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ABSTRACT Evaluating trust and distrust between users in online social networks is an important research
problem. To address this problem, we provide a method for estimating continuous trust /distrust value
between unconnected users. Our method is based on co-citation and transpose trust propagation. We deter-
mine on average how differently two users trust or are trusted by other users, and how differently a user
trusts another user from how it is trusted by that user. Using these differences, we estimate four partial trust
estimates and compute the final trust value from trustor to trustee as the weighted average of these partial
estimates. We propose a basic framework that maximizes accuracy, robustness and coverage and show how
we can further improve the accuracy at a lower coverage. We perform experiments on real world trust related
networks that show that our proposed method outperforms recent state of the art trust computation methods
in terms of accuracy and robustness on commonly used datasets.

INDEX TERMS Trust computation, distrust, co-citation, reciprocity, weighted signed networks.

I. INTRODUCTION
In online social networks (OSNs) trust plays an important
role in user activities. It allows users to distinguish between
reliable and malicious users and content produced by them.
Knowing the level of trust or distrust between users is also
valuable for OSN service providers, as it can be used for tasks
such as suggesting friends, detecting malicious or spam users
and community detection. Several e-commerce platforms
like Epinions, eBay and Amazon too have a social network
component where trust helps users make decisions regarding
reliability of reviews and product purchases [1]. Trust has
also been used to improve performance of recommender sys-
tems [2] and collaborative filtering algorithms [3]. For users
that are directly connected by friendship or like/dislike links
trust can be estimated by analyzing their past interactions,
profile similarity, or by obtaining explicit trust ratings given
by the users. However, since most users do not have a direct
link or previous interaction with each other, estimating trust
between these unconnected users is an important research
problem.
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To evaluate trust between unconnected users, most earlier
algorithms use transitive trust propagation, i.e. if user A trusts
user B and user B trusts user C then A should have some
degree of trust on C. By using chain of trust links or paths
in the trust graph, the level of trust is computed. These algo-
rithms need to extract all, or a very large number of paths and
are therefore not efficient on large networks. They can also
suffer from lack of robustness i.e. the accuracy may decrease
if some parts of network are not visible since missing edges
makes it harder to find paths. Moreover, since distrust is not
transitive, it’s not straightforward to use it, hence most trust
computation algorithms choose to ignore distrust.

Recently with availability of more datasets with both trust
and distrust information, a few algorithms [15]–[17] have
been developed that estimate both trust and distrust as a
continuous value. However, some of these algorithms are not
efficient to be applied on very large networks or are not based
on trust propagation. Their accuracy and robustness can be
also further improved. For this purpose, we use co-citation
and transpose trust propagation and develop a method for
estimating continuous trust/distrust value that is more accu-
rate and robust then other recent existing algorithms and
is also efficient to be applied on large networks. Further-
more, our method demonstrates the use of co-citation and
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transpose trust propagation operations (originally proposed
for binary trust) for continuous trust/distrust estimation. To
estimate trust/distrust value we combine information from
neighboring users of trustor (evaluating user), trustee (user
being evaluated) and the trust from the trustee to trustor (if
available). More specifically, we use information from four
sources:

1. Trustee’s in-neighbors: We find how differently
trustee’s in-neighbors and the trustor trust some of the other
users and use this difference along with trustee’s in-neighbors
trust of trustee to find a partial trust estimate based on
trustee’s in-neighbors.

2.Trustor’s out-neighbors: We find how the trustor’s out-
neighbors and the trustee differ in being trusted by some
other users. This difference and the trustor’s trust in its out-
neighbors is used to estimate a partial trust estimate based on
trustor’s out-neighbors.

3. Trustor’s reciprocal neighbors: We find how differ-
ently the trustor trusts some of its reciprocal neighbors from
the trust it receives from them.We then use this difference and
the trust from trustee to trustor to get another partial estimate.

4. Trustee’s reciprocal neighbors: We find how much
trustee’s received trust from some of the reciprocal neighbors
differ from the trust it assigns to them. We use this difference
and trust from trustee to trustor to find a partial trust estimate.

The final trust is the aggregation of the four partial trust
estimates. To verify our method, we perform a series of
experiments on multiple real-world trust networks datasets
which show that our framework performs better in terms of
accuracy and robustness then other recent trust computation
methods.

The rest of the paper is organized as follows. Section 2
reviews some related works regarding trust computation in
OSNs. Section 3 defines the problem and notations used.
In Section 4 we describe the details of our trust estimation
framework and algorithms. The experimental results are pre-
sented in Section 5. Section 6 concludes the paper.

II. RELATED WORKS
Considering the importance of trust in online social networks
a large amount of research has been done in evaluating trust
between users. References [4], [5] survey different trust eval-
uation methods for online social networks. Trust computation
methods can be categorized based on whether they include
distrust or not. Some of the early works that do not include
distrust include Tidal trust [6], Mole Trust [7], Eigen Trust
[8]. Tidal trust propagates trust recursively from trustee to
trustor along strongest shortest path. Mole trust first removes
cycles from graph and then calculates trust of nodes at dis-
tance 1,2 and so on up to a maximum depth. Eigen Trust
works in a similar way to page rank algorithm and assigns
a global trust value to each node. In SW trust [9] authors use
adjustable breath first search and small world characteristics
of social networks to extract a small trusted graph and make
existing trust evaluation methods more efficient. Kim and
Song [10] evaluate minmax and weighted mean strategies

using reinforcement learning for predicting trust. In [11] we
use land mark-based method to make minmax trust compu-
tation strategies efficient for large graphs. Jiang et al. [12]
convert the trust computation problem into a generalized
network flow problem and present a modified flow-based
algorithm.

Methods that include distrust include [13] where
Mishra et al. propose global matrices bias and deserve.
Bias of a trustor represents truthfulness or propensity to
trust/distrust and deserve or prestige represents how much a
trustee would receive trust/distrust form an unbiased trustor.
Yao et al. [14] propose a trust inference model that integrates
transitivity, trust bias and multi aspect property of trust for
inferring binary and continuous trust score and trust/distrust
signs. More recently Kumar et al. [15] present Fairness and
Goodness global matrices in weighted signed networks that
can be used to compute local trust by multiplying Fairness
of trustor and Goodness of trustee. In [16] authors present
semiring based trust aggregation method that handles both
trust and distrust to infer trust for trust-based recommender
systems. Akilal et al. [17] present a fast and robust trust
computation method based on controversy, eclecticism, and
reciprocity that handles both trust and distrust. They use
trusting and being trusted pattern of trustor and trustee to
compute trust from trustor to trustee. Our method improves
the accuracy and robustness of these recent methods and is
also based on trust propagation operations i.e. co-citation and
transpose trust propagation.

III. PROBLEM DEFINITION AND NOTATIONS
We represent the trust network as a weighted directed graph
G (V, E, W). V is the set of nodes representing users in
the trust network. E is the set of directed edges representing
trust relationships between users. W is the weight function
that assigns a weight to each edge denoting the level of
trust. The edge weights for networks having both trust and
distrust links are from the interval [-1,1] with positive values
representing trust and negative values representing distrust.
For trust, larger values (closer to 1) represent stronger trust.
For distrust, smaller values (closer to -1) represent stronger
distrust. Networks having only trust links have edge weights
from the interval [0,1] where larger values represent stronger
trust. Throughout the paper when we refer to trust estimation
it refers to trust/distrust i.e. when the estimated value is pos-
itive it is trust, when it is negative it is distrust. Given a trust
network and two users having no direct edge, a trustor user
S and trustee user T, the trust computation problem is to find
the most accurate level of trust from S to T. In graph theory
terms we have to predict the weight and sign of edge from
trustor node to trustee node i.e. w(S,T). This is continuous
trust prediction problem and is different from binary trust
prediction where objective is to determine if S should trust
T or not.

To compute trust between unconnected users, trust com-
putation methods use trust propagation operations. These
operations are transitive/direct propagation, transpose trust,
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FIGURE 1. Trust propagation operations: (a) Transpose (b) Direct or
Transitive (c) Co-citation (d) Coupling [18]. Solid arrows indicate existing
trust relations while the dashed line indicate propagated trust.

TABLE 1. Summary of notations.

co-citation and trust coupling [18]. Figure 1 shows these
propagation operations.Mostmethods rely on transitive prop-
agation and very few methods are based other three prop-
agation operations. Our method is based on transpose and
co-citation trust propagation.

Table 1 describes some of the notations used in the paper.

IV. TRUST ESTIMATION FRAMEWORK
To compute the trust our basic idea is that for two users
A and B, we can find on how differently they trust, or are
trusted by other users. We can also find how differently
a user trusts its reciprocal neighbors from trust it receives
from them. This information about differences can be used
to estimate unknown trust values.

To estimate trust from trustor to trustee we use four sources
of information. From each source we compute a partial trust
estimate (PTE) and then use these PTEs to compute final
trust. Our trust estimation framework has two versions a basic
version which maximizes the coverage i.e. pairs of users for

which trust can be estimated. This version is robust to missing
edges and has maximum aggregate accuracy as shown in
the experimental results section. The second version is the
increased accuracy version that further improves accuracy at
a lower coverage by applying some restrictions.

A. BASIC FRAMEWORK
1) PTE1: TRUSTEE’S IN-NEIGHBORS
To compute the trust level from trustor to trustee, most of
the important information can come from in-neighbors of the
trustee as they have direct knowledge about trustworthiness
of trustee. But since trust is subjective i.e. different users may
have different level of trust in the same user, wewill not get an
accurate estimate if we directly use the trustee’s in-neighbors
trust ratings of trustor. However, if we knew how much each
in-neighbor of trustee and the trustor differ about trusting the
trustee, we could use that trustee’s in-neighbor’s trust in a
more accurate way. We can find an approximate estimate of
this difference by using trustee’s in-neighbors and trustor’s
trust ratings of some other common users.

Consider Figure 2. We show a section of network contain-
ing trustor S and trustee T and one in-neighbor of T i.e. B.
We show one in-neighbor only for clarity, generally a trustee
would have several in-neighbors. To use B’s trust of T in
our framework, we find difference between B and S about
trusting other users. For this we observe the trust of B and S
for common users whose trust rating from B is close to B’s
trust rating of T, i.e. the absolute difference between their
trust from B and B’s trust in T is less than or equal to a
constant ε. The reason of choosing these nodes is that they
can be considered similar to T from B’s perspective, and the
difference of trust in these similar nodes is more relevant to
estimating difference of trust about T. Let the set of common
nodes between S and B for estimating S’s trust of T using B
be denoted as C1(B)

C1(B) = out(S)∩ {I ∈ out(B) and |w(B, I)− w(B,T)| ≤ ε}

(1)

FIGURE 2. Finding difference between Trustor S and Trustee’s in-neighbor
B about trusting other users.
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We use ε as 0.5 for all our datasets. In Figure 2 the set
C1(B) includes D, E and F but not C since absolute difference
between B’s trust in C and B’s trust in T is greater than 0.5.
This scenario is similar to collaborating filtering problem,
however rather than using some correlation matric to find
similarity between S and B, we find the average difference
in S and B’s trust value for nodes in C1(B) which we denote
as D1(B).

D1(B) =


∑

I∈C1(B) w (S, I )− w (B, I )

|C1 (B)|
, |C1 (B)| > 0

0, |C1 (B)| = 0
(2)

D1(B) represents on average how much higher or lower than
B, user S trusts users that similar to T, and therefore can be
considered an approximate estimate of how much higher or
lower than B, S should trust T. We add D1(B) to B’s trust
rating of T to get the estimate of S’s trust for T that uses B.

E1 (B) = w (B,T)+ D1 (B) (3)

Some of the in-neighbors of the trustee will not have any sim-
ilar common user with the trustor i.e. for some in-neighbors x,
C1(x) is empty. We could ignore these in-neighbors and only
use those where |C1(x) | >0, however this will increase the
number of users x for which no in-neighbor with |C1(x)| >0
exists and in turn increase pairs of users for which trust
cannot be estimated. This effect will be stronger when more
edges are missing, so robustness will decrease. Therefore,
in our basic framework we include in-neighbors x where
|C1(x)| = 0, but since we don’t have information about
their difference with S about trusting other users, we let
D1(x) = 0.

In the Figure 2

D1(B)= ((0.5− 0.2)+(−0.1− 0.1)+(0.2− 0.1))/3=0.067

E1(B) = 0.2+ 0.067 = 0.267.

From the trust propagation perspective this estimate is can be
considered a form of co-citation trust propagation. As shown
in Figure 2, according to co-citation propagation if A trusts B
and C, and D trusts B, then Dmay also trust C because both A
and D have similar views on B. In our method for computing
E1(B), trustee’s in-neighbor B trusts D, E, F and T whereas
trustor S trusts D, E, F and so S may also trust T.

The partial trust estimate based on in-neighbors of trustee
is the average of trust values estimated from each in-neighbor.

PTE1 =


∑

I∈in(T ) E1 (I )

|in (T )|
, |in (T )| > 0

undefined, |in (T )| = 0
(4)

2) PTE2: TRUSTOR’S OUT-NEIGHBORS
Apart from the in-neighbors of trustee, another important
source of information are the direct out-neighbors of the
trustor node as they indicate the trusting behavior of trustor
i.e. how much trust/distrust trustor assigns to different types

FIGURE 3. Finding difference between Trustee T and Trustor’s
out-neighbor A about being trusted by other users.

of users. In order to use trustor’s trust for its out-neighbors to
estimate trustor’s trust for the trustee, we need to know how
differently the out-neighbors and the trustee are trusted by
the trustor. We estimate this difference by observing the trust
assigned to the out-neighbor of trustor and trustee by some
other common nodes.

Consider Figure 3. We show a section of network showing
one out-neighbor of trustor i.e. A. To use the trustor’s trust of
A in our framework we find the difference in trust received
by A and T from common users i.e. C, D, E and F. Like the
trustee’s in-neighbors case, we use only those users that show
similar trusting behavior as S, i.e. those who’s trust in A is
close to S’s trust in A. So, for estimating S’s trust in T using
trustor’s out-neighbor A, the set of common nodes is given as

C2(A)= in(T)∩ {i∈ in(A) and |w(i,A)−w(S,A)|≤ε} (5)

In Figure 3, C2(A) includes C, D and E but no F since
difference between F’s trust in A and S’s trust in A is greater
than 0.5.

To find the difference between A and T about being trusted
by other users for estimating S’s trust in T, we find the average
difference in trust rating of A and T by users in C2(A).

D2(A)=


∑

I∈C2(A) w (I,T)−w(I,A)

|C2 (A) |
, |C2 (A) | > 0

0, |C2 (A) | = 0
(6)

D2(A) estimates on average howmuch higher or lower, nodes
in C2(A) trust T than A. This can be considered as an approx-
imate estimate of how much higher or lower S should trust T
compared to A. The estimate based on trustors out-neighbor
A denoted by E2(A) is given as

E2 (A) = w (S,A)+ D2 (A) (7)

To keep our framework robust, we also include those out-
neighbors x of trustor for which C2(x) is empty. So, if dif-
ference cannot be obtained, we define D2(x) = 0.
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FIGURE 4. Finding how differently S and T trust their reciporcal neigbors
from being trusted by them.

In Figure 3

D2(A) = ((0.3− 0.2)+ (0.6− 0.4)+ (0.4− 0.1))/3 = 0.2

E2(A) = 0.2+ 0.067 = 0.4

This estimate E2(x) is also a form of co-citation trust prop-
agation since users in C2 (x) i.e. C, D, E each trust both A
and T whereas S only trusts A, so according to co-citation
propagation S may also trust T.

The partial trust estimate based on out-neighbors of trustor
is the average of trust values estimated using each out-
neighbor.

PTE2 =


∑

i∈out(T) E2 (i)

|out (T)|
, |out (T)| > 0

undefined, |out (T)| = 0
(8)

3) PTE3: TRUSTOR’S RECIPROCITY
Although trust is not symmetric i.e. if a user A trust user B,
it doesn’t mean B also trusts A or the level of trust is same in
both directions. However, trust is not random, and many trust
related networks exhibit a certain degree of reciprocity. Espe-
cially, e-commerce related trust networks have high degree
of reciprocity. According to transpose trust propagation if A
trust B then B may also trust A. We can use the reciprocity in
our framework to improve accuracy and robustness. We can
use reciprocity to predict trust from S to T only if there is a
reciprocal trust link from T to S.

Consider Figure 4. It shows a section of network containing
S, T, edge (T,S) and reciprocal neighbors of S and T. To esti-
mate S’s trust of T based on trustor’s reciprocity and T trust
rating of S, we need to know how differently S would trust
T from T’s trust of S. We find an approximate difference by
using S’s trust to and from other reciprocal neighbors. Here
also we only use those reciprocal neighbors of S who’s trust
rating of S is close to T’s trust rating of S since those have a
more similar trusting behavior to T. The set of such common
reciprocal neighbors is denoted by C3(S)

C3(S) ={I ∈ {in(S) ∩ out(S)} and |w(T,S)− w(I,S)| ≤ ε}

(9)

In Figure 4, C3(S) includes C, E, F and not D since |w(T,S) –
w(D,S)| >0.5.
The difference in trust that S assigns to its reciprocal

neighbors from the trust it receives from them is then
given as

D3(S) =


∑

I∈C3(S) w (S, I)− w(I,S)

|C3(S)|
, |C3(S)| > 0

0, |C3(S)| = 0
(10)

As in case of D1(x) andD2(x) if there are no similar reciprocal
neighbors, we assign D3(x) = 0 so that we can still use T’s
trust rating of S in our trust prediction framework. The partial
trust estimate using trustor’s reciprocity is

PTE3 =

{
w (T,S)+ D3(S), edge (t, s) exist
undefined, edge (t, s) not exists

(11)

In Figure 4

D3(S) = ((0.7− 0.5)+ (0.5− 0.4)+ (0.8− 0.8))/3 = 0.1

PTE3 = 0.8+ 0.1 = 0.9

4) PTE4: TRUSTEE’S RECIPROCITY
In a similar way to trustor’s reciprocity we can use trustee’s
reciprocity in our trust estimation framework if edge from
T to S exists. We use reciprocal neighbors of trustee that have
similar trust rating from T as T’s trust rating of S to find
the average difference in trust received by T from the trust
it assigns to them.

C4(T)={I ∈ {in(T) ∩ out(T)} and |w(T,S)−w(T, I)|≤ε}

(12)

In Figure 4, C4(T) includes H, I, J and not G. since |w(T,I) –
w(T,S)| > 0.5.

D4(T) =


∑

I∈C4(T) w (I,T)− w(T, I)

|C4(T)|
, |C4(T)| > 0

0, |C4(T)| = 0
(13)

If there are no similar reciprocal neighbors we assign
D4(T) = 0 so that we can still use the edge (T,S) in our
trust prediction framework. The partial trust estimation using
trustor’s reciprocity is

PTE4 =

{
w (T,S)+ D4(T), edge(t, s)exists
undefined, edge (t, s) not exists

(14)

In Figure 4

D4(T) = ((0.2− 0.5)+ (0.4− 0.4)+ (0.7− 0.6))/3

= −0.067

PTE4 = 0.8+ (−0.67) = 0.734
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5) FINAL TRUST
The final trust is the weighted average of the partial trust
estimates that have defined values. If all partial estimates are
undefined final trust assigned is 0. (or any other default value
like average trust rating etc.). For our datasets we keep the
weights of all defined partial estimates as 1. let wi be the
weight for partial trust estimate PTEi for i = 1,2,3,4

wi =

{
1, PTEi defined
0, PTEi undefined

(15)

Trust (S,T) =


∑

PTIi∗wi∑
wi

,
∑

wi > 0

0,
∑

wi = 0
(16)

where undefined ∗ 0 = 0

B. INCREASED ACCURACY
In the basic framework we maximize the accuracy while
ensuring trust is computable for maximum pairs of users i.e.
the coverage is also maximized. However, we can further
increase the accuracy of trust prediction albeit with a lower
coverage. We can apply conditions to restrict which of the
partial trust estimates are used or not used for final trust
computation.

As mentioned earlier in basic frame work we define
Di(x) = 0 when |Ci(x)| = 0 in Eq. (2),(6),(10),(13) to
maximize pairs for which trust can be computed. However,
now since we want to increase accuracy, we define Di(x) as
undefined if |Ci(x)| = 0 and therefore not use the information
associated with that neighbor node. (or reciprocal edge for
D3(x) and D4(x)).
For trustee’s in-neighbors and trustor’s out-neighbors we

only use the PTE if it is based on at least a minimum number
of estimates (users) and the variation among the estimates is
small.

For trustee’s in-neighbors case let indef(T) be the set of
in-neighbors x for which |C1(x)| > 0 and therefore D1(x)
is defined. We apply condition on |indef(S)| and standard
deviation of individual estimates E1(x).

µ1 =

∑
I∈indef(T) E1 (I)

|indef (T)|
(17)

std1 =

√∑
I∈indef(T) (E1 (I)− µ1)2

|indef (T)|
(18)

PTE1 would be defined as

PTE1 =

{
µ1, |indef (t) | ≥ tn and std1≤ ts
undefine, otherwise

(19)

Similarly, for trustor’s out-neighbors case, outdef(S) is the
set of out-neighbors x for which |C2(x)| > 0 and D2(x)
is defined. We apply condition on |outdef(S)| and standard
deviation of individual estimates E2(x)

µ2 =

∑
I∈outdef(T) E2 (I)

|outdef (T)|
(20)

std2 =

√∑
I∈outdef(T) (E2 (I)− µ2)2

|outdef (T)|
(21)

PTE2 =

{
µ2, |outdef (t) | ≥ tn and std2 ≤ ts
undef, otherwise

(22)

For the trustor reciprocal case we get the partial trust esti-
mate from the difference D3(S) and the reciprocal trust. The
difference D3(S) will be defined only if |C3(S)| > 0 and we
also apply a restriction on variation in individual differences.
Since D3(S) is the mean of individual differences

std3 =

√∑
I∈C3(S) ((w (S, I)− w (I,S))− D3(S))2

|C3(S)|
(23)

PTE3 =


w (T,S)+ D3(S), if |C3(S)|> 0, std3≤ ts,

(t, s) exists
undefined, otherwise

(24)

Similarly, for trustee’s reciprocal neighbors D4(T) will be
defined only if |C4(T)| >0 and we apply condition on varia-
tion of individual differences.

std4 =

√∑
I∈C4(T) ((w (I,T)− w (T, I) )−D4(T))2

|C4(T)|
(25)

PTE4 =


w (T,S)+ D4(T), if |C4(T)|> 0, std4 ≤ ts,

(t, s) exists
undefined, otherwise

(26)

The final trust will be computed in same way as in the basic
framework using Eq. (15) and (16).

C. ALGORITHM
In Alg.1 to 5 we show the pseudocode of our basic frame-
work. In Alg.5, PTE1, PTE2, PTE3, PTE4, w1, w2, w3 and
w4 are global variables initialized to 0. In line 3-6 of Alg.5,

Algorithm 1 ComputePTE1(G,S,T)
Input: G (V, E, W), trustor node S, trustee node T.
Output: PTE1, w1

1. cnt = temp = 0
2. for each node B in in(T)
3. d = c = 0
4. for each node I in out(B)
5. if I 6= T and I ∈ out(S)
6. if |w(B,I)-w(B,T)| ≤ 0.5
7. d = d+ (w(S,I)-w(B,I))
8. c = c+1
9. if c ≥ 1

10. d = d/c
11. temp = temp+ (w(,B,T)+d)
12. cnt = cnt+1
13. if cnt ≥ 1
14. PTE1 = temp/cnt
15. w1 = 1
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Algorithm 2 ComputePTE2(G,S,T)
Input: G (V, E, W), trustor node S, trustee node T.
Output: PTE2, w2

1. cnt = temp = 0
2. for each node A in out(S)
3. d = c = 0
4. for each node I in in(A)
5. if I 6= S and I ∈ in(T)
6. if |w(I,A)-w(S,A)| ≤ 0.5
7. d = d+ (w(I,T)-w(I,A))
8. c = c+1
9. if c ≥ 1

10. d = d/c
11. temp = temp + (w(S,A)+d)
12. cnt = cnt+1
13. if cnt ≥ 1
14. PTE2 = temp/cnt
15. w2 = 1

Algorithm 3 ComputePTE3(G,S,T)
Input: G (V, E, W), trustor node S, trustee node T.
Output: PTE3, w3

1. if (T,S) exists
2. d = c = 0
3. for each node I in out(S)
4. if (I,S) exists
5. if |w(T,S)-w(I,S)| ≤ 0.5
6. d = d+ (w(S,I)-w(I,S))
7. c = c+1
8. if c ≥ 1
9. d = d/c

10. PTE3 = w(T,S)+d
11. w3 = 1

Alg.1-4 are used to compute PTEs and weights. As it can
be seen in Alg.1-4 if a PTE is defined the weight will be
1 otherwise it retains its initial value of 0. As described in
in Eq. (16), in line 7,8 of Alg.5 if all weights are 0 final
trust will be 0 otherwise it is the average of defined PTEs.
We only show the pseudocode for basic framework case as
it its straightforward to include the restrictions for increased
accuracy case.

V. EXPERIMENTAL RESULTS
To verify the accuracy of our framework in predicting trust,
we performed a series of experiments on four real world trust
related datasets. We compare the performance of our frame-
work with other recent trust prediction methods. Our frame-
work out performs existing methods in terms of accuracy
and robustness to missing edges. In experiment 1 and 2 we
use our basic framework without any additional restrictions
to compare our method with existing methods whereas in

Algorithm 4 ComputePTE4(G,S,T)
Input: G (V, E, W), trustor node S, trustee node T.
Output: PTE4, w4

1. if (T,S) exists
2. d = c = 0
3. for each node I in in(T)
4. if (T,I) exists
5. if |w(T,S)-w(T,I)| ≤ 0.5
6. d = d+ (w(I,T)-w(T,I))
7. c = c+1
8. if c ≥ 1
9. d = d/c

10. PTE4 = w(T,S)+d
11. w4 = 1

Algorithm 5 ComputeTrust (G,S,T)
Input: G (V, E, W), trustor node S, trustee node T.
Output: Trust (S,T)

1. Global variables PTE1, PTE2, PTE3, PTE4, w1, w2, w3,
w4

2. Initialize: PTE1 = PTE2 = PTE1 = PTE1 = w1 =

w2 = w3 = w4 = sumw = 0
3. computePTE1(G,S,T)
4. computePTE2(G,S,T)
5. computePTE3(G,S,T)
6. computePTE4(G,S,T)
7. sumw = w1+w2+w3+w4
8. if sumw = 0
9. trust(S,T) = 0
10. else
11. trust(S,T) = (PTE∗1w1+PTE∗2w2+PTE∗3w3

+PTE∗4w4)/sumw

experiment 3 we demonstrate increased accuracy version of
our method.

A. DATASET DESCRIPTION
We used four real-world trust related network datasets that
have been used by various researchers to evaluate their
trust computation methods. The Bitcoin and Advogato net-
works have explicit trust values as edge weights whereas the
WikiRFA network has implicit trust values. Table 2 shows the
size of each dataset.

TABLE 2. Size of networks.
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1) BITCOIN OTC AND BITCOIN ALPHA
These datasets are obtained from two bitcoin exchanges Bit-
coin OTC and Bitcoin Alpha. These websites allow users to
rate others according to how much they trust them. The scale
is from+10 to−10.+10 indicates maximum trust while−10
is maximum distrust. The data is downloaded and scaled to
interval [-1,1] by [15] and available at [19].

2) ADVOGATO
Advogato is an online social network for open source soft-
ware developers. It allows members to rate the ability of other
members at four levels. Observer, Apprentice, Journeyer, and
Master. These ratings are taken as a level of trust in another
member’s ability. We map Observer, Apprentice, Journeyer,
and Master to 0.1,0.4,0.7 and 0.9 respectively. This dataset
has been widely used in evaluating trust related matrices
and algorithms. We use the snapshot of the network taken at
2014-07-07 [20].

3) WIKIPEDIA RFA
This is Wikipedia request for adminship dataset where an
edge (u,v) represents a vote of u for v to be become an
administrator. The weight is −1 for negative, 0 for neutral
and +1 for positive. The comments in the votes are analyzed
by performing sentiment analysis by [15] using VADER
sentiment engine. The difference of positive and negative
sentiment score is used as the weight which lies in interval
[−1,1]. The dataset has been used to evaluate fairness and
goodness [15] and TOW [17] and is available at [19].

B. EXISTING METHODS
We compare the performance of our method with following
existing methods

1) RECIPROCAL
This is the simplest method in which the estimated trust
from S to T is equal to weight of edge (T,S) if it exists or
0 otherwise.

2) MIN-MAX ALL
According to this method the strength of trust path is equal to
the weight of its minimum weight edge and strongest path is
path with maximum minimum weight edge. The in-neighbor
of T having strongest path from S is considered as the most
reliable in-neighbor and its direct trust to T is compared
with strength of strongest path. The minimum of the two is
the estimated trust value. In case of most reliable multiple
in-neighbors we use the maximum of estimated trust values
from those in-neighbors as the final trust value. This aggre-
gation strategy is used in [9]–[11].

3) MIN-MAX SHORTEST
This method is similar to Min-Max all however only the
shortest paths are considered when finding the strongest path
from S to in-neighbors of T.

4) FAIRNESS AND GOODNESS
Reference [15] introduce two global matrices fairness and
goodness of nodes in weighted signed networks. Fairness is
how fairly a user rates other user’s likeability or trust whereas
goodness indicates howmuch a user is liked/trusted by others.
Trust from S to T is product of fairness of S and goodness
of T.

5) TOW(TUG OF WAR)
Reference [17] Describe three characteristics of nodes i.e.
controversy, eclecticism, and reciprocity. Trust is treated as
three-way tug of war between controversy of trustor, eclecti-
cism of trustee and reciprocity of trustor.

C. EVALULATION MATRICES
To evaluate our proposed method, we use the following two
measures

1) ROOT MEAN SQUARE ERROR
It is the square root of average squared difference between the
actual trust values and the predicted or estimated trust values.
Smaller value indicates higher accuracy.

RMSE =

√∑n
i=1 (pred i − act i)

2

n

2) PEARSON CORRELATION COEFFICIENT
It measures correlation or trend between the predicted and the
actual trust value. Its value lies between -1 and 1 with value
closer to 1 indicating higher correlation.

PCC =

∑n
i=1 (acti − act i)(predi − predi)√∑n

i=1 (acti − act i)
√∑n

i=1 (predi − predi)

D. EXPERIMENT 1
The first experiment performed was leave one out. This is
experiment is commonly used to evaluate the accuracy of
continuous trust prediction and edge weight prediction algo-
rithms [15], [17]. The accuracy of predicted trust value for a
given pair of users is compared to the actual weight of edge in
the network. For each network we remove an edge, apply our
trust estimation framework and other existing methods on the
network without that edge, and compare the predicted trust
value with the actual trust value i.e. weight of the removed
edge. We repeat this process for every edge in the network to
find the average RMSE and PCC. Table 3 shows the calcu-
lated RMSE and PCC values. On all the datasets our method
has the least RMSE and highest PCC. On WikiRFA our
results show less improvement and are similar to TOW, this
could be because our method relies on trust propagation oper-
ations and is more suitable for trust networks with explicit
trust values, whereas in WikiRFA doesn’t have explicit trust
values but trust is inferred from comments using sentiment
analysis. In [15] the authors apply various methods like Tri-
adic Balance, Status Theory, Bias and Deserve, Eigen Trust
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FIGURE 5. RMSE and PCC for leave N out experiment for four networks. The horizontal axis shows percentage of random edges removed. Our proposed
method has least RMSE and highest PCC.

TABLE 3. RMSE,PCC on four datasets by existing and propsed methods.
Proposed method has the least RMSE and highest PCC.

etc. on Bitcoin and WikiRFA datasets to compare RMSE and
PCC with that of their proposed method i.e. Fairness and
Goodness. Our method gives better RMSE and PCC then
those methods too.

E. EXPERIMENT 2
There may be situations where parts of network may not be
visible due to privacy reasons or nodes and their trust ratings
are marked as unreliable or malicious and therefore cannot
be used. The trust prediction method should be robust in case
of missing edges. To evaluate and compare the robustness
of our framework with other methods we performed leave
N% out experiment. In this experiment for each dataset we
randomly remove 10%, 20%, up to 90% of edges and then use
the remaining network to predict the weight of the removed
edges. Since the edges removed are random, we repeat each
this process 20 times and find the average RMSE and PCC.

TABLE 4. RMSE,PCC,Coverage on four datasets by increased accuracy
version of propsed method with differnent thresold values tn and ts.

We apply this experiment on other methods and compare the
results with our method. Figure 5 shows the results. As it can
be seen the performance of our method degrades slowly and
is better than then other methods both in terms of RMSE and
PCC especially on the bitcoin datasets.

F. EXPERIMENT 3
In this experiment we evaluated increased accuracy version
of our framework. As mentioned earlier there is a tradeoff
between accuracy and coverage. We tried different values of
threshold tn and ts and measured the accuracy i.e. RMSE,
PCC and coverage. Table 4 shows the results with tn= 5 and
tn = 10 when ts = 0.2 for Bitcoin and WikiRFA datasets,
and 0.15 for Advogato dataset. SinceWikiRFA and Advogato
dataset have low reciprocity, in this experiment we don’t use
PTE3 and PTE4 for these datasets i.e. we set the weights w3
and w4 as 0. Comparing RMSE and PCC obtained in this
experiment to that of Table 3 for bitcoin datasets, our method
gives much better accuracy than any other method at good
coverage of more than 80%. For Advagato and WikiRFA
datasets, although the coverage gets low when we increase
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the accuracy it still shows that we can increase accuracy on
these datasets too by applying the restrictions.

VI. CONCLUSION
In this paper we propose a method for accurate and efficient
estimation of trust and distrust in online social networks.
Based on idea of co-citation and transpose trust propagation
we show that difference between two users in trusting or
being trusted by other users can be used for accurate trust
estimation. Our method gives better accuracy in terms of
RMSE and PCC then existing methods.
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