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Abstract: We propose a physics-informed neural network (PINN)-based method to solve the heat
transfer equation under imperfect contact conditions. A major challenge arises from the discontinuity
of the solution across the interface, where the exact jump is unknown and implicitly determined
by the Kapitza thermal resistance condition. Since the neural network function is smooth on the
entire domain, conventional PINN could be inefficient to capture such discontinuities without certain
modifications. One remedy is to extend a piecewise continuous function on R? to a continuous function
on R¥!. This is achieved by applying a Sobolev extension for the solution within each subdomain
and introducing, additional coordinate variable that labels the subdomains. This formulation enables
the design of neural network functions in the augmented variable, which retains the universal
approximation property. We define the PINN in an augmented variable by the minimizer of the loss
functional, which includes the implicit interface conditions. Once the loss functional is minimized, the
solution obtained by the axis-augmented PINN satisfies the implicit jump conditions. In this way, our
method offers a user-friendly way to solve heat transfer equations with imperfect contact conditions.
Another advantage of using a continuous representation of solutions in augmented variables is that it
allows error analysis in the space of smooth functions. We provide an error analysis of the proposed
method, demonstrating that the difference between the exact solution and the predicted solution is
bounded by the physics-informed loss functional. Furthermore, the loss functional can be made small
by increasing the parameters in the neural network such as the number of nodes in the hidden layers.
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1. Introduction

Composite media often contain imperfect contacts at the material interfaces, resulting in
discontinuous temperatures across the interface. Since the heat transfer and energy dissipation through
imperfectly matched interfaces can significantly influence the temperature profile in internal domains
[1-4], neglecting the effects of thermal resistance occurring from imperfect contact in modeling can
deteriorate the predictions of thermal behavior in the domain of interest. Kapitza’s thermal resistance
is one of the widely adopted heat transfer models in material science [5—7], where the amount of jump
in the temperature variable along the interface is proportional to the normal heat flux.

One of the difficulties in predicting the thermal profile in imperfectly contacted materials is that the
temperature jump across interfaces is implicitly given. In [8, 9], the jump is treated as independent
variables; the jump profiles are updated in an iterative way, where in each iteration the elliptic interface
problem is solved with the approximate jump. On the other hand, some people applied finite element
method (FEM)-based algorithms, where interface conditions are implicitly contained in bilinear forms
[10, 11]. In addition, there are extended approaches based on the finite element method (XFEM) to
solve the imperfect contact problem where additional degrees of freedom appear near the interface to
fit implicit jump conditions [7,12—14]. However, the numerical methods discussed above are inherently
complex to implement, as they require additional degrees of freedom in the case of XFEM [13, 14] or
involve intricate modifications of the bilinear form [10, 11] or demand iterative updates for the jump
profile [8,9]. Therefore, there arises a need for convenient and efficient methods for the imperfect
contact heat transfer equation.

Recently, neural network-based methods have emerged as successful alternatives for solving partial
differential equations (PDESs) in the scientific computing community. In the physics-informed neural
network (PINN) method, neural network functions serve as a surrogate model for solving PDEs,
with its parameters optimized by minimizing objective functions that include the strong form of the
governing equations. For an excellent review of PINNs, we refer to [15]. With the advancement of
highly efficient automatic differentiation techniques such as those provided by PyTorch [16], PINNs
have been successfully applied to a wide range of problems, including Peridynamics [17], thermal-fluid
dynamics [18, 19], electromagnetism [20], and Poisson-Boltzmann [22].

In this work, we develop a new PINN-based method for the heat equation under the imperfect
contact condition. One of the restrictions of conventional PINN in solving PDE lies in the fact that
neural networks belong to a continuous family of functions. Therefore, when PDE contains some
interface with possibly discontinuous solutions along the interface, it is hard to expect an accurate
reconstruction of solutions by PINN. One remedy is to extend the piecewise continuous function to a
continuous function of higher dimension. In [21,22], the axis augmentation techniques are proposed,
where an additional variable labels the locations of subdomains. Following the way of [21,22], we first
employ continuous Sobolev extensions for the piecewise H'-temperature variable. Then, together with
the auxiliary variable that labels the locations of subregions, we develop a continuous representation
of the heat variable in an augmented variable. Finally, we define the physics-informed neural network
in an augmented variable by the minimizer of the loss functional, which includes the implicit jump
condition across the interface. In this way, our method offers a user-friendly way to solve heat transfer
equations with imperfect contact conditions, without the need for mesh generation or iterative methods
to determine jump profiles across the interface.
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Aside from the ease of implementation, another advantage of using a continuous representation of
solutions in augmented variables is that it allows error analysis in the space of smooth functions. We
provide an error analysis of the proposed method. Our main theorem (see Theorem 3.3) states that the
difference between the exact solution and the neural network approximation in an energy-like norm
is bounded by the physics-informed loss functional. Here, the loss functional can be made arbitrarily
small by increasing the parameters in the neural network, such as the number of nodes and number of
training samples (see Theorem 3.6). The numerical tests in the result section support the error analysis.
To the best of the authors’ knowledge, the proposed method is the first successful application of PINN
for solving interface problems with implicit jump conditions, accompanied by an error analysis. Let
us summarize the advantages of the proposed work: 1) by establishing the continuous representation
of solutions in the augmented variable, our method benefits from the universal approximation property
of the neural networks; 2) since our methods are formulated on smooth function space, we were able
to derive the error estimates for the proposed PINN; 3) our method does not require mesh generation
or linearization procedures, in contrast to the conventional FEM-based method.

The rest of the paper is organized as follows. In the next section, we describe the governing equation
and develop our version of PINN. The error estimates are carried out in Section 3. In Section 4, we
document the performance of the proposed algorithm. The conclusion follows in Section 5.

2. Method

In this section, we develop a PINN method for a heat equation involving imperfect contact. We
employ continuous Sobolev extensions for the temperature variable to represent the solution as a
continuous function in an augmented variable. The model equation is described in Subsection 2.1,
and our version of the PINN method is proposed in Subsection 2.2.

We introduce some definitions. Suppose G is any domain in R?. For integer d > 1, s > 0, and

1 < p < oo, we denote by W*P(G) the usual Sobolev space associated with norm || - |[ys») and
seminorm | - |y« In particular, if p = 2, we then write W**(G) = H*(G), with || - [lys2) = | - llsc and
| - lws2@y) = | * |s,g- We also write WoP(G) = LP(G) and || - llwory = Il * llzr)- For the inner product on

G, we use the notation (-, -)s. Given an integer k > 0, let C*(G) denote the space of all C* functions in
the closure of G. Given a real-valued function ¥, its support is denoted by supp(¥). We denote by ys
the indicator function of G.

2.1. Heat equation under imperfect contact condition

We consider a (bounded) composite material domain Q C R? (d = 2, 3) divided by material interface
ILie., Q=Q"UQ  UT (see Figure 1). The heat flux variable is defined as q = —kVT, where T and
k are the temperature variable and thermal conductivity constant, respectively. In an imperfect contact
situation, the temperature jump across the material interface is proportional to the heat flux in the
normal direction of the interface:

Tlo+ = Tlo- = —aqlo- -nr onT,

where « the is Kapitza constant [5—7]. Now, let us summarize the steady-state heat equation on Q
under the imperfect condition as follows:
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Q+

Figure 1. Illustration of a domain Q. The subregions Q* and Q~are separated by I'.

—div(kVT) = f inQ " uQ, (2.1a)
[Tlr =ak VT |- -nr onT, (2.1b)

[kVT -nr]r =0 onl, (2.1¢)
T=g¢g on 0Q2, (2.1d)

where f is the source term and np = ng-. Also, [-]r denotes a jump operator across the interface, i.e.,
[T :=Tlo+ = Tlo-, [KVT -nr]r = (kVT)|q+ - nr — (KVT)|q- - nr.

Here, we assume that & is piecewise constant, that is, k = k*yq+ + k™ yq- for some positive constants k*
and k™. The problem (2.1) has a unique solution [23,24].

2.2. Physics-informed neural network method

In this subsection, we describe the PINN method for the governing equation. The overall process is
illustrated in Figure 2.

Axis-augmented PINN structure Physics informed learning
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Figure 2. Overall process of the proposed PINN method. The left box illustrates the structure
of the neural network with augmented input (X, z) and the right box details the physics-
informed loss functionals.
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One challenge is that the solution and its derivative are discontinuous across I', whereas
conventional neural network functions are inherently smooth on the entire domain. As a result,
traditional neural network functions may be inefficient in capturing the discontinuities in the governing
equation. To remedy this, we adopt the axis augmentation technique introduced in [21]. The key idea is
to introduce an augmented variable z to extend the discontinuous function 7' to an augmented function
T8 that is continuous over Q X [—1, 1]. Let us assume that T'|o- and T'|q+ are sufficiently smooth. We
apply the Sobolev extension theorem (see, e.g., [25,26]), which guarantees the existence of smooth
extensions 7, (s = +), satisfying

T°=T on Q° s==.

With the additional variable z, we define axis-augmented function

T(x,z7) = %TTX) + %T_(X), V(x,2) € Qx[-1,1]. (2.2)

Then, it follows that

T(x,z=1)=T(Kx), xeQ,
T"(x,z=-1)=T(x), xeQ,

In this way, we have derived a continuous function 7%*¢ in an augmented variable, where the variable
z labels the locations of subregions, i.e., z = 1 for Q* and z = —1 for Q".

The advantage of introducing such a continuous representation is that it enables the design of
neural network surrogate functions in the augmented variable space, which retains the universal
approximation property [27]. The neural network functions in the augmented variable are defined
as follows: Given integer n > 1, we introduce the set N,,“® of all augmented neural network functions
¢, ¢ having n hidden layers:

N = (g5 2 g8 (%,2) = (Lyo o0+ 0 070 Ly)(X, )], (2.3)

where L;’s are linear affine functions and o is a tanh activation function. Here, 8 denotes the collection
of all training parameters. The advantage of defining such an augmented neural network function is
that, by restricting z to subdomains, we can obtain the piecewise continuous function, i.e.,

Po(X) = ¢ “ (X, Dy (%) + ¢5“ (X, ~Dyxo-(x), x€Q, (2.4)

which can efficiently approximate the desired piecewise continuous solution 7. It remains to impose
loss functionals for the functions in

N = {¢9 : ¢p satisfies (2.4) for some ¢, € N,‘f”g} )

Since the residual of the governing equation can be evaluated on discrete points, we need to define the
collection of training points in the variable (x, z). Let {(x, 1)}?5 and {(x;, —1)}%; be the collections of
training points in Q* x {+1} and Q" x {1}, respectively. Let {x/}| be the collection of training points
on I'. We also let {X? }Z’Zi be the collection of points on Q2. Some choices of the training points can be
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found in [21,22]. Motivated by the governing Eqgs. (2.1a)—(2.1d), the loss functionals are defined as
follows: For any piecewise smooth function ¢y € N,

1 & 1 &
L0 = 7= > A + ol + = >k Agee) + ff 2.5)
i=1 i=1
1 u 2
LYo = 55 ) 190l () = ak Vaylo- () - me (2.6)
i=1
I.2 1 & N
L0 = 2 > [kVe0 el D 2.7)
i=1
d 1 & a NG
L) = 35 ) 1oox!) = D] 2.8)
i=1
L(po) := L) + L () + L (¢9) + L7(hp). (2.9)

The detailed calculations of loss functionals are provided in Appendix A. Finally, our version of the
PINN method for (2.1) is formulated as follows: Find Ty € N, such that

Ty = argmin L(¢y). (2.10)
PeEN;T

Once T, is obtained, the function inherently satisfies the implicit jump conditions (2.1b)—(2.1c).
Consequently, we introduce an efficient and user-friendly method to solve the imperfect contact
problem without requiring mesh generation or iterative procedures to determine the jump profile.

3. Error estimates

In this section, we derive the error estimates of the proposed PINN method. We define the residuals
R, RE, and R? as follows: Given a real-valued function ¢ on Q,

RUP) = [k*Ap + [l o + kAP + fII5 -,
R () := ¢y — ak™ Volo- - nrll - + 1KV - nlrlfG
RY() := llg — gll5 90-

Also, let R := R® + R' + R9. Then the main result in this section is summarized as follows.

e (Theorem 3.3) If T is the solution of (2.1) which is sufficiently smooth in Q* and Q~, then for any
Ty € N, the piecewise H I_error between T and T, can be bounded above by the residual R(T}).

e (Theorem 3.6) If T is sufficiently smooth in Q* and Q~, then the residual can be made arbitrarily
small. For any & > 0 there exists Ty € N, such that R(T)y) < e.

Note that, for a sufficiently large number of training points in the definition of the loss functional
L, the errors between the loss functional £ and the residual R can be made arbitrarily small (see,
e.g., [28-31]). Therefore, we assume that the following holds.

Assumption 3.1. It holds that £°(¢) ~ R*(¢) for s = Q, T, 0.
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This assumption, together with the results in Theorem 3.3 and Theorem 3.6, implies that the error
between the exact solution and the neural network solution can be made arbitrarily small by controlling

the parameters in the neural network.
Finally, we introduce some broken function spaces
H Q") = {v € LX(Q) : vlo: € HY(Q®), s
C'(Q*) = {v e LX(Q) : Vs € CH(QY), s

1}, kx1,

+},

and associated norms (respectively)
= > IMEq, veHYQY),

S=+,—
1
||V||c1(gi) = ||V|Q+||cl(n+) + ”V'Q‘”CI(Q*)a vel (Qi)-

2
”V”k,gi

3.1. Error bound by residuals
To prove Theorem 3.3, we need the Poincafe inequality for the piecewise H'-functions which can

be found in [22, Lemma 1].

Lemma 3.2. It holds that

IVllog < C(Vhos + IVIcllor + IMlloa),  Yv e H'(Q®),

where C is a positive constant depending only on Q and T
Theorem 3.3. Suppose that the solution T of (2.1) satisfies T € H*(Q*) N C'(Q*). Then we have

IT = Tyl g + 1T = TolelB - < € (R(Tp) + (R'(Tp)> + (RATy))?). VT, € N,

where C is a positive constant depending only on Q, I, k, a, ||T||c1q=) and ||Tyl|c1q=).
Proof. Letv =T —T,. By Lemma 3.2 and by the fact that k=, k", and « are positive constants, we have

2 2
”V”],Qi + ”[V]F”Qr
2 2 2
< CO(|V|1,Q:' + ”[V]I"HO,F + ”V”o,ag)

< € (1) PV g + 1) 2V o+l PR + VR ) (3.1)

where C = Comax{(k")™!, (k*)™!, a'}. By the boundary condition (2.1d), we have

MGaa = 1To = &Il 40 = R(To).
Using integration by parts and the fact that —kAT = f on each Q™ U QF, we have

|(k+)1/2VV|ig+ + |(k_)1/2VV|iQ— + ||C¥_1/2[V]r||(2),r
=(k*V(T — Ty), Vv)oar + (k"V(T = Tp), VW)oqo + (@ '[T = Tolr, [VIPor

=(k"ATy + f,v)oqo+ + (k"ATg + f,v)oa- + (kKV(T —Ty) - 0o, T — Ty)opa
+ (K"V(T — Ty)lg+ - ng+, vig+ Yor + (k"V(T — Ty)la- - ng-,vlg-)or + (a_l[T — Tolr, [VIr)or

Volume 10, Issue 4, 7920-7940.
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We remark that nr = ng- = —ng+. Using the identity that

at+a

ab”"—ab = (

)(b+ by + —a—)(b+ +b_),

2

we can rewrite the last three terms of (3.2) as

— (K*V(T = Tp)la+ - nr, via-Jor + (K"V(T = Tp)la- - nr, vig-Jor + (@ [T = Tolr, VIr)or
= —({kV(T = Tp) - nrr, [VIPor — (KV(T = Tp) - rlr, (viror + @ ' [T = Tolr, VIr)or
= —({kV(T = Tp) - nrjr - 071[T — Tolr, [vIr)or — ([KV(T = Ty) - nrlr, {vir)or- (3.3)

Here, by the interface condition (2.1b)—(2.1c), we have
(kVT -np)r —a [Tl =0, [kVT -ng]r = 0.
Therefore, (3.3) becomes
({kVTy - npjr — &' [Tolr, vIr)or + ([kVTe - nr]r, {vir)or (3.4)
= (k" VTgla- - nr — o' [Tolr, [VIDor + %([kVTe -nr]r, [VIror + ([kVTy - nr]r, {vir)or
By (3.2)—(3.5), we obtain

|(k+)1/2VV|iQ+ + |(k_)1/2VV|iQ— + ||C¥_1/2[V]r||g,r (3.5)
= (k"ATy + f,V)oar + (KATy + f,v)oo- + (kV(T —Ty) - ng, v)osa

_ _ 1
+ (k"VTylg- -nr — « I[Te]r, [vI)or + 5([kVT9 nrlr, [VIp)or + ([kVTy - nrlr, {vir)or
=I5 +---+1. (36)
We estimate each of the terms. By the Cauchy-Schwarz and Young’s inequalities, we have for I, I,

L] + || = (k" ATy + f,v)oa| + [(K"ATy + f,v)o0-|
< |k"ATy + fllogIVllogr + IKTATy + fllo.a-IvIlo.o-

01, 1 ) 1
< S lkAT, + Moo + 2_51”V”(2)’Q+ + 3||k+AT9 + flls o + 2—(5ZIIVII3,Q-

1 1 1
=3 max (8, 6,)RA(Ty) + (2—51 + 2—52) ||V||%,gi-

Here, 6, and 9, are positive constants related to the Young’s inequality, which will be determined later.
Next, let us estimate /5. By the fact that T, Ty € C'(Q*) and T = g on €, we have

| < [IKV(T = Ty) - nlloaall Ty — gllosa < CORY(Ty))?.
By the Cauchy-Schwarz and Young’s inequalities (with 63, 64 > 0), we have, for I, and Is,

1
I + 5| = |(k"VTslo- - nr — & ' [Tolr, VIr)or] + §|([kVT9 -n]r, [VIr)orl

AIMS Mathematics Volume 10, Issue 4, 7920-7940.
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_ _ 1
<|lk"VTylg- -nr — l[Ta]r”o,r : ||[V]F||o,r + EH[kVTe : n]r”o,r : ||[V]r||0,r

03, _ _ 1 1) 1
< §||k VTolo- - nr — & [TolrlPr + ==Vl + gn[kvn S N [§ |y 78

253 854
3 54} r 1 1 2
< max |2 2 RMT) + [ — + — .
_max{zaz, > (Ty) 26, " 86 NvIrllor

Since T, T, € C'(Q*) and [kV - nr] = 0, we have, for I,
[ls| < I[kVTy - m]rllorl{T — Tolllor < C(R'(Ty))?.

Then, plugging the estimates of Iy, - - -, I into (3.6), together with (3.1), we have

1 1 ¢ C
1-C|— +— 2 1= -—= P
(251 252)] ||V||1’Qf ( 255 854)||[V]F||0’r

%max(él, 5IRUT,) + RUTy) + C(RU(T,)) + max {% ‘5—4} RU(T,) + C(RV(Ty))*
a?’ 2

<C

Now, by the choice

we obtain the desired inequality. O

Remark 3.4. As stated in Theorem 3.3, the constant C may depend on the piecewise C'-norm of the
neural network 7. In practice, to prevent this norm from becoming excessively large, we can include
an L?-regularization term in the loss functional .£, following the approach in [29, 31].

3.2. Estimates on the residual and the training error

As proved in the previous subsection, the piecewise H'-error can be controlled by the residuals R®,
R? and R'. Given some regularity assumption, we will prove that if n > 1, then the residuals can be
made arbitrarily small, i.e., for any & > 0, there exists Ty € N, such that R(T}) < e.

Lemma 3.5. Suppose that n > 1 and the solution T of (2.1) satisfies T|as € W>*(Q*) for s = +. For
any & > 0, there exists a neural network T, € Ny such that

||T - T;lle,m(QJr) + ||T - Tgi”Wz»W(Q*) S E.

Proof. By the argument given in the beginning of Subsection 2.2, for sufficiently large R > 0, one can
construct an extension 746 € W>*([-R, R]**!) of T such that Q x [-1, 1] c [-R, R]**! and

T™(x,1) =T(x), VxeQ*, T(x,-1)=T(Xx) VxeQ .

Then, according to the approximation theorem of neural network functions with the tanh activation
function [32], there exists Ty € N, such that

||Tallg — Tgugllw3,oo([_R’R]d+l) S E.

Now the conclusion follows from the Sobolev embedding theorem (cf. [26]). |
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Using the lemma above, we obtain the desired theorem.

Theorem 3.6. Suppose that n > 1 and the solution T of (2.1) satisfies T|qs € W3*(Q?) for s = +. For
any & > 0, there exists Ty € N7 such that

ﬂ(Tg) < CS,

where C is a positive constant depending only on Q, T, k, « and T.

Proof. Let € > 0 be chosen arbitrarily. By Lemma 3.5, there exists 7y € N, such that
IT — TFllwesn + IT = Tillwzeso-y < €.
Therefore, we have

IT = Tol3 - + IT = Toll3 - < QT = Tgllwas@) + 1QNT = T w2y
< Q. 3.7)

Since T is the solution of (2.1), we obtain from (3.7) and the trace inequality that

RATy) = k" MT = To)llg o0 + Ik AT = To)llg - < max{(k™)*, (k)*}Qe,
R (To) < CUIT = Toll3. 0 +IT = Toll3o-) < CIQYs,
RO(Ty) = IT - Tollg 40 < Ce.

This completes the proof. O

Remark 3.7. In the proof of Lemma 3.5, the approximation property of the tanh neural network
functions [32] was employed. This validates our choice of tanh activation functions in (2.3).

4. Numerical results

In this section, we present some examples. The domain Q = [-1, 1]? is separated by zeros of a
level set function L(x,y), i.e., Q~ = {(x,y) € Q : L(x,y) < 0} and Q* = {(x,y) € Q : L(x,y) > O}.
For all examples, we assume that n = 2 (that is, the number of hidden layers is two) and the tangent
hyperbolic function is adopted for the activation function. In addition, we assign N-number of nodes
for each hidden layer. The weights in the neural network are initialized using the Kaiming uniform
method [33], with biases set to zero.

We present three examples, each featuring a different interface shape: circle, line, and perturbed
circle. In Example 4.1-4.2, the L*- and L™ -errors against the exact solutions are computed, where we
observe reasonable convergence as the parameters increase. In Example 4.3, a unidirectional heat flux
generated by some boundary condition is considered. Since the analytic solution is unknown in this
case, we validate the PINN-predicted solution by comparing it with the FEM solution. All examples
are performed on a single core of an Intel(R) Core(TM) i7-13700 CPU.

AIMS Mathematics Volume 10, Issue 4, 7920-7940.
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4.1. Choices of optimizers and training sample sets

In this subsection, we justify our choice of optimizer and the training sampling strategy. We
compare the results obtained by two optimizers in Example 4.1. The first is the Levenberg—Marquardt
(LM) optimizer [34] with 3,000 epochs. The LM optimizer is configured with an initial damping
parameter of 10°, which is updated at every iteration. The damping parameter is divided by 1.3
when the process is successful and is multiplied by 3 otherwise. The second is the Limited-memory
Broyden-Fletcher—Goldfarb—Shanno (L-BFGS) optimizer [35] with 10,000 epochs, a learning rate of
0.1, and a strong Wolfe line search option.

To describe the training points, let us introduce the order-related parameter m, which determines the
total number of training points. The inner points (m>-number) are determined either by Chebyshev—
Gauss points, Gauss—Legendre points, or uniformly spaced grid points. For example, Chebyshev—
Gauss points of order m is defined by

x = (cos ((2i + D)r/2m),cos ((2j + Dr/2m)), 0<i j<m

The interface (4m-number) and boundary points (4m-number) are uniformly sampled at the interface
and boundary, respectively. In this way, the total number of training points corresponding to the
parameter m is m*> + 8m. We compare the results obtained by different types of training points in
Example 4.1.

Example 4.1 (Circle shaped interface). In this example, the level set function is L(x,y) = x* + y* — r}

and the exact solution is

X2 +y? 1 1 )

: 2k_y — roa + (2k+ - %) rg, if (x,y) € Q7,

] 2 +y?
2kt

if (x,y) € QF,

where ry = 0.5 and @ = 1. We consider two different thermal conductivity contrasts: (k, k") = (1, 10),
or (100, 1).

We compare loss curves with increasing training epochs for the LM and L-BFGS optimizer in Figure
3. The loss function decreases to the lower level by the LM optimizer. Consequently, we adopted the
LM optimizer for all experiments in this study. Next, we compare the L?> and L™ errors computed
using Chebyshev—Gauss, Gauss—Legendre, and uniform grids type training points. We report errors
in Figure 4. Overall, the smallest errors are achieved with the choice of Chebyshev—Gauss points and
with N = 20. Therefore, we use Chebysev—Gauss type training points for the rest of the Section.
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Loss (log)
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Epochs (log)
Figure 3. Evolution of loss function (log-scale) with increasing number of epochs for the
LM and L-BFGS optimizers.

LZ(Q)-error B L>°(Q)-error LZ(Q)-error 2 L%°()-error
- A- Uniform 10 - A- Uniform - A- Uniform 10 - A- Uniform

1074t -#--Chebyshev-Gaussian --#-Chebyshev-Gaussian 1074 -#-Chebyshev-Gaussian -#-Chebyshev-Gaussian
—e—Gauss-Legendre 4 —*—Gauss-Legendre —e—Gauss-Legendre 4 ——Gauss-Legendre

@ N = 10 (b) N = 20

Figure 4. Comparisons of L? and L™ errors obtained by different choices of training
sampling points (uniform grids, Chebyshev—Guass, and Gauss—Legendre). The left box (a)
corresponds to the case with N = 10, and the right box (b) corresponds to the case when
N =20.

Now, let us present numerical results by the proposed PINN method. Figure 5 presents the
numerical solutions for the two conductivity cases. Notably, no spurious oscillation appears near the
interface in any case. We report the errors L? and L™ that are computed at 10,000 uniformly sampled
test points. The errors and CPU time for the two conductivity contrasts, that is, (k*, k™) = (1, 10) or
(100, 1), are documented in Tables 1 and 2, respectively.

Let us discuss the computational complexities with respect to N and m. One of the bottlenecks
of the LM optimizer is the inversion of the Hessian matrix associated with the loss functional. In
our case, the number of entries in the Hessian matrix is O(N*m?). As a results, the CPU time may
dramatically increases when N and m increase. Fortunately, the smallest errors were achieved at
relatively small parameters, specifically N = 20 and m = 32. In particular, with this parameter choice,
the L? errors remain below 4 - 1077 in Tables 1 and 2 with corresponding CPU times of 261 (s) and 274
(s), respectively.
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X ) X y
(a)(k+,k‘) = (1,10) (b)(k+,k_) = (100,1)

y

Figure 5. Graphs of the solutions obtained by PINN in Example 4.1 with thermal
conductivity (k*, k™) = (1, 10) or (100, 1).

N m 1T = Tollr= |IT — Toll;z CPU time
8 4.55E-6 1.02E-6 75.40

10 16 970E-7 2.17B-7  90.16
32 482E-6 1.08E—6  156.61
8 563E-6 1.IIE-6  114.57
20

16 2.87E-6 3.89E-7 157.11
32 3.70E-7 1.44E-7 261.38

Table 1. The L? and L™ errors and CPU time of PINN in Example 4.1 where (k*,k™) =
(1,10).

N m 1T = Tyllr= |IT = Toll;2 CPU time
8 8.99E—-4 2.54E-4 75.90

10 16 0958E-6 198E—6  88.90
32 446E—6 629E—7  157.78
8 179E-3  6.74E-4  113.07
20

16 3.53E-5 3.94E-6 157.24
32 3.02E-6 3.61E-7 273.93

Table 2. The L? and L™ errors and CPU time of PINN in Example 4.1 where (k*,k™) =
(100, 1).

Before closing this example, we compare the proposed method with the FEM-type method. One of
the authors has the experience of implementing FEM for elliptic interface problems with implicit jump
conditions, as described in [10], where the L? error is of O(h~2). To achieve comparable accuracy, the
FEM approach requires solving an algebraic system with over 10° unknowns, resulting in substantial
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computational cost (see e.g., Table 2 in [10]). Although it is difficult to compare directly, our method
achieves a comparable accuracy with less CPU time.

4.2. Comparison with other methods

In this subsection, we compare the proposed PINN with other methods. In Example 4.2, we compare
our method with the piecewise PINN method [36], while in Example 4.3, we compare it with a FEM-
type method [11].

Example 4.2 (Line interface). The level set function is L(x,y) = x + 2y + ry and the exact solution is

TEDAN B i (e y) €
X+ é(y + ro

k* ’
where @ = 0.5 and ry = 0.1. The thermal conductivity is (k~, k") = (1, 10). The graphs of T, and |7 —TY|
are presented in Figure 6. The L? and L™ errors are reported on the left side of Table 3. Notably, the
L? errors are below 2 X 10~ when N = 10 and m = 16. Therefore, the proposed PINN successfully
approximates the exact solution.

T =
if (x,y) € QF,

0 x107
6
p %1077 5
5 4
- -2 [ 3
-3 2
-4 0 0
. 1 -1 y
(@) Ty (b) IT — Ty|

Figure 6. Graphs of the Ty and |T — Ty| in Example 4.2.

N m Proposed PINN Piecewise PINN [36]
[Ty —Tlz, ITo—Tll,, CPU time Ty —Tlz, ITo—Tll,, CPU time
8 3.98E-5 1.09E-5 77.76 7.38E-5 2.29E-5 288.85
10 16 6.32E-7 2.34E-7 96.07 1.10E-6 2.72E-7 345.40
32 2.88E-6 6.54E-7 136.73 1.33E-5 1.76E-6 400.98
8 2.14E—-4 5.93E-5 173.40 9.65E—4 1.20E-4 778.21
20 16 1.56E-6 4.21E-7 261.18 3.11E-5 3.70E-6 858.13
32 2.38E-5 291E-6 405.33 2.32E-5 3.06E-6 1149.51

Table 3. The L? and L™ errors and CPU time of the proposed PINN (left) and piecewise
PINN [36] (right) in Example 4.2.

We compare our version of PINN with piecewise PINN introduced in [36]. In [36], the authors
propose two separate neural network functions for each subdomain. As a result, the total number of
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parameters is approximately doubled when the same number of nodes is used in each hidden layer. We
report the L? and L™ errors and CPU time on the right side of Table 3. We observe that L? and L* errors
obtained by the proposed PINN and piecewise PINN are similar. However, in terms of CPU time, our
PINN is more efficient, which is due to the increased number of parameters in piecewise PINN.

Example 4.3 (Perturbed-circle shaped interface). In this example, we consider the unidirectional heat
flow given by the homogeneous outer source (f = 0) and the boundary condition that

T=1, when x = —1,
T=0, when x = 1,
VT -ng=0, wheny=-lory=1,

where (k7,k*) = (1,2) and @ = 0.5. We consider the perturbed circle shape interface:

1 1 L 56
r=g ( + = sin )
Since the exact solution is unknown, we compare the solution obtained by PINN with that by FEM [11],
denoted as Trgy. In Appendix B, we provide a brief description of FEM for the completeness of the
presentation.

Figure 7 presents the comparison between T'rgy and T, showing the overall agreement between the
two solutions. We also calculate L? and L™ differences between Ty and Trgu:

ITo — Tremlliz = 3.31 X 107, 1Ty — Tremllio = 1.08 X 1072,

which are reasonably small. Thus, we conclude that the solutions obtained by PINN are comparable
to those from the well-established FEM. However, in terms of implementation, the proposed method
is simpler than FEM type method, without the needs for the mesh generation or iteration techniques to
determine jump profiles.

1 1 0.02
1 1 0.02 0.015
05 05 05 05  0.01 0.01
0 0 0 W . 0005
1 1
-1 -1 1 .
0 0 0 0 0 0 0
X 1 y X 1 y )

(@) To (b) Tegm (©) ITy — Treml|
Figure 7. Comparisons of the solutions 7y and Trgy in Example 4.3.

4.3. Discussion

In this subsection, we provide some discussion regarding the numerical experiments. We begin by
examining the relation between the choice of the parameter N (number of nodes in a hidden layer)
and its influences on the accuracy. In Figure 8, we plot the L? errors of the reconstructed solutions
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obtained by our methods with varying number of N, with m = 16 fixed both for the Example 4.1 and
4.2. Here, we do not observe clear decaying trends in errors as N increases. This could result from
difficulties in finding the global minimizer using optimization algorithms, as discussed in [37,38]. The
convergence of the optimizer, closly related to the optimization landscape, depends on various factors
including the interface shapes, PDE-related parameters (e.g., k*), etc. Notably, in Example 4.2, where
both the interface shape and the solutions are relatively simple, the smallest L? error (2.3E — 7) was
observed with just N = 10. A similar phenomenon is observed for the m parameter, which determines
the number of training points. In Figure 4, we do not observe the clear decay of errors as m increases.
Based on our parameter study, we suggest selecting moderate values such as N = 10,20 and m = 16
rather than significantly large values.

LZ(Q)-error

10
- 4- Example 1
--#--Example 2 &
1070
Ay s
AY 7’
AY /-’
AY -
A---ooooe Aol ol
} R A
10°0F |
N o
N
107

Figure 8. The L? errors when N = 5, 10, 20, 40 with fixed m = 16 for Example 4.1 and 4.2.

We now turn to the discussion of the stability of the optimization process. Through our experiments,
we observed that the optimization process becomes unstable when there is a large contrast of k™ and
k™ or the parameters N and m are too large. In particular, when the damping parameter in LM becomes
close to zero, the ill-conditioned Hessian matrix may cause the loss function to diverge. To remedy
this, we modified the LM optimizer slightly by introducing an additional rule: if current loss exceeds
twice the previous loss, increase the damping parameter by a factor of 10°. This adjustment improved
the robustness of the optimization process.

Finally, let us discuss the regularity assumptions used in our error estimates. In the statements of
Lemma 3.5 and Theorem 3.6, we assumed that T|g; € W**(Q?) for s = +, which is a strong regularity
condition. However, this assumption may not hold in practical applications, especially when material
interfaces induce singularities. In such cases, the errors may not be controlled by increasing the number
of parameters since the universal approximation fails under low regularity conditions.

5. Conclusions

In this work, we developed a new PINN method to solve heat transfer equations involving imperfect
contact conditions. There are mainly two difficulties in solving imperfect contact problems: 1)
the solutions are discontinuous across the interfaces, and 2) the jumps are implicitly determined.
To remedy these, we adopted the axis-augmentation techniques introduced in [21] to establish a
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continuous representation of the solution in the augmented variable. Then, we defined the neural
network function in an augmented variable with the physics-informed loss functional, which includes
the implicit jump conditions. After the loss function is minimized, the resulting solutions obtained
by PINN naturally satisfy the desired jump conditions. One of the advantages of such a continuous
representation formulation was the availability of error analysis. We carried out the error analysis; our
main theorem states that given a sufficient number of parameters, the loss between exact and PINN
solutions can be made arbitrarily small. The numerical experiments that support our analysis are
reported in the result section. Let us discuss the limitations of the proposed method. First, the number
of parameters in the neural network increases with the introduction of a new axis. Second, while our
analysis assumes strong regularity conditions, these conditions may not always hold in the real-world
applications.

Appendix
A. Calculation of loss functional

We provide details regarding the calculation of loss functionals presented in (2.5)—(2.9). Recall
first that ¢(X) = ¢, (X, L)ya+(X) + ¢ (X, —1)xo-(x). While the loss functionals are written in the
function ¢y, the augmented neural network function ¢;“(x, z) is employed during the implementation
stage. Specifically, the parameter z € {1, —1}, indicates whether the sampling points belong to Q2 or
Q*, respectively. Below, we summarize how operators such as V, V, and [-] acting on ¢, are calculated

using the augmented neural network functions:

Agy(x7) = Ay (X7, 2 = 1),
[polr (x1) = ¢ “(xi, 2= 1) — ¢, 5(x}, 2 = —1),
(kY - nr]r (1) = KV (2 = 1) - mp — K Vgt (el 2 = =1) -,

where

V e _ a¢gug a¢gug
¥ ox ~ Ay

N
o 0x? 0y?

B. FEM for heat equation involving imperfect contact condition

We briefly describe the FEM introduced in [11], where the so-called immersed finite element (IFE)
method was employed. In IFE methodology, uniform grids are employed for the interface problem,
allowing the interface to cut through the element, which contrasts with the usage of interface-fitted
grids. Instead, the basis function is modified so that the they satisfy the interface conditions.

Let 7, be a triangulation of the domain 2. When E € 77, is not cut through by the interface, the
local space is a standard linear space, denoted by S ,(E). Suppose E is cut through by the interface; the
basis function is defined as a piecewise polynomial of the form:
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d*(x)=a*'x+b*y+ct, whenxe ENQ*

¢ X)=a x+by+c, whenxe ENQ~ (B.1)

H(x) = {
Here, the coefficients in (B.1) are determined by the interface conditions (2.1b)-(2.1c¢), i.e.,

¢ — ¢~ =ak’Vé -nr
k*Vo* -nr—k V¢~ -nr = 0.

__ In this way, the local space S,(E) is defined with nodes and degrees of freedom. The global space
Sn(Q)1is deﬁnid by patching local spaces, imposing the continuity at the nodes. Let us remark that the

dimension of S ,(€2) corresponds to the number of nodes in 7. Finally, FEM solution is obtained by
solving the weak problem : find 7}, € S, such that satisfies

an(Th, @) = (fs4), Vp €Sy

where

1
a(Ti$) = f KVT, - Vodx+ ~ f (T)lelg]r ds.
E r

E€T)

The detailed implementation can be found in [11].
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