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ABSTRACT 

The influence of static disorder on a quantum phase transition (QPT) is a fundamental 

issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the 

superconductor–insulator transition (SIT) has been investigated intensively over the past 

three decades, but as yet without a general consensus on its nature. A key element is good 

control of disorder. Here, we present an experimental study of the SIT based on precise in-

situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two 

superconducting electrodes through electrical and reversible control of the band gap and 

the charge carrier density. In the presence of a static disorder potential, Andreev-paired 

carriers formed close to the Fermi level in bilayer graphene constitute a randomly 

distributed network of proximity-induced superconducting puddles. The landscape of the 

network was easily tuned by electrical gating to induce percolative clusters at the onset of 

superconductivity. This is evidenced by scaling behavior consistent with the classical 

percolation in transport measurements. At lower temperatures, the solely electrical tuning 

of the disorder-induced landscape enables us to observe, for the first time, a crossover from 

classical to quantum percolation in a single device, which elucidates how thermal 

dephasing engages in separating the two regimes. 

 

  

 



The superconductor–insulator transition1,2 (SIT) in disordered two-dimensional (2D) 

superconductors exhibits a zero-temperature separatrix between the superconducting and 

insulating phases3,4. The associated scaling behavior5,6 reveals the intrinsic nature of the quantum 

criticality. Cooper pairs exist even in the insulating phase, which is evidenced by direct 

observations of the superconducting gap7,8, as well as the earlier observation of a giant 

magnetoresistance4,9, magneto-oscillations10, and superfluid correlations11. These observations 

strongly suggest that the loss of pair coherence due to disorder drives the SIT. Several underlying 

mechanisms for the SIT have been suggested1, including the dirty boson picture based on 

Anderson localization of Cooper pairs12, classical13 and quantum percolation14 of 

superconducting clusters. 

In the dirty boson model5,12, which assumes that fluctuations of the pair amplitude are 

negligible, phase fluctuation of the superconducting order parameter destroys global 

superconductivity. However, some recent reports have pointed out that strong disorder induces 

amplitude fluctuations to form superconducting islands in the insulating phases, even in 

homogenously disordered thin films7,15-18 (which is also relevant to the Higgs amplitude 

mode19,20). These amplitude fluctuations may drive the universality class of the SIT from the 

disordered boson class to a percolation universality class, governed by the loss of global 

connection of disordered superconducting islands. 

This issue, concerning the interplay between disorder and superconductivity, is 

underscored by recent experiments, which have reported classical or quantum percolation critical 

behavior at the SIT in systems with varying degrees of disorder21,22. The relevance of these two 

different transitions, classical and quantum percolation, which are governed by different critical 

exponents, is determined by the question14 whether percolating clusters are formed between 

 



superconducting islands via either superconducting paths carrying phase-disrupting currents 

(classical percolation) or via coherent quantum-tunneling links (quantum percolation). Thus, 

precise control of disorder is crucial to elucidate the interplay between disorder and thermal 

dephasing, which is responsible for the classical-to-quantum crossover behaviors, and in 

particular, to differentiate the disorder-induced geometrical effects on the SIT from generic 

density modulations. 

Varying the thickness1,3 of or annealing23 superconducting thin films has been adopted in 

previous experiments to change the level of disorder. However, this can result in variations in the 

carrier density as well as the disorder landscape in a non-controllable way. Electrostatic gating 

has also been employed for 2D superconducting systems as a means of controlling the carrier 

density while preserving the spatial disorder on an atomic scale in superconducting films24, 

heterostructures of complex oxides25, high-Tc superconductor26, and graphene27. Here, we utilize 

electrostatic gating for accurate and reversible tuning of the disorder-induced landscape at 

energies close to the Fermi level by modulating both the carrier density and the band gap 

independently, rather than simple carrier density modulation with an uncontrolled fixed disorder. 

Compared with deeply buried 2D electronic systems of semiconducting heterostructures 

or oxide interfaces, graphene is more chemically inert and easily accessible using contact probes. 

However, the carriers are not strongly localized in monolayer graphene (MLG), even at the 

charge-neutral point (CNP), where the nominal carrier density vanishes. This is accounted for by 

the presence of electron–hole puddles28,29 produced by the disorder potential arising from 

charged defects on the substrate and/or chemical residues introduced during device fabrication. 

Since MLG has zero band gap, sufficiently doped bipolar conducting puddles may touch each 

other [Fig. 1(a)], making the boundaries transmissible by carriers via Klein tunneling. In 

 



contrast, in bilayer graphene (BLG), a band gap Eg opens when an electric field is applied 

perpendicular to the graphene, separating the charged puddles [Fig. 1(b)], and the transport 

behavior becomes percolative. This feature of BLG allows a high degree of independent control 

of both the band gap and the carrier density in a wide range30, as shown in Fig. 1(c), and provides 

flexibility in designing novel devices with controlled conductive behavior by fine-tuning the 

distance between puddles. Normal percolative transport has been reported in 2D electron gas 

systems in the low-carrier-density regime31, and in MLG nanoribbons with a finite band gap 

close to the CNP32. Similar behavior was observed in this study for the gapped BLG with normal 

electrodes (see Materials and Methods). As the Andreev-paired carriers were induced by the 

proximity effect in our dual-gated BLG device, the system precisely simulates a percolative SIT 

via the puddles of the pairs, the geometry of which is determined by disorder tuning at the Fermi 

level. 

 

Results 

Gate-control of superconducting and insulating states. Figure 1(d) shows a schematic 

diagram of the configuration of the dual-gated BLG device. A pair of Pb superconducting 

electrodes was closely attached to a mechanically exfoliated BLG layer, which was sandwiched 

between the top and bottom gates (see Methods). A scanning electron microscopy image of the 

device is shown in Fig. 1(e), together with the measurement configuration. The distance (L) 

between electrodes is 0.46 µm and the width (W) of the BLG is 7.0 µm. The contact resistances 

between BLG and Pb electrodes were negligibly small compared to the zero-bias junction 

resistance, R (Supplemental Information, section 1 and Fig. S1). The BLG became 

superconducting as Andreev-paired carriers formed due to the proximity effect of the 

 



superconducting electrodes, along with the consequent Josephson coupling between them33-35. 

The voltages of the bottom gate, Vb, and the top gate, V t, induced displacement fields Db = εb(Vb 

− Vb,0) / db and Dt = −εt (Vt − Vt,0) / dt, along the ẑ direction, where ε’s are the dielectric 

constants, d’s are the thicknesses of the dielectric layers, and Vb,0 (Vt,0) is the charge-neutral 

voltage offset of the bottom (top) gate due to the initial doping. The difference Ddensity = Db − D t 

controls the carrier density (or the chemical potential), while the average, Dgap = (Db + D t) / 2, 

breaks the inversion symmetry of the BLG, opening up a band gap36 (Supplemental Information, 

section 2 and Fig. S3). 

Figure 2(a) shows the square resistance of the junction, Rsq = R × (W / L), as a function of 

Ddensity and Dgap measured at a base temperature of T = 50 mK. The superconducting and 

insulating states, marked by black and red symbols, respectively, were determined from the 

current–voltage (I–V) characteristics at each set of Ddensity and Dgap. The two phases are 

separated coincidently by the quantum resistance of Cooper pairs, RQ = h / 4e2 (green contour 

line) as observed in other systems. On the weakly insulating side, the system exhibited nonlinear 

insulating I–V characteristics, as shown in Fig. 2(b), the zero-bias conductance of which is 

consistent with 2D Mott variable range hopping conduction, G(T) ~ exp[–(T*/T)1/3], where T* is a 

characteristic temperature (see Methods). On the superconducting side, Rsq eventually vanished, 

and a dissipationless supercurrent branch emerged, as shown in Fig. 2(c), which resulted from 

the proximity Josephson coupling (Supplemental Information, section 3 and Fig. S4). 

 

Finite-size scaling analysis on the temperature-dependent behavior. The temperature 

dependence of Rsq at different Ddensity ranging from insulating to superconducting phases is 

shown in Fig. 3(a). It shows no signs of the re-entrance or kink of the resistance at temperatures 

 



down to 50 mK, which was commonly observed in granular films. Below the crossover 

temperature T0 denoted by the broken line, Rsq saturated, presumably due to Joule heating of 

charge carriers. The shift of T0 to lower temperatures when the heating was reduced (i.e., when 

Rsq was smaller) is consistent with the Joule-heating interpretation. In Fig. 3(b), the curves of Rsq 

vs Ddensity at different temperatures converge on a single point (i.e., Ddensity,c ~ −0.3 Vnm−1) with a 

corresponding critical square resistance of Rsq,c ~ 1.1RQ, which is close to the universal value 

predicted by the dirty boson model for a low dissipative system.  

The SIT behavior is interpreted as a quantum phase transition (QPT), as confirmed by Rsq 

vs Ddensity data converging to a single finite-size scaling curve5,6 of the form Rsq = Rsq,c f(xT–1/vz) 

close to the critical point [Figs. 3(c) and (d)]. Here, f is a scaling function and x ≡ |Ddensity – 

Ddensity,c| or x ≡ |Dgap – Dgap,c| is a tuning parameter. The correlation length exponent ν and the 

dynamical critical exponent z characterize the universality class of the QPT. The data for 400 < T 

<600 mK exhibit the best collapse, with a critical-exponent product of νz = 1.44, which is close 

to the value νcl = 4/3 for classical percolation in 2D37 [an exponent of z = 1 has been assumed for 

a system with charged particles1, which also appears to be valid in our study, as found separately 

in the bias-field-tuned critical point]. However, at lower temperatures (i.e., 200 < T < 375 mK), 

the best collapse was found with νz = 2.59, which is consistent with a quantum percolation 

transition in 2D with the value νq = 7/3 (semi-classically one expects38 νq =νcl +1). The best 

estimates of νq in the literature39 lie in the range 2.3-2.5. We will see below that these values 

were consistently found in several sweeps with different carrier densities and band gaps. 

Interestingly, there was a classical-to-quantum crossover at T1 ~ 400 mK, which will be 

discussed later in a more quantitative manner. Theoretical studies have predicted14,22 such a 

crossover from quantum to classical percolation due to decoherence at a finite temperature. 

 



Observations of similar crossover behavior have been reported 22 for quantum Hall insulator 

transitions. However, no estimation was provided for the associated change in the electron 

temperature, Tel, introduced by the bias-induced Joule heating. 

 

Estimation of Tel and the classical-to-quantum crossover. Since Joule heating may seriously 

affect the behavior of the QPT, in particular, close to the lowest measurement temperature, we 

carried out an in-depth quantitative analysis of Tel. Tel saturated to a temperature T0 as the 

phonon temperature Tph (i.e., the measurement temperature) approached the base temperature, 

i.e., Tel = T0 when Tph = 50 mK. The dissipative power P = I2R at Tph = 50 mK was estimated 

from the saturated resistance R and the root-mean-square (r.m.s.) bias current of I = 1 nA, which 

exhibited a power-law dependence on T0, as shown in Fig. 4(a), along with the fit to P = A(Telθ – 

Tphθ) = A(T0θ – Tphθ) with Tph = 50 mK. The fitting parameters were the electron–phonon 

coupling exponent θ = 2.8 ± 0.1 and the coefficient A = 77 ± 14 fW∙K–2.8, where T0 was 

estimated to be T0 = 160 mK at the SIT point of Rsq ~ 1.1RQ (Supplemental Information, section 

4 and Fig. S5). The value of θ was consistent with the recently observed value in MLG 40 in 

millikelvin regime. 

With the electron temperature described by Tel = [Tphθ + T0θ – (50 mK)θ]1/θ ≈ (Tphθ + 

T0θ)1/θ, we now discuss the temperature dependence of the critical exponents in detail. The 

exponent product νz can be evaluated from the slope of a double logarithmic plot of 

1/
0( / )  z

xdR dx T ν−
= ∝  vs T, as shown in Fig. 4(b), for each gate sweep of the Ddensity-tuned (sweep 1, 

2, S1, and S2) and Dgap-tuned (sweep 3 and S3) SIT. Note that, in this plot, the heating effect is 

excluded by replacing the measurement temperature by the electron temperature with T0 = 160 

mK. For all gate sweeps, for T > 400 mK, the slope is described well by classical percolation 

 



(red line), whereas for T < 400 mK, the slope is consistent with the quantum percolation model 

(blue line). Successful elimination of the Joule heating effect in this study made it possible to 

identify a crossover between classical and quantum percolation, with the temperature as a tuning 

parameter for the decoherence. 

 

Finite-size scaling analysis for bias electric field. Similar to the temperature dependence, the 

bias current (I) dependence of Rsq is also differentiated into two phases as shown in the inset of 

Fig. 5(a), such that Rsq decreases (increases) with lowering I in the superconducting (insulating) 

phase. Here, we emphasize that the value of θ satisfies the ‘safety’ criterion6 2/θ > z/(z+1), where 

z = 1, for the intrinsic fluctuations being dominant in the Joule-heating effect. This allowed 

fitting of the critical-exponent product ν(z+1) for both the classical and quantum percolation 

regions from the scaling behavior as a function of the bias electric field. The finite-size scaling 

analysis with the electric field (E) in Figs. 5(a) and (b) provides additional information of ν(z+1), 

because the E dependence of Rsq has the form Rsq = Rsq,c g[xE–1/v(z+1)] near the critical point6,41. 

Here, g is another scaling function. Similar to the T-varying scaling in Figs. 3(c) and (d), E-

varying scaling also gives two different values of ν(z+1) depending on the bias current range. 

For I = 9 – 15 nA, the best scaling was obtained with ν(z+1) = 2.66, which is close to the value 

of classical percolation [ν(z+1) = 8/3].  But, for the lower bias current range of I = 3 – 9 nA the 

best fit was obtained with ν(z+1) = 4.56, which is close to the value of quantum percolation 

[ν(z+1) = 14/3].  

 

Products of critical exponents, νz and ν(z+1).  ν(z+1), together with νz from the T-varying 

scaling, allows an independent determination of the critical exponents41 of ν and z. We 

 



investigated several critical points for both of Ddensity–driven and Dgap–driven SIT as indicated in 

Fig. 2(a). For each gate sweep, we performed scaling analysis for both the temperature and 

electrical field dependences to evaluate the critical-exponent products of νz and ν(z+1), 

respectively. We summarized all the critical-exponent products in Figs. 5(c) and (d) for both of 

the classical and quantum percolation regimes. The corresponding scaling results for the classical 

percolation regime are shown in supporting information (Supplemental Information, section 5 

and Figs. S7 and S8). At higher temperatures (T > 400 mK) or for higher electric fields (I > 9 

nA), with the averaged values of νz=1.44 ± 0.13 and ν(z+1)=2.81 ± 0.31 for all different gate 

sweeps (sweeps 1 – 3 and S1 – S3), we get v = 1.37 ± 0.34 and z = 1.05 ± 0.27. This result 

supports the SIT of charged bosons (Cooper pairs) in the classical percolation universality class, 

which is consistent with the percolative transport nature of carriers through charged puddles in 

BLG at T = 4.2 K. At lower temperatures (T < 400 mK) or lower electric fields (I < 9 nA), the 

averaged values of νz=2.83 ± 0.33 and ν(z+1)=5.25 ± 0.63 give ν = 2.42 ± 0.71 and z = 1.17 ± 

0.37, which support the quantum percolation universality class for SIT. 

 

Discussion 

It is rather surprising that the BLG layer in the narrow region between the superconducting 

electrodes show the finite-size scaling behaviour of a 2D SIT, which is usually observed in 

homogeneous 2D systems. We believe that the temperature range of our transport measurements 

was sufficiently low as to allow the critical behaviour of the correlation length as a function of 

temperature. The observed temperature-dependent finite-size scaling was then governed by the 

temporal scale associated with the system temperature without apparent influence of the spatial 

scale of our device on the transition characteristics. Apparently, the spatial correlation length 

 



remained limited at finite temperatures (i.e., shorter than the spacing between the 

superconducting electrodes) as to neglect the effects arising from possible inhomogeneity of 

carrier transport or finite size of our system. 

Our BLG devices provide a unique method to investigate the underlying mechanisms of 

SITs via accurate and reversible control of disorder. Electrical gating changed the average 

spacing between proximity-induced superconducting puddles to drive the QPT as Andreev-

reflected bound pairs at the Fermi level establish long-range coherence via percolative paths to 

yield the critical power-law behavior of percolation with negligible thermal intervention. At 

lower temperatures than the range of classical percolation behavior, direct control of the disorder 

enabled us to estimate the effective electron temperature and consequently to identify the 

crossover between classical and quantum percolation in a single device. Previously, these two 

regimes have only been obtained in separate systems belonging to weak and strong disorder 

regimes21. Our proximity-coupled BLG system demonstrates that it is an exceptionally useful 

platform to study disorder-induced QPTs. 

 

Methods 

Device fabrication. Fabrication of the bilayer-graphene Josephson-junction devices relied on 

mechanical exfoliation of graphene42 on a highly doped silicon substrate, which was capped with 

a 300-nm-thick silicon oxide layer to form a bottom gate dielectric (db = 300 nm, εb = 3.9). 

Bilayer graphene was identified via optical contrast (Supplemental Information, section 6 and 

Fig. S9). Superconducting electrodes were defined using electron beam lithography and thermal 

evaporation of Pb0.9In0.1 onto the bilayer graphene. Indium was added to minimize the grain size 

and the surface roughness35. The junction area was covered with cross-linked poly(methyl 

 



methacrylate) (PMMA)43,44, which formed a dielectric layer for the top gate (d t ≈ 43 nm, εt = 

4.5). A Ti/Au top-gate electrode stack (where the layers were 5- and 145-nm-thick, respectively) 

was deposited and accurately aligned to cover most (~90 %) of the junction area (Supplemental 

Information, Fig. S2). This allowed uniform gate control over the entire junction area. The 

thickness of the top gate dielectric, d t, was determined from the shift of the resistance maximum 

of Vt by the modulation of Vb. Vb,0 and Vt,0 were determined by comparing the band gap, which 

was estimated from the temperature dependence in Fig. 6. 

 

Low-noise measurements. The sample was maintained in thermal contact with the mixing 

chamber of a dilution fridge (Oxford Kelvinox AST) and cooled to a base temperature of 50 mK. 

Electrical measurement lines were filtered by a combination of two-stage low-pass RC filters 

(with a cut-off frequency of ~ 30 kHz) mounted at the mixing chamber and pi-filters (with a cut-

off frequency of ~ 10 MHz), which were at room temperature. We used a conventional lock-in 

technique with a bias current amplitude 1 nA r.m.s. at a frequency of 13.33 Hz for the 

temperature-dependent measurements, and a direct-current bias for the bias-field-dependent 

measurements. 

 

Temperature dependence of conductance at CNP. At the charge neutrality point (Ddensity = 0), 

the Fermi level is placed in the middle of the bandgap Eg. Then, the conduction occurs with 

thermally activated carriers, providing the temperature (T) dependence of conductance, GTA(T) = 

GTA,0 exp(–Eg/2kBT), with Boltzmann constant kB. However, in disordered bilayer graphene, 

bandgap is filled with the localized states such as conducting electron and hole puddles so that 

the carriers can hop across these states. Hopping transport is more pronounced at lower 

 



temperatures where the thermal activation (TA) is exponentially suppressed. As shown in Fig. 

6(a), low-temperature conductance agrees with variable range hopping (VRH) model in two 

dimensions, GVRH(T) = GVRH,0 exp[–(Th/T)1/3], whereas high-temperature data agree with the TA 

conduction. The measurement was done at temperatures above ~ 7 K, with the Pb electrodes in 

the normal state. The charge neutrality point for the top gate was estimated to be Vt,0 = – 6.0 V, 

where the |Dgap| dependence of resultant fitting parameter Eg agrees with the theoretical 

prediction of self-consistent tight-binding calculation as shown in Fig. 6(b). Similar TA+VRH 

transport properties were experimentally investigated in dual-gated bilayer graphene45. We could 

not directly determine V t,0 as it was beyond the charge-leakage voltage of the top gate. However, 

the uncertainty in the determination of V t,0 gives additional offsets to Dgap only but does not 

affect the scaling analysis discussed in the text. 

 

Percolation transport in gapped bilayer graphene. Carrier density inhomogeneity in two-

dimensional (2D) GaAs semiconducting systems induces the percolative metal–insulator 

transition (MIT) in the low carrier density regime31,46. Similarly, graphene which has 

inhomogeneous charge puddles is also expected to exhibit the percolative MIT if a bandgap is 

introduced to separate the electron band from the hole band. For example, S. Adam et al.32 

fabricated graphene into a nanoribbon structure to open a bandgap in graphene and demonstrated 

a 2D MIT of the classical percolation universality class. There is also theoretical prediction of 

percolation behavior for bilayer graphene with a finite bandgap47. In our case, a vertical electric 

field opened a bandgap in bilayer graphene. We investigated transport properties of bilayer 

graphene in the presence of the superconducting proximity effect and analyzed them in the frame 

of percolative superconductor–insulator transition. To support the percolative transport 

 



characteristics in gapped bilayer graphene in the absence of superconductivity, we fabricated and 

performed control experiments with a device consisting of dual-gated bilayer graphene in contact 

with non-superconducting Ti/Au electrodes. Optical image of the device and the measurement 

configuration are shown in Fig. 7(a). While injecting current (I = 1 nA r.m.s.) from I+ to I –, 

voltage drop between V+ and V– was measured as a function of bottom (Vb) and top (V t) gate 

voltages at the base temperature of T = 4.2 K. According to the definition of Ddensity and Dgap, a 

resistance map is plotted as a function of Ddensity and Dgap in Fig. 7(b). Ddensity represents the 

carrier density (n = 5.52ⅹ1012 cm-2ⅹDdensity∙V-1nm) accumulated by the electrical gates, while 

Dgap determines opening of bandgap (Eg) in the bilayer graphene. Ddensity dependence of 

conductance (G) at a fixed Dgap = – 0.8 V/nm [along the red line in Fig. 7(b)] is plotted in 

Fig. 7(c) on log-log scale. The bandgap is estimated to be Eg ~ 90 meV according to the self-

consistent tight-binding model30,48. There appears three transport regimes depending on the 

Ddensity in both electron and hole sides. In a highly doped state ( |Ddensity| > 0.5 V/nm), Fermi 

level exceeds the bandgap ( |EF| > 100 meV ) so that the system is expected to be in the 

Boltzmann transport regime49 where G n∝ . In the range of 0.1 V/nm < |Ddensity| < 0.5 V/nm, best 

fits to the critical behavior ( )cG n n δ∝ −  give exponents δ h = 1.25±0.02 in the hole side and δ e 

= 1.25±0.05 in the electron side, where nc is the critical carrier density. They are close to the 

theoretical prediction δ =4/3 for 2D classical percolation universality class. Near the charge 

neutrality point, |Ddensity| < 0.1 V/nm, G deviates from the percolation behavior and does not 

converge to zero but becomes saturated. This is because electron and hole puddles remain 

conducting even though the average carrier density vanishes at Ddensity = 0. Figure 7(d) shows the 

same data and corresponding fitting lines of Fig. 7(c) on linear scale. The linear relation between 

G and n in the Boltzmann transport regime (blue lines) and the crossover between percolation 

 



and Boltzmann transport regimes (arrows) are more pronounced. 
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Figures and Figure Legends  

 

Figure 1 | Dual-gated bilayer graphene Josephson junction. (Upper panels) Spatially 

distributed charged puddles (a) in monolayer graphene (MLG) or zero-band-gap bilayer 

graphene (BLG), (b) BLG with a finite band gap Eg in the charge-neutral state, and (c) n-doped 

finite-band-gap BLG. The red, blue, and white represent n- and p-doped (conducting) and finite-

band-gap (insulating) states, respectively. (Lower panels) Cross-sections along the broken red 

curves in the upper panels, showing the variation in the conduction and valence bands. The solid 

red curve shows the chemical potential. (d) Schematic diagram showing the configuration of the 

dual-gated BLG Josephson junction. (e) Scanning electron microscopy image of the device, 

illustrating the measurement configuration. The green dotted lines show the location of the BLG. 

 



 

 

Figure 2 | Insulating and superconducting states in an electron-hole puddle system. (a) 

Color-coded square resistance map of the junction as a function of Ddensity and Dgap measured at 

50 mK. The diamond symbols indicate representative insulating (red) or superconducting (blue) 

points of Ddensity and Dgap. The green contours correspond to the quantum resistance of Cooper 

pairs, RQ = h/4e2, and separate insulating regions from the superconducting regions. The red 

curves indicate gate sweep traces 1–3 and S1–S3. Current–voltage characteristics taken at the 

corresponding points denoted in (a) exhibit (b) a nonlinear insulating behavior (the red curve) 

and (c) zero-resistance superconducting behavior (the blue curve). 

 

 



 

Figure 3 | Temperature dependence of square resistance and its scaling behavior. (a) 

Temperature dependence of the square resistance Rsq with various Ddensity for a fixed Dgap = 

−0.86 Vnm−1 plotted with a log-linear axis. Ddensity was varied in steps of 0.05 Vnm−1 from 0 

Vnm−1 (top) to −0.60 Vnm−1 (bottom). The broken curve indicates the heating-induced crossover 

temperature T0, below which the electron temperature and Rsq saturated. (b) The data set in (a) 

plotted as a function of Ddensity at various T. The horizontal broken line indicates the point of 

convergence. Finite-size scaling analysis of the Ddensity-driven superconductor–insulator 

transition for sweep 2 in Fig. 2(a). For 400 < T < 600 mK (c), νz=1.44 gave the best data 

collapse; however, for temperatures of 200 < T < 375 mK (d), νz = 2.59 resulted in the best data 

collapse. 

 



 

 

Figure 4 | Estimation of electron temperature and temperature dependence of critical 

exponent products. (a) Relationship between the heating-induced crossover temperature T0 and 

the dissipative Joule-heating power P. The solid curve is a fit to Rsq data close to the transition in 

a logarithmic scale. The horizontal lines are guides for the levelling-off of Rsq and the arrows 

indicate T0. (b) Electron temperature (Tel)-dependence of resistance slope (dR/dx)x=0. For clarity, 

each data set was shifted vertically by an arbitrary offset. The red and blue linear curves indicate 

the slope expected with classical and quantum percolation, respectively. 

 

 



 

Figure 5 | Scaling of square resistance for different electric fields and critical-exponent 

products for various gate sweeps. Finite-size scaling analysis of electric field dependences of 

Ddensity-driven transition for the gate sweep 2, which yields the best collapse with ν(z+1) = 2.66 

for I = 9 – 15 nA in (a) or ν(z+1) = 4.56 for I = 3 – 9 nA in (b). Inset of (a), bias current dependence 

of Rsq at different doping levels (Ddensity, from 0 to –0.60 Vnm−1, in steps of 0.05 Vnm−1). Critical-

exponent products νz and ν(z+1) evaluated at various critical points for (c) the classical percolation 

regime and (d) the quantum percolation regime. Red lines represent average values. The characters 

‘h’ and ‘e’ in the sweep indices stand for the hole and electron side, respectively. 

 

 



 

Figure 6 | Thermal activation and variable range hopping conduction at the charge 

neutrality point. (a) Temperature dependence of conductance G at Dgap = –0.87 V/nm and 

Ddensity = 0 (charge neutrality point). The data were taken by ac measurements at zero dc bias and 

are fitted to the parallel conduction model (blue line), which consists of thermally activated 

conduction (red line) and variable-range-hopping conduction (green line). Best-fit parameters are 

Eg=115 ± 23 meV and Th=1.92 ± 0.59 K. (b) Band gap Eg estimated from the temperature 

dependence of conductance is plotted as a function of |Dgap|. Red line represents the prediction 

by self-consistent tight-binding calculation. 

  

 



 

Figure 7 | Percolation transport behavior in the gapped bilayer graphene. (a) Optical image 

of the dual-gated bilayer graphene device with measurement configuration. (b) Resistance map 

as a function of Ddensity and Dgap measured at 4.2 K. (c) Log-log plot of conductance as a 

function of |Ddensity| in the hole side (red symbols) and electron side (blue symbols). Best fits to 

the percolation behavior (solid lines) in the range of 0.1 V/nm < |Ddensity| < 0.5 V/nm gives the 

critical exponent of δ h = 1.25±0.02 and the critical carrier density of nc
h = –1.00ⅹ1011 cm-2 in 

the hole side, and δ e = 1.25±0.05 and nc
e = 1.25ⅹ1011 cm-2 in the electron side. Dotted lines 

represent the Boltzmann transport behavior for highly doped state ( |Ddensity| > 0.5 V/nm). (d) 

Linear plot of the same data and the fitting lines of (c). Arrows indicate the crossover between 

Boltzmann and percolation transport regimes. 
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1. Contact resistance 

Since the measured device resistance includes the contact resistance (Rc), we estimated Rc using 

a four-probe measurement scheme shown in Fig. S1(a). The measured four-probe contact 

resistance [Rc,4p = (V+ – V–)/Ibias] of the left and right contacts were –3 Ω and –4 Ω, respectively. 

Here, V+ and V– are the electrical potential of the two electrodes and Ibias is the bias current 

between I+ and I– contact leads. The negative value of Rc,4p in the cross-junction geometry can 

be understood as that Rc is much smaller than the electrode resistance Rline (~ 7 Ω), resulting in 

non-uniform current flow along the junction #1. When Rc is sufficiently larger than Rline, bias 

current flows uniformly through the junction along the vertical direction and each top and bottom 

electrode becomes equipotential. This results in voltage difference ∆V = V+ – V– to be positive 

[Fig. S1(b)] and Rc,4p well represents Rc. However, when Rc is sufficiently smaller than Rline, the 

electrode on top and the graphene layer at bottom behave as a single piece with the current flow 

becoming nonuniform along the junction. In this case, V– gets higher than V+, which leads to a 

negative value of Rc,4p. This feature is confirmed in the numerical simulation for different values 

of Rc in Fig. S1(c) and S1(d). Simulation was done by commercial package COMSOL 

Multiphysics with the same geometrical and electrical parameters of the device. As Rc gets 

smaller than Rline, Rc,4p becomes negative and saturated to the value of –Rline [Fig. S1(e)], which 

is close to the experimentally measured value of Rc,4p. This ensures that Rc of our device was an 

order of a few ohms, which was negligible compared to the device resistance (a few hundreds 

ohms). 

 

 

 



2. Coordinate transformation of the resistance map  

Experimentally, we constructed a resistance map as a function of the bottom gate and top gate 

voltages (Vb and Vt, respectively) as shown in Fig. S3(a). The carrier doping and the gap opening 

of the bilayer graphene were exclusively determined by the parameters Ddensity (= Db − Dt) and 

Dgap [= (Db + Dt) / 2], respectively, with Db = εb(Vb − Vb,0)/db and Dt = −εt (Vt − Vt,0)/dt. Here, 

ε is the dielectric constant, d is the thickness of dielectric layers, and Vb,0 (Vt,0) is the charge-

neutral gate voltage of the bottom (top) gate due to the initial environmental doping. Thus, for 

convenience, we transformed the coordinate for the resistance map from the (Vb, Vt) basis 

system to the (Ddensity, Dgap) basis system as shown in Fig. S3(b).  

 

3. Josephson coupling in the superconducting phase 

 When the square resistance becomes smaller than the quantum resistance, the 

superconducting phase emerges in the region of bilayer graphene layer. As discussed in the main 

text, the superconducting phase is induced by the proximity effect from the superconducting 

electrodes. In this section, we present the genuine Josephson coupling via the bilayer graphene 

layer, confirmed by microwave irradiation and applying perpendicular magnetic fields on the 

bilayer-graphene Josephson junction. When a microwave was irradiated on the Josephson 

junction, the beating of ac voltage and the ac Josephson effect generated equidistant voltage 

steps in the current–voltage characteristics [Fig. S4(a)], which is known as Shapiro steps1. In 

Fig. S4(b), the voltage step size ∆V shows highly linear relationship with the irradiated 

microwave frequency fmw as ∆V =hfmw/2e with Planck’s constant h and electron charge e. 

 



Microwave amplitude (P1/2) dependence of differential resistance (dV/dI) with fixed fmw = 5 GHz 

is plotted in Fig. S4(c). Shapiro steps (dV/dI = 0) shows well-behaving Bessel-function-like 

oscillation as a function of P1/2. 

Another unique feature of Josephson junction is periodic oscillation of critical current (Ic) 

with applied perpendicular magnetic field (B), which is known as Fraunhofer pattern1. When the 

magnetic flux Φ = BAeff threading the effective junction area Aeff becomes an integer multiple of 

magnetic flux quantum Φ0 = h/2e, Ic drops to zero except for B=0. Here, Aeff=W(L+2λL) with 

taking into account of the London penetration depth λL of the superconducting Pb-In electrodes. 

W = 7.0 µm is the width and L = 0.46 µm is the length of the Josephson junction. In Fig. S4(d), 

the B dependence of Ic clearly manifests Fraunhofer pattern with periods of ∆B ~ 2.8 G, which 

agrees with the theoretical prediction of ∆B with λL ~ 0.3 µm obtained in the independent 

measurements2. 

 

4. Heat dissipation by electron-phonon coupling in bilayer graphene in low 

temperature regime 

The saturation behaviour of resistance by the dissipative Joule heating shown in Figs. 

S5(a), (b), and (c) gives information about the electron-phonon coupling in the bilayer graphene 

Josephson junction device. Crossover temperature (T0) and the saturation resistance (R) 

correspond to the electron temperature in association with the base sample holder temperature 

and the dissipative power P = I2R, respectively, with bias current I = 1 nA r.m.s. Most of the heat 

generated by the bias current is dissipated via electron-phonon coupling, since hot electron 

 



diffusion into the electrodes can be ignored due to the exponentially suppressed quasiparticle 

density of states of the lead (Pb) superconducting electrode3. Also, we can assume that the 

phonon of bilayer graphene is fully thermalized to the temperature of the silicon oxide substrate 

since the interfacial thermal resistance is a few orders of magnitude smaller than the thermal 

resistance between electron and phonon of the bilayer graphene3,4. Here, the interfacial thermal 

resistance at low temperature is estimated by extrapolating the experimental data in Ref. [4]. 

Fig. S5(d) displays the relation between crossover temperature and P along with the best-

fit curve of P = A(Telθ - Tphθ), giving the best-fit value of electron-phonon coupling exponent θ = 

2.8 ± 0.1 for the (base) phonon temperature Tph = 50 mK and the coefficient A = 77 ± 14 fW∙K-

2.8. Here, we assumed that the electron temperature (Tel) at the base temperature is saturated to 

T0. The exponent θ = 2.7 ± 0.1 was also determined by the slope in double logarithmic plot in 

Fig. S5(e), assuming that Tphθ term was negligible compared to Telθ for Tel > 100 mK. The 

exponent θ was smaller than 4 and close to 3, which mimicked the electron-phonon coupling in 

disordered monolayer graphene systems in millikelvin temperature range3,5. This low value of 

the exponent (θ < 4) makes bilayer graphene system a unique platform for the bias-dependent 

finite-size scaling studies for the independent determination of a dynamical critical exponent. 

This sharply contrasts with ordinary two-dimensional electron systems6 (with θ = 4 − 7), which 

are easily driven into ‘dangerous’ regime where Joule heating significantly enhances the electron 

temperature and thus obscures the quantum critical scaling behaviour. 

 

  

 



5. Finite-size scaling with bias electric field 

As discussed in the main text, the bias current (I) dependence of Rsq is also differentiated 

into two phases and enables finite-size analysis on electric field (E). Analysis similar to the one 

in Fig. 4(b) is adopted to determine the exponent v(z+1), but now (dR/dx)x=0 is plotted as a 

function of I as shown in Fig. S6. Using I instead of electric field  ( )∝E IR  as an external 

parameter is valid because the resistance at SIT point is universal irrespective of I. The crossover 

from classical to quantum percolation with lowering I resembles the previous observation in the 

T-dependent scaling. More scattering of the data for smaller I is due to reduced signal-to-noise 

ratio in dc measurements. Here, one should be careful lest the Joule heating power 2 ( )P E∝  

should enhance the carrier temperature as 1/
elT P θ∝  and alter the intrinsic scaling behaviour. For 

the observed exponent θ = 2.8 in BLG in the Section 5, our quantum critical scaling would be in 

the ‘safety’ criterion7 of 2/θ > z/(z+1) with z=1, where the self-heating effect was negligible 

compared with the intrinsic fluctuation effects. 

 

6. Estimation of the number of graphene layers 

To identify the number of graphene flakes, we used the intensity contrast in the green 

light range8. Fig. S6(a) shows the optical image of graphene flakes exfoliated on a highly 

electron-doped Si substrate capped with a 300-nm thick SiO2 layer. Green light contrast (Cgreen) 

of the graphene flakes shows the linear relationship to the number of graphene layers as shown in 

Fig. S6(b). Bilayer graphene part (region 2) was selected to fabricate the dual-gated bilayer 

graphene Josephson junction device in this study. 
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Figures and Figure Legends 

 

Fig. S1. Contact resistance. (a) Scanning electron microscope (SEM) image of the device with 

the contact-resistance measurement scheme. Green dotted lines denote the boundary of the 

bilayer graphene. (b) Schematics of voltage profile of high and low contact-resistance regimes. 

Red and blue colours represent high and low electric potential, respectively. (c, d) Numerical 

simulation of voltage profiles with contact resistance, Rc = 100 Ω (c) and Rc = 4 Ω (d). (e) 

Simulated four-probe contact resistance (Rc,4p) as a function of Rc. Solid line represents Rc,4p = 

Rc. Inset, a close-up view of (e). As Rc gets lower than the electrode resistance Rline ~ 7 Ω, Rc,4p 

can be negative. 

 



 

 

 

Fig. S2. Scanning electron microscope (SEM) image. SEM image of a dual-gated bilayer 

graphene Josephson junction device. Magnified image shows the top gate that is aligned to the 

superconducting electrodes as close as possible without touching them to avoid the gate leakage. 

The gap between the top gate and superconducting electrodes is less than 20 nm. 

  

 



 

 

 

Fig. S3. Coordinate transformation. (a) Colour-coded plot of the junction resistance in (Vb, Vt) 

coordinate system. (b) The same in (Ddensity, Dgap) coordinate system. The green contour lines 

correspond to the quantum resistance of Cooper pairs, RQ = h/4e2. 

  

 



 

Fig. S4. Josephson coupling in the superconducting phase. (a) Equidistant voltage steps (∆V) 

appear in current–voltage characteristics with microwave irradiation of frequency fmw = 5 GHz. 

(b) fmw dependence of ∆V (symbols) agrees with theoretically predicted linear relationship, ∆V 

=hfmw/2e (red line). (c) Microwave amplitude (P1/2) dependence of Shapiro steps at a fixed 

frequency fmw = 5 GHz shows quasi-periodic Bessel-function-like oscillations. (d) Perpendicular 

magnetic field (B) dependence of the junction critical current shows the Fraunhofer pattern in 

constant periods of ∆B ~ 2.8 G. 

  

 



 

 

Fig. S5. Enhancement of electron temperature due to the dissipative Joule heating. Temperature 

dependence of square resistance (Rsq) divided by quantum resistance of Cooper pair (RQ) plotted 

in a semi-log scale for a fixed Dgap = −0.86 Vnm−1 (a) at Ddensity = 0 (top), −0.05, −0.10, −0.15 

(bottom) Vnm−1, (b) Ddensity = −0.20 (top), −0.25, −0.30, −0.35 (bottom) Vnm−1, (c) Ddensity = 

−0.40 (top), −0.45, −0.50, −0.55, −0.60 (bottom) Vnm−1. Saturation of resistance is guided by 

solid lines. (d) Relation between crossover temperature (T0) and dissipative power by Joule 

heating (P). Solid line is the best-fit curve. (e) Log-log plot of T0 versus P and the corresponding 

the best linear fit.  

  

 



 

 

 

Fig. S6. Bias-current dependence of the resistance slope at the transition (dR/dx)x=0 for different 

gate sweeps (a) 1 – 3 and (b) S1 – S3. Each set of data is plotted with an arbitrary vertical shift 

for clarity. Red (blue) straight line shows the expectation of the classical (quantum) percolation. 

 

  

 



 

Fig. S7. Scaling analysis for temperature variation. For the sweep 1 (a) in the hole and (b) 

electron sides. For (c) the sweep 2 and (d) 3. For the sweep S1 (e) in the hole and (f) electron 

sides. For (g) the sweep S2 and (h) S3. 

 



 

Fig. S8. Scaling analysis for electric-field variation. For the sweep 1 (a) in the hole and (b) 

electron sides. For (c) the sweep 2 and (d) 3. For the sweep S1 (e) in the hole and (f) electron 

sides. For (g) the sweep S2 and (h) S3. 

 



 

 

 

Fig. S9. Determination of the number of graphene layers. (a) Optical image of the graphene 

flakes exfoliated on an oxidised silicon substrate. The number of the graphene layers is denoted. 

(b) Linear relationship between the green-light contrast and the number of graphene layers. Red 

line crossing the origin is the best linear fit to the data. 
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