detection challenging. These data
characteristics may lead to prediction errors in certain sections. While there are limitations
to address, the proposed combined algorithm demonstrated stable performance in complex
time series data by leveraging LSTM's time series learning capabilities, VAE’s latent space
learning, and latent ODE’s continuous-time modeling. The model effectively learned and
predicted normal data patterns in this research dataset, confirming its ability to handle
general patterns reliably.

The performance of various LSTM-based models was analyzed using two datasets,
(a) the CNC Noise Dataset and (b) the Yahoo Anomaly Dataset, to evaluate their ability
to predict time series data. For the CNC Noise Dataset, which exhibits relatively clear
patterns and a low outlier ratio, all models performed well during the training phase.
The basic LSTM model achieved consistent predictions, although discrepancies emerged
in the test phase, particularly in regions with high volatility. Incorporating an Autoen-
coder (LSTM+AE) improved prediction smoothness and reduced noise in the test data,
though it still struggled with accurately handling outliers. In contrast, the advanced
LSTM+latent ODE (VAE) model demonstrated superior performance by effectively captur-
ing the dataset’s complex variability, maintaining high accuracy in both training and test
phases, and outperforming other models.

The Yahoo Anomaly Dataset, characterized by high variability and frequent outliers,
presented significant challenges for the basic LSTM model, which showed limited ability to
capture anomalies in the test phase. The LSTM+AE model provided smoother predictions
and performed better than the basic LSTM, but its performance remained inadequate for
handling extreme outliers. On the other hand, the LSTM+latent ODE (VAE) model stood
out due to its capability to learn continuous temporal representations, resulting in more
accurate predictions of anomalies and complex patterns. This model effectively captured
significant deviations, as highlighted in the red-shaded areas of the test phase results,
surpassing the performance of all other models. Across both datasets, the LSTM+-latent
ODE (VAE) model emerged as the most effective, particularly excelling in scenarios with
outliers and intricate patterns.
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4.5. Limitations and Improvements

To evaluate the generalization performance of the combined algorithm, we conducted
an additional analysis using the Yahoo Anomaly Dataset. This dataset, characterized
by its small size and complex time-series data, posed significant challenges for accurate
prediction. To address this, we combined multiple algorithms in stages. As a result, the
LSTM+Latent ODE (VAE) model proposed in this paper successfully predicted patterns
that other algorithms missed, as highlighted by the red square in Figure 5.

However, despite its superior performance compared to other models, the proposed
model exhibited limitations in detecting anomalies in complex time series data like the
Yahoo Anomaly Dataset. To address this, further techniques should be considered to
enhance anomaly detection. Furthermore, future research could focus on increasing the
quantity of training data or applying data augmentation to improve performance in sections
containing anomalies.

In conclusion, the proposed model demonstrated its effectiveness in learning normal
data patterns from the Yahoo Anomaly Dataset. However, further improvements in data
and algorithms are required to improve prediction performance in complex sections such
as anomalies.

Table 2 presents the results of the predictive model training using various methods
in the CNC and Yahoo datasets. The performance of each method was evaluated using
Mean Absolute Error (MAE) and Mean Squared Error (MSE), while anomaly detection
performance was evaluated using the AUC (area under the curve) for some models.

Table 2. This paper evaluated the performance of the proposed model and methodology using the
CNC and Yahoo datasets. On the CNC dataset, the combination of LSTM+AE and LSTM-+VAE
achieved the lowest MAE and MSE scores. Similarly, on the Yahoo dataset, LSTM+AE demonstrated
the best performance. The AUC scores of AnoGAN and f-AnoGAN were close to 0.5, indicating low
classification performance. However, this did not pose an issue when visualizing anomaly detection
and classification results. The proposed LSTM+latent ODE combined model maintained overall
stable performance and was seamlessly integrated with the visualization, as shown in Figure 5b,
to predict anomalies.

CNC Dataset Yahoo Dataset
Method
MAE MSE Recall F1 MAE MSE Recall F1
Transformer 0.0193 0.0005 1.0000 0.9644 0.0588 0.0071 0.0000 0.0000
LSTM baseline 0.0063 0.0001 1.0000 1.0000 0.0762 0.0109 1.0000 1.0000
LSTM+AE 0.0062 0.0001 1.0000 1.0000 0.0648 0.0094 1.0000 1.0000
LSTM+VAE 0.0096 0.0002 1.0000 1.0000 0.0761 0.0121 1.0000 0.6667
Neural ODE 16.040 669.19 0.6263 0.6551 0.0534 0.0055 0.5619 0.5700
LSTM-+latent ODE 0.0296 0.0022 1.0000 1.0000 0.1212 0.0266 1.0000 1.0000
LSTM+AnoGAN AUC: 0.4985 AUC: 0.5153
LSTM+{-AnoGAN AUC: 0.5025 AUC: 0.5139

The LSTM-only model recorded relatively low MAE and MSE on both datasets, demon-
strating its effectiveness in time series prediction. The LSTM+AE and LSTM+VAE models,
which combined LSTM with an Autoencoder (AE) or a Variational Autoencoder (VAE),
achieved even lower MAE and MSE than the LSTM-based model, indicating improved
predictive performance.
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Models utilizing a neural ordinary differential equation (ODE) showed high MAE and
MSE on both datasets, suggesting that they were not suitable for these data types. Latent
ODE models performed slightly worse than LSTM+AE and LSTM+VAE in terms of MAE
and MSE but significantly outperformed neural ODE models.

The MAE is less sensitive to outliers and is intuitively interpretable, but it has scaling
issues and can be distorted by noise. The MSE assigns greater weight to large errors,
making it highly sensitive to outliers, but it can be misleading in noisy data and is less
interpretable. The AUC provides stable performance evaluation even with class imbalance,
but it lacks direct correlation with actual error rates and requires an additional threshold
analysis. Therefore, rather than relying solely on numerical comparisons, the significance
of our research findings is best understood through visualization in the red rectangular
region of Figure 5b.

Overall, adding an AE or VAE to the LSTM network proved effective for improving
predictive performance. Neural ODE models were not well suited to these datasets, while
latent ODE models performed better than neural ODE models but slightly worse than
LSTM+AE and LSTM+VAE models. However, in the red-shaded region of Figure 5b,
the proposed LSTM+latent ODE (VAE) model showed the most accurate predictions.
For anomaly detection models, the AUC values were close to 0.5, indicating a need for
further performance improvement. However, no significant issues were observed when
visualizing anomaly detection and classification results.

As a result, both datasets could be effectively predicted using LSTM-based models,
highlighting the importance of dataset characteristics in model selection. Notably, the red-
shaded region in Figure 5b serves as a key representation of the experimental results of
this study.

5. Discussion

Figure 7 visualizes the issues by using a scatter graph instead of the conventional line
graph. This scatter graph representation provides several insights. In the case of the CNC
Noise Dataset, applying advanced algorithms allowed for the easy prediction of anomalies.
However, when dealing with the volatility and anomalies of the Yahoo Anomaly Dataset,
the basic LSTM model alone had limitations.

To overcome these limitations, we focused on combining the advantages of state-of-the-
art algorithms. Specifically, by integrating LSTM, VAE, f-AnoGAN, and latent ODEs, we
achieved remarkable performance in handling highly volatile time series datasets. The rea-
son why combining multiple algorithms led to better performance is evident in Figure 7.
The Yahoo Anomaly Dataset contains a specific blank region (approximately from 200 to
1400), where no data exist. The presence of such data gaps makes it extremely challenging
to detect precise anomalies. This suggests that certain points may be meaningless to the
extent that it is difficult to distinguish between noise and anomalies.

In our research, we focused on predicting anomalies without preprocessing raw data.
However, for future analyses involving datasets with such issues, an in-depth investigation
of outliers and missing data in specific blank regions may be necessary. In such cases,
post-processing techniques such as interpolation or missing-value handling should be
considered to improve data reliability.
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Figure 7. The data distribution and specific anomalies are visually represented using a scatter plot.
The CNC Noise Dataset exhibits a stable pattern in data density. In contrast, the Yahoo Anomaly
Dataset contains large blank regions (approximately from 200 to 1400) where no data exist, resulting
in a discontinuous data density.

6. Conclusions

To ensure the stability and reliability of manufacturing equipment, we proposed
two model combination approaches. The first one was an anomaly detection model
(LSTM+£-AnoGAN) akin to condition-based maintenance (CBM), and the second one
was a predictive maintenance (PdM) model (LSTM+latent ODE (VAE)). Both models
demonstrated high performance, and the dual-algorithm approach was applied to enhance
decision-making safety compared to using a single model. Specifically, the following two-
step approach was utilized: (1) unsupervised learning and preprocessing without labels
using f-AnoGAN to detect anomalies effectively. (2) predictive maintenance through com-
bining a VAE and a latent ODE to analyze time series data and make predictions based on
this analysis. The proposed models were evaluated through experiments using the Yahoo
Anomaly Dataset, successfully detecting anomalies in manufacturing environments and
demonstrating their general applicability. Through this theoretical and empirical analysis,
we confirmed the proposed approach’s ability to enhance the stability and reliability of man-
ufacturing equipment. By empirically detecting anomalies through sound and adjusting
speed accordingly, we made progress in developing an algorithm and monitoring system
to improve the performance of CNC machining equipment for roller-blade processing and
to reasonably verify issues related to occurring errors.
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The following abbreviations are used in this manuscript:

CNC Computerized numerical control
LSTM  Long short-term memory

RUL  Remaining useful life

ODE  Ordinary differential equation
CBM Condition-based maintenance
PdM Predictive maintenance
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