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Abstract: Recent developments in sensor technologies enable physical activity recognition (PAR)
as an essential tool for smart health monitoring and for fitness exercises. For efficient PAR,
model representation and training are significant factors contributing to the ultimate success of
recognition systems because model representation and accurate detection of body parts and physical
activities cannot be distinguished if the system is not well trained. This paper provides a unified
framework that explores multidimensional features with the help of a fusion of body part models
and quadratic discriminant analysis which uses these features for markerless human pose estimation.
Multilevel features are extracted as displacement parameters to work as spatiotemporal properties.
These properties represent the respective positions of the body parts with respect to time. Finally,
these features are processed by a maximum entropy Markov model as a recognition engine based
on transition and emission probability values. Experimental results demonstrate that the proposed
model produces more accurate results compared to the state-of-the-art methods for both body part
detection and for physical activity recognition. The accuracy of the proposed method for body part
detection is 90.91% on a University of Central Florida’s (UCF) sports action dataset and, for activity
recognition on a UCF YouTube action dataset and an IM-DailyRGBEvents dataset, accuracy is 89.09%
and 88.26% respectively.

Keywords: body parts detection; Markov model; physical activity recognition; spatiotemporal features

1. Introduction

Assistive technologies for human locomotion tracking provide independent mobility, social
participation and health benefits [1]. These benefits have emerged as a major research gain in worldly
application domains such as violence detection, home automation systems, customer surveillance,
virtual reality and physical fitness [2,3]. However, the tracking and recognition of people’s physical
activities remain problematic due to the human body’s articulated nature, degrees of freedom between
joints, partial occlusion and varying scales normalization [4]. Several modules such as rigid body
configuration, body-part landmarks, homograph estimation, and optimal feature descriptors are
introduced to minimize these difficulties.

Although, a lot of efforts have been put in by researchers in physical activity recognition (PAR),
some challenges are still unresolved as described below:

1. Shape and height variations: human size and shape appear smaller when individuals are further
away from the camera; when they are closer they appear larger. In addition, human bodies vary
a lot in shape and size.
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2. Feature selection approach: there is a huge number of feature selection approaches. To choose an
appropriate approach for feature selection for the PAR is a critical issue.

3. Occlusion: a human body or any part of a particular body may be hidden due to occlusion.
4. Hardware problems: many approaches for PAR use expensive hardware in their research making

it difficult to incorporate these systems in real life.
5. Illumination variations: the same image can look entirely different in different lighting situations.

In recent years, the interest of researchers in PAR has increased due to its numerous applications.
Major application areas of PAR include video surveillance, virtual reality gaming, human–object
interaction, e-learning, healthcare systems and human behavior analysis. In security surveillance
systems, if a person walks normally under video surveillance and suddenly behaves suspiciously, there
is a chance that abnormal events such as threats, fighting, domestic violence or agitation have occurred.
Such abnormal activities are automatically detected by PAR to initiate the securing of the areas under
surveillance. Similarly, health-exercise systems use automatic action-recognition technologies that can
guide patients to exercise properly and assist them in their daily routines. In addition, PAR can make
sports and games more attractive and entertaining due to the prediction of future players’ actions and
the expected scores of each team.

In this paper, we present a novel technique to estimate pose and to identify the specific physical
activities based on a 12-point skeletal model and multidimensional features. These features are further
reduced, optimized and classified by quadratic discriminant analysis (QDA), along with a maximum
entropy Markov model (MEMM). The proposed method was tested on University of Central Florida’s
UCF sports actions, UCF YouTube actions and IM-DailyRGBEvent datasets (a collection of video
sequences containing different common human actions) for body-part detection along with PAR.
The test results achieved remarkable performance scores.

The rest of the paper is organized as follows. Section 2 consists of related work in the field of
PAR. In Section 3, the framework is outlined, including system design, preprocessing stage, feature
generation, and activity training/recognition. In Section 4, experimental results for body part detection
and PAR are described. Finally, Section 5 describes the conclusion of our proposed work and
future directions.

2. Related Work

Two types of sensors are commonly used in PAR. The first type is inertial sensors. Some gadgets
(e.g., a smart watch) are worn by users at different locations on their body. Here, various accelerometers
are embedded in the smart watch to measure acceleration forces. As activities are carried out, different
acceleration forces are stored as data, preprocessing steps are performed and all activities are categorized.
The second type of PAR sensors is vision sensors that recognize activities based on captured images.
For PAR-based vision sensors, image sequences or video are captured by still/movable cameras and fed
into the detector engine. Research has been done in PAR using both types of sensors and it is discussed
in the following subsections.

2.1. Body Worn Sensors for PAR Systems

In body worn inertial sensor based work, Trung et al. [5] recognized the similar types of actions that
are usually difficult to classify. They used inter-class relationships to improve the overall performance of
the method. In [6], Trung et al., used inertial sensors to recognize actions and, instead of using interclass
relationships, they used a scale space method to segment the action signals properly. They also tackled
the problem of inconsistency in sensor orientation by adjusting the tilt of the sensors. In both [5]
and [6], despite using different methodologies, accuracy was low, so in [7], Hawang et al. suggested
a new method for physical activity recognition by fusing an inertial sensor with a vision sensor to
overcome the problem of unreliability of the inertial sensors. They claimed that merging these two
types of sensors could help overcome deficiencies in both types of systems. In [8], Irvin and Angelica,
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by contrast with [7], preferred to attach more inertial sensors to the user’s body for PAR over the
fusion of vision and inertial sensors. They estimated the angle of lower and upper limbs to extract
features related to movement of the limbs. Dawar et al. [9] supported the fusion of sensors as in [7].
Additionally, they used convolutional neural networks to detect the data that was captured by vision
sensors as well as another network “short term memory” with accelerometer data.

2.2. Vision Sensors for PAR Systems

In vision sensors, Fang et al. [10] developed a classical statistical sampling scheme along with
deep learning representation of individual silhouettes to identify complex human actions. In [11],
Silambarasi et al. developed a 3D spatio-temporal plane which locates human movements from
different views via motion history tracing. They extracted histograms of oriented gradients and
directional gradients and magnitudes to recognize physical activities. In [12], Shehzed et al. presented
a new multiperson tracking system that included body-part labeling, Kalman filter and Gaussian
mapping for crowd counting and action detection. In [13], Han et al. proposed a global spatial attention
(GSA) model that explored different skeletal joints and adopted an accumulative learning curve to
distinguish and recognize various action types. However, these articles [10–13] still have major issues
such as uncontrolled lighting, dynamic postures, rotational views and motion ambiguities, which result
in low performance. Therefore, to overcome these limitations, we developed a novel methodology
for PAR.

3. Proposed System Methodology

We utilize video sensors to capture raw data during preprocessing; human silhouettes are extracted
using two significant models including saliency based segmentation and skin tone detection; and
then, these silhouettes are used to extract multilevel features including displacement parameter values.
Finally, features are quantified using quadratic discriminant analysis (QDA) to get the best matching
unit and to find maximum entropy of each activity class via a Markov model. Figure 1, depicts the
proposed framework of our PAR system.
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Figure 1. Overview of the proposed system architecture.

3.1. Preprocessing Stage

During vision-based image preprocessing, we applied two significant methods to extract reasonable
human silhouettes. First, we extracted the silhouette using a salient region detection technique and
then a separate silhouette was extracted using a skin tone segmentation technique. After the extraction
of these two silhouettes, results were merged to get robust and accurate silhouettes from the given
image. Saliency based segmentation [14] was used to distinguish an object (i.e., silhouette) by saliency
values which were calculated from its surroundings. Saliency SR for pixel (i, j) was computed as;

SR(x, y) =
∑

(p,q)∈N
d[R(x, y), Q(p, q)] (1)
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N is defined as an area near the saliency pixel at location (x, y) and d is defined as the position
difference between pixel vectors R and Q. After determining the saliency values for all the given
regions of the image, a standard threshold saliency value was used to differentiate foreground from
background. Figure 2a shows the results of the saliency method.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 19 
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Figure 2. Silhouette extraction methods. (a) Saliency base segmentation, (b) skin tone detection and
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The silhouette that was extracted with the skin tone approach [15] was used to improve the results
of the saliency value method. In the skin tone approach, certain color ranges having specified decision
borders were perceived. On the other hand, RGB and hue, saturation, value (HSV) threshold
values were used to separate the skin region from the nonskin region. Equation (2) represents the RGB
threshold, while Equation (3) was used to represent the HSV threshold for the skin tone segmentation.

r_r = [0.36, 0.46], g_r =[0.28, 0.35] (2)

Hr = [0, 50], Sr = [0.20, 0.68] and Vr = [0.35, 1.0] (3)

Here, r_r and g_r represent the range of red and green channels of RGB, respectively, whereas Hr,
Sr and Vr represent the ranges of the HSV color model. After distinguishing the skin regions from
nonskin regions, skin regions were elaborated with the help of the geometrical characteristics of the
human body. In order to grow these regions, it was assumed that the skin was often visible only on the
face, arms and lower legs. If two regions were detected vertically with the skin tone segmentation
method, it was most likely that one of these regions was the face and the other was the lower legs.
In that case, the system connected these regions. Thus, if further skin regions were found on the
left/right side of the linked region, they may have been either hands or arms (See Figure 2b).

After extracting the silhouettes from each method, both methods were merged to get a more
accurate silhouette. To combine both extraction methods, Algorithm 1 was formulated as:

Algorithm 1: Extraction of human silhouette
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3.2. Pose Estimation: Body Parts Detection

During pose estimation, the initial pose was considered as a T-shape with the arms extended
straight out from the neck for human body configuration. Initially, five parts of the body were detected
as basic parts [16]: the hands, the head, and the feet. An inflection-based method was incorporated
in the system; it used the 2D kappa mechanism which was closely associated with object silhouette
refining [17]. The Kappa function is defined as;

k(γ) =
.
x(γ)

..
y(γ) −

.
y(γ)

..
x(γ)( .

x(γ)2 +
.
y(γ)2

)3/2
(4)

After the silhouette was well refined with the Kappa function, the gap between the highest
pixel of the silhouette and the lowest pixel of the silhouette was measured. The head diameter was
standardized as 1/4.5th times the height to estimate the individual’s height and width. In addition,
taking into consideration pixelwise digging, the head diameter was calculated by measuring the
altitude of the silhouette. To detect the head position, the following formula was used;

P f
H ← P f−1

H + ∆P f−1
H (5)

where, P f
H is head position at any given frame f . The position of the limb was needed to estimate the

locations of the hips and the feet (See Figure 3). The following equation was used to determine the
limb position;

P f
i = P f

i−1 +
(
r f−1

i−1 . . . ..r
f−1
0

)
.
(
P f−1

i − P f−1
i−1

)
(6)

where, P f
i is the limb position in frame i. The position of the hands and feet were determined via lower

and upper limb positions and the geometrical feature of the silhouette [18].
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The torso point was at the center of the upper head point and between the feet [19]. The torso
position was adjusted with the help of the following equation;

P f
T ← P f−1

T + ∆P f−1
T (7)

Equation (8) was used to identify the location of the knees. It was usually at the center point
between the feet and the hip joints.

P f
K =

(
P f

F − P f
Hip

)
/2 (8)

Thus we explored twelve body parts, being five basic body parts and seven body sub parts. As
these images were in sequence we could track these parts and get optimal positions for each body part.
Figure 4 gives a few examples of the detection of the 12 body parts.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 19 
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different poses.

3.3. Multidimensinal Features Generation

Once the twelve body parts were detected from a human posture, we applied multilevel
features. This included six dimensional torso features, eight dimensional first-degree features
and eight dimensional second degree features. Algorithm 2 explains the overall definition of the
multidimensional features.

3.4. Features Discrimination

QDA [20] was used to evaluate which feature values can distinguish between all activity classes
in labeled datasets. Each class was dispersed normally [21], and therefore a quantification function for
quadratic discriminant analysis was applied as

D2
i (x) =

(
x− x j

)′
S−1

j

(
x− x j

)
(9)
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where, S j is covariance matrix and j is 1, 2, · · · k. To distinguish between features, we examined if D2
i (x)

is the smallest for any class x. Figure 5, shows a 3D plot having clear discrimination of 11 different
classes of the UCF YouTube action dataset.

Algorithm 2: Feature Generation
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3.5. Recognition Engine: MEMM

For activity classification, conditional probability of the observation sequence was used to estimate
the state sequence [22] via MEMM. According to the MEMM model [23], the activity classes were
declared as the state P (Si

∣∣∣Si−1, Oi) with entropy adjustments, formulated as:

P(S1, . . . , Sn|O1, . . . , On) = e
∑x

k=1 δkβk (10)

where, δk is the feature value and βk is the adjustable weight K for the given observation in the sequence.
The conditional entropy of a distribution P (S

∣∣∣O) is estimated by maximum entropy theory. It was
inferred by the log-linear model as:

P(S|O) =
1

Z (O, S′)
exp

(∑
m
λm fm(O, S)

)
(11)

where Z (O, S′) is a normalized factor and λm is the multiplier parameter with multi-level features.
Figure 7, shows how probability is estimated during MEMM classification over the different activities
of walking, swinging and T-jumping in the YouTube action dataset.
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4. Experimental Results

In this section, firstly, we explain three different benchmark-challenging datasets. Four types of
experimental results are represented after the explanation of three datasets. In the first experiment, we
explored body part detection accuracies with respect to ground truth. In the second experiment, action,
recognition accuracies are represented. In the third experiment, we compared the proposed technique
with well-known machine learning algorithms. Finally, in the four experiment, we compared body
part detection accuracies as well as action recognition accuracies with other statistical well-known
state-of-the-art methods.

4.1. Datasets Description

In the UCF sports actions dataset [24], a set of action classes was gathered from different games
usually shown on TV stations like the BBC and the ESPN. The actions included diving, golf swing, kicking,
lifting, riding horse, running, skate boarding, swing-bench, swing-side and walking of 720 × 480 resolution.
The dataset is available as videos having more than a hundred sequences. Figure 8 shows some
samples of the UCF sports actions dataset.
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In the UCF YouTube action [25] dataset, there were 11 different classes of action such as swing,
diving, T-jumping, walking, basketball, volleyball, soccer juggling, G-swing, horse-riding, biking, and T-swing.
The clips were combined into 25 groups per category, containing a minimum of four actions per clip.
Videos of the same category shared common characteristics such as the same performer, common
context and specific point of view. In Figure 9, there are some samples from the UCF YouTube
action dataset.
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In our self-annotated IM-DailyRGBEvents dataset [26], there were 15 classes of actions performed
by 15 subjects (i.e., 13 males, 2 females). There were more than seventy video sequences for each action.
Figure 10, shows some images from the IM-DailyRGBEvents dataset.Symmetry 2020, 12, x FOR PEER REVIEW 13 of 19 
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4.2. Experimentation I: Body Parts Detection Accuracies

To calculate the effectiveness and accuracy of body part detection, the distance from the ground
truth (GT) was calculated with the help of the following equation.

D =

√∑K

k=1

(
Ik
Sk
−

Jk
Sk

)2

(12)

Here, J is the GT and I is the location of the detected body part. The threshold of 15 is set to identify
accuracy between the detected data and the GT data. With the help of the following equation (13), the
percentage of the detected parts that lies within the threshold range of labeled dataset was detected.

Detection Accuracy =
100

k

[∑K

k=1

{
1 i f D ≤ 15
0 i f D > 15

]
(13)

In Table 1, column 2 is the distance from the ground truth and column 3 shows body part detection
accuracy over the UCF sports action dataset.

Table 1. Accuracy of body parts detection.

Body Parts Distance from Ground Truth Detection Accuracy (%)

Upper head 11.3 98
Left Shoulder 9.9 95

Right Shoulder 13.6 90
Left hand 13.2 93

Right Hand 10.3 90
Left Hip 8.8 83

Right Hip 11.7 87
Left Knee 14.3 85

Right Knee 10.3 85
Left foot 9.8 97

Right foot 10.9 96
Torso 11.0 88

Mean Detection Accuracy rate = 90.91%
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Observations: In Table 1, it can be observed that the head and feet of the proposed system were
more properly identifiable because the head was often at the top of the silhouette and the feet were at
the bottom of the silhouette. These parts of the body were easier to detect than the other parts like
the hips and knees which are in more complex relationships with the body parts, especially when
in motion.

4.3. Experimentation II: Activity Recognition Accuracies

For calculating action recognition accuracies, the proposed system was examined by the
leave-one-out (LOO) cross-validation method for training and testing data. Table 2 presents the
confusion matrix of PAR over the UCF YouTube action dataset and Table 3 represents recognition
accuracies of the IM-DailyRGBEvents dataset.

Table 2. Confusion matrix of proposed method for UCF YouTube action dataset.

Activities SW DV TJ WK BB VB SJ GS HR BK TS

SW 96.20 2.00 0.30 0 0.50 0 0 0 0 0 1.0
DV 0 94.70 0.33 0.58 0.10 0.55 0.46 1.98 0.32 0.12 0.86
TJ 0.10 1.02 89.09 3.15 0.37 1.10 0.70 0.26 1.15 1.99 1.07

WK 0.20 1.92 3.07 83.40 0.91 0 2.36 0.81 0.95 0.18 6.20
BB 5.50 1.60 2.21 2.49 86.80 0 0 1.40 0 0 0
VB 0 1.41 0.81 4.71 2.74 90.20 0.05 0 0.06 0 0.02
SJ 0.50 1.02 1.82 6.43 0 0.09 88.20 0.74 0.90 0 0.30
GS 0 1.65 0.16 0.46 3.90 0 0.80 85.80 0 7.23 0
HR 0 0.17 2.44 2.40 1.09 0.03 0 4.53 87.0 2.34 0
BK 0 0.57 0.45 0.34 0 0 2.0 5.21 0.71 88.14 2.58
TS 0.50 0.51 0.31 0.54 0.58 0.03 0.43 0 6.61 0 90.49

Mean Recognition Accuracy = 89.09%

Swing = SW; diving = DV; t-jumping = TJ; walking = WK; basketball = BB; volleyball = VB; soccer juggling = SJ;
g-swing = GS; horse-riding = HR; biking = BK and t-swing = TS.

Table 3. Confusion matrix of the proposed method for the IM-DailyRGBEvents dataset.

Activities BX CP TO TH RA PC CN KG ET SD BD RW BW EX SU

BX 87.2 0 0 3.0 0.05 0.13 1.29 2.0 0 2.93 0 0 0 3.0 0.40
CP 0 95.4 0 0.2 0 0 0 0 4.0 0 0 0 0 0 0.4
TO 0 2.31 91.0 0 1.0 0 0.38 2.31 0 2.0 0 0 1.0 0 0
TH 0 0 0 91.3 0 0 0 0 1.0 5.7 0 0.38 0 1.62 0
RA 0 0 2.0 11.0 85.8 0 0 0 0 0 1.20 0 0 0 0
PC 0 10.0 0 0 0.2 89.0 0.8 0 0 0 0 0 0 0 0
CN 0 0 0 0 0 8.0 88.9 0 0 0 0 0.02 1.1 1.98 0
KG 0 0 2.0 6.5 0 0 0.5 86.3 0 0 0 0 3.9 0.80 0
ET 0 0 0 0 0 2.0 0 6.2 88.8 3.0 0 0 0 0 0
SD 0 3.0 0 0 5.85 0.2 0 0 0 90.8 0 0 0 0 0.15
BD 2.0 2.09 0 2.0 0 0.31 0 0 0 0 93.6 0 0 0 0
RW 1.2 0 0 0 3.10 10.0 0 0.7 0 0.4 0 84.6 0 0 0
BW 0 0 3.0 0 0 0 0 0 0 0 1.4 18.0 77.0 0 0.6
EX 1.6 0 0 3.0 0 0.36 5.0 0.77 0.2 0.17 0 0 0 88.9 0
SU 0 0.20 0 0 1..0 0 3.13 3.72 0 0 0 0 0 6.7 85.25

Mean Recognition Accuracy = 88.26%

Boxing = BX; clapping = CP; take an object = TO; throwing = TH; reading an article = RA; phone conversation = PC;
cleaning = CN; kicking = KG; eating = ET; sitting down = SD; bending = BD; right hand waving = RW; both hands
waving = BW; exercise = EX and standing up = SU.

Observations: In Table 2, it is observed that a few activities such as walking and G-swing affected
accuracy due to similarities in patterns with other activities. However, the overall confusion matrix
shows significant results of 89.09%. In Table 3, clapping activity shows higher recognition accuracy as
it is an easily differentiable activity. On the other hand, recognition accuracy for both hand waving
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and Right hand waving was relatively low due to similar motions in these activities. The mean of
recognition accuracy scores for the IM-DailyRGBEvents dataset was 88.26%.

4.4. Experimentation III: Comparison of the Proposed System with Well-Known Machine Learning Algorithms

In the third experiment, the results of our proposed system were compared with the results of more
commonly used machine learning algorithms. The first algorithm which was chosen for comparison is
support vector machine (SVM) and the second algorithm was decision tree. For body parts detection
and activity recognition, convolutional neural network (CNN) has gained much popularity due to
its effectiveness, so we also selected this algorithm for comparison of the results. In Figure 11, body
parts detection results were compared with common machine learning techniques using the UCF
sports action dataset. The proposed method’s accuracy was 90.91% which was better than CNN’s 83%,
decision tree’s 80% and SVM’s 78%. Figures 12 and 13 illustrate the activities recognition results for
the UCF YouTube action dataset and the IM-DailyRGBEvents dataset, respectively.
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For the UCF YouTube action dataset, the proposed method’s accuracy was 89.09% which was
better than CNN’s 83%, decision tree’s 79% and SVM’s 80%. For the IM-DailyRGBEvents dataset,
the proposed method’s accuracy was 88.26% which is better than CNN’s 84%, decision tree’s 81% and
SVM’s 77%.

Observations: In Figure 11, it can be observed that our method performs better than the other
techniques. The performance of CNN is slightly below our method but in some cases detection
accuracy of SVM is better than decision tree and CNN. Similarly, in the case of activity recognition
as shown in Figures 12 and 13, our method has the best result. However, in a few cases i.e., both
hands waving in the IM-DailyRGBEvents dataset, accuracy rates of decision tree and of the CNN were
slightly better than the accuracy rate of our proposed technique. Similarly, for reading an article in the
IM-DailyRGBEvents dataset, the accuracy rate of our proposed system was a little below the accuracy
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rate of CNN. In conclusion, the overall accuracies of our proposed system for body part detection as
well as for action recognition were satisfactory.
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4.5. Experimentation IV: Comparison of our Proposed System with State-of-the-Art Techniques

Table 4 compares the body parts detection accuracy of the proposed multidimensional features
method with other state-of-the-art methods using the UCF sports action dataset. It was observed that
the proposed method achieved a better detection accuracy rate of 90.91% compared to the others.

Table 4. Comparison of the proposed body parts detection accuracies method with other
state-of-the-art methods.

Methods UCF Sports Actions Dataset (%)

Physical Sports Movements [27] 86.67
HOIRM feature fusion [28] 88.25

Hybrid deep learning model [29] 89.01

Proposed method 90.91

A comparison of overall results shows that the proposed method achieved a significant
improvement with recognition results as high as 89.09% and 88.26% over other methods as shown in
Table 5.

Table 5. Result comparison of the state-of-the-art methods with proposed physical activity recognition
(PAR) method.

Methods UCF YouTube Actions (%) IM-DailyRGBEvents (%)

HOJ3D [30] 75.5 -
3D-TCCHOGAC [31] 80.27 -
CSF + TSI-MKL [32] 87.81 -

Proposed method 89.09 88.26

5. Conclusions

We proposed a novel technique that combines multidimensional features along with MEMM to
detect daily life-log activities for smart indoor/outdoor environments. These features were extracted
by robust body part models having 12 tracked key points with an overall accuracy of 90.91%. Finally,
the QDA and Markov models were used for optimal discrimination and efficient classification of the
extracted features. Experimental results revealed impressive performance (89.09% accuracy for the
YouTube action dataset and 88.26% accuracy for the IM-DailyRGBEvents dataset) for the proposed
technique and demonstrated that MEMM were used for successful recognition modelling. In future
work, we will apply our work to local hospital, fitness gymnasium and kindergarten environments to
increase the experimental data sets and make the proposed model more universally applicable.
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