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ABSTRACT For Device-to-device (D2D) communication of Internet-of-Things (IoT) enabled 5G system,
there is a limit to allocating resources considering a complicated interference between different links in a
centralized manner. If D2D link is controlled by an enhanced node base station (eNB), and thus, remains a
burden on the eNB and it causes delayed latency. This paper proposes a fully autonomous power allocation
method for IoT-D2D communication underlaying cellular networks using deep learning. In the proposed
scheme, an IoT-D2D transmitter decides the transmit power independently from an eNB and other IoT-D2D
devices. In addition, the power set can be nearly optimized by deep learning with distributed manner to
achieve higher cell throughput. We present a distributed deep learning architecture in which the devices are
trained as a group but operate independently. The deep learning can attain near optimal cell throughput while
suppressing interference to eNB.

INDEX TERMS IoT-device-to-device communication, autonomous power allocation, deep learning, inter-
ference management.

I. INTRODUCTION
Device to device (D2D) communication is an emerging
technique to able to cope with the increasing mobile traffic
demands [1]. Specifically, Internet of Things (IoT) enabled
5G system is one of the most important system to use
D2D communication. Major scenarios of the IoT enabled
5G include remote control or broadcasting alert message by
distributed wireless sensors [2]–[4]. Conventionally, interfer-
ence management between two links is mainly focused on the
D2D communications underlaying cellular system [5]–[8].
However, more challenges are still remained in the IoT-
D2D enabled 5G system. First of all, the data and control
planes would be separated and there are additional small
base stations that support only the data plane in the 5G [9].
It means that the base station has to control devices which
are covered by multiple small cells. Consequently, the control
burden for the base station would be cumulated. In addition,
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many IoT devices will be deployed with cellular support.
If D2D communication supports offloading only in a data
plane, the performance of offloading is significantly reduced
because of the management overhead to control the D2D con-
nectivity in 5G. The second challenge is the latency. Ultra-low
latency is one of the primary requirements of 5G [7]. The time
required for resource allocation is one of the major causes of
increased latency. The time to request and receive scheduling
information from a central node is inevitable in the conven-
tional D2D communications. The conventional D2D commu-
nication also has the problem that channel information for all
D2D links is required for efficient resource allocation. If all
IoT-D2D devices report their channel information periodi-
cally, it might be significant burden to control channel and
a central node. In addition, the computational overhead in a
central node cannot be ignored.

Therefore, we propose an autonomous power allocation
scheme for IoT-D2D devices without involvement of a central
node. The proposed scheme operates similarly with a static
transmit power decision but it avoids interference between a
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cellular link and an IoT-D2D link. In addition, to exchange
channel information between D2D devices is not required in
the proposed scheme because it can operate independently on
each D2D device. The proposed autonomous power alloca-
tion scheme can maximize the total throughput of D2D links
while suppress the interference to cellular networks below a
predetermined level.

To achieve these goals, the proposed scheme uses deep
learning. Deep learning and deep reinforcement learning
have been exploited in various fields of wireless commu-
nications and networks [10]. Applying deep learning to
IoT-based communication is also activated with various
approaches [11]–[14]. These researches prove that the IoT
network is also one of the good candidates to apply deep
learning to optimize the performance. Note that the infer-
ence requires less computation compared to training and the
evolution of IoT hardware is very fast. In addition, on-chip
execution with a pre-trained model has proven to be fully
feasible [15]. Also, the authors in [16] suggest an extremely
efficient deep learning for mobile devices. Both technologies
allow deep learning to be used in IoT devices.

In the proposed scheme, all devices have pre-trained deep
learning model to maximize total throughput of D2D links by
distributed power allocation. The deep learning model per-
forms the role of sophisticated mapping between local infor-
mation and global objective function. The proposed scheme
based on deep learning has threemain features: the distributed
decision model which can maximize total cell throughput,
the reduced process which uses only location information
to eliminate exchanging channel information step, and the
customized objective function for deep learning while main-
taining interference constraints. The proposed scheme also
suggests the methodology to customize an objective func-
tion for deep learning. Thus, the proposed scheme can be
easily extended to consider other constraints such as energy
efficiency.

The main contributions of this paper are as follows:
1) We propose a power allocation scheme for IoT-D2D

communication using only location information.
We note that the channel model can be statistically
expressed as a function of distance. We propose a
learning architecture which implies the overall deriving
process including channel model in hidden layers.

2) We suggest an autonomous power decision scheme
with local information to meet a near-optima.
We design a distributed learning architecture for deep
learning. We use one deep learning model to train
with big data generated by simulation. After training,
every IoT-D2D device has the same trained model.
It enhances the feasibility of the implementation of the
proposed scheme.

3) We design a customized cost function to optimize an
objective function with several constraints in Lagrange
multiplier method. It is important that the objective
function and constraints have similar scales for deep
learning. We design constraints to similar form to the

objective function. Then, it is shown that it works well
with Lagrange multipliers which can be roughly found.

4) Consequently, we reduce the time for power decision
in D2D communication with two factors: shortening
the process by making it autonomously possible and
reducing computational complexity. In deep learning,
the training process requires a lot of computation and
longer processing time compared to the inference.

The rest of this paper is organized as follows. In section II,
we introduce related studies on IoT-D2D communication.
In section III, the proposed method is described in three
aspects: a distributed architecture, cost design for learning,
and a deep learning process. Section IV presents the results of
the actual implementation of the proposed scheme. We show
various expressions of the results, including the power distri-
bution of the cells. Finally, the significance of the proposed
method is summarized in the conclusion section.

II. RELATED WORKS
A. D2D COMMUNICATIONS
Many of the D2D communication researches consider IoT
enabled 5G system. There are some studies about that
D2D communication and small base station are coex-
isted [17]–[19]. The authors of [17] proposed a graphical
solution to obtain an optimal transmission power of reusing
nodes and proposed a potential game to solve the radio
resource allocation problem in a distributed manner. The
authors of [18] used the Stackelberg game to solve the
power allocation problem of D2D nodes. The cellular user
equipment is considered as the leader of the game and D2D
transmitter and small user equipment are considered as the
follower of the game. After the setting of leader and fol-
lowers, they analyze the strategies of leader and follower to
obtain the optimal performance. The authors of [20] consider
the game theory with incomplete information mechanism.
They proposed a static game for resource allocation in multi
cell scenario and a repeated game extended from the static
game with incomplete information. In addition to compar-
ing and improving SINR performance, there are studies to
improve other metrics like energy efficiency or fairness in
D2D enabled environment [21]–[23]. The authors of [21]
proposed two heuristic algorithms to allocate resources to cel-
lular and D2D links. In this study, fairness is considered sig-
nificantly among all the nodes. The cognitive radio situation
is considered in [22]. The traditional cellular communication
is considered as the primary link and D2D communication is
considered as a secondary link. To obtain optimal energy effi-
ciency of the secondary link by protecting minimum rate
constraint of primary, the authors proposed an algorithm
by considering two transmit covariance matrices of the sec-
ondary link. An energy harvesting enabled D2D network is
considered in [23]. The optimization problem in this paper
has a constraint related to energy harvesting and optimize the
rate of the D2D links. For distributed resource allocation in
D2D networks, the authors of [24] formulated the problem
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as a stochastic non-cooperative game with multi-agent
Q-learning. However, it requires several iterations to con-
verge for each resource allocation. In [25], a distributed
resource allocation scheme was proposed also by using game
theory, but it requires additional information exchange.

B. D2D COMMUNICATIONS FOR LOW LATENCY
The ultra-low latency is the key requirement of the proximity
communications [7], [9]. PC5 interface is considered to sup-
port proximity communications in the 3GPP standards [26].
Mode 4 of PC5 interface is considered as a mechanism to
allocate radio resource of D2D nodes in a distributed manner.
When a node wants to establish a D2D link without the
cellular network control, the node uses the PC5 mode 4
with configuration parameters. However, the scheme is not
currently specified in the standard, so it needs to be more
studied [27]. Therefore, there are many papers to find opti-
mal radio resource allocation mechanisms in various D2D
communication scenarios [28]–[32]. The binary search algo-
rithm is used to propose an algorithm to guarantee latency
and reliability of proximity communications in [28]. In this
paper, the authors also proposed a technique of converting the
latency constraint into equivalent rate constraint to solve an
optimization problem easily. The situation that IEEE 802.11p
protocol and LTE proximity protocol coexist is considered
in [29]. They proposed a greedy algorithm of admission
control of LTE proximity services to maximize the reduc-
tion of latency caused by two proximity protocols. In [30],
a computation offloading scheme for mobile edge computing
technology with vehicle devices. The authors of [31] pro-
posed a fast discovery and radio resource allocation algorithm
to minimize the latency of proximity communications. Deep
reinforcement learning is used to allocate radio resource and
transmission power of D2D nodes in [32]. The latency can
vary depending on where the measurements are placed in the
communication procedure.

C. RESOURCE ALLOCATION WITH DEEP LEARNING
Since deep learning has produced innovative results in the
computer visions [33], many researchers have studied the
application of deep learning to wireless communications.
Currently, results using deep learning in each field of wireless
communication are being announced. In resource allocation
of wireless communications, there are also several impressive
results. In the first generation, resource allocation and power
control based on deep learning are studied with simple prob-
lem and labels from a known algorithm. The authors of [34]
proposed a power control scheme using DNN. They conduct
WMMSE [35] to get labels, then train DNN to predict the
labels with all channel information. It is helpful to reduce
computation time. Next studies had been conducted for more
complex problems. In [36], the authors use Convolutional
neural networks (CNN) to inference the labels with incom-
plete channel information. The authors of [37] use Recurrent
neural networks (RNN) to solve Non-orthogonal multiple
access (NOMA) problem.

For the cases of researches about D2D related, the authors
in [38] used deep learning for intelligent link adaption to
determine transmission rate. A V2V resource allocation is
proposed with deep Q-networks (DQN) in [32]. It adopts a
way that one of several given options is chosen because DQN
is a discrete decision algorithm. However, the transmit power
is a continuous variable. Thus, there is room for further per-
formance improvement. In this paper, we suggest a transmit
power allocation scheme that is available with continuous
action spaces. Meanwhile, the authors in [39] proposed a
D2D resource allocation with deep learning. They do not use
labels but optimize the objective function directly using deep
learning. The different from our proposed scheme is that it
is based on central manner. For the IoT-D2D environments,
a distributed scheme has to be seriously considered.

III. PROPOSED SCHEME
In this section, we describe the proposed Distributed Power
Allocation method using DNN with Interference to eNB
Constraint (DPADIC).

A. SYSTEM MODEL
It is assumed that orthogonal frequency division multiplex-
ing access (OFDMA) is used in the considering cellular
networks. It has N orthogonal subcarriers, which are non-
overlapped. The spanned bandwidth is smaller than the chan-
nel coherence bandwidth, so the spectrum is regarded as flat.
We consider a set N = {1, . . . ,N } of shared OFDMA chan-
nels, as well as a set of D2D device pairs, K = {1, . . . ,K }.
The pair of D2D devices consists of a transmitter and receiver,
which are considered to be in perfect synchronization.
Likewise, we consider multi-cell environments with B cells.
The set of eNB is B = {1, . . . ,B}. As shown in [25],
a received signal Yn,k,k on link n can be expressed as follows:

Yn,k,k = Hn,k,kSn,k,k +
∑

i∈K,i 6=k
Hn,i,kSn,i,k +Wn,k,k (1)

where Hn,k,k means the complex channel gain between
the transmitter and receiver of D2D device pair k . The
Hn,i,k is also the complex channel gain from the transmit-
ter of D2D pair i to the receiver of D2D pair k . Sn,k,k
is the symbol of transmission. Wn,k,k is an additive noise
from zero-mean Gaussian distribution with variance (σn,k )2.
Therefore, the spectral efficiency Tk at a receiver of D2D pair
k is expressed as follows:

Tk (pk ) =
∑
n∈N

log2(1+
(Hn,k,k )2 pn,k∑

i∈K,i 6=k (Hn,i,k )2pn,i + (σn,k )2
)

(2)

where pn,k is transmit power for D2D pair k on channel n.
pk is a set of pn,k on each channel, pk = {p1,k ,
p2,k , . . . , pN ,k}. The proposed scheme aims to maximize the
sum of D2D throughput while maintaining the following
two constraints: power constraint, and interference to eNB
constraint. Therefore, the objective function and constraints
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can be derived as:

max
∑
k∈K

Tk (pk ) (3a)

subject to
∑
n∈N

pnk ≤ Pmax , k ∈ K (3b)∑
k∈K

(Hn,k,c)2 pnk , n ∈ N (3c)

where Pmax is the power limitation of each D2D transmitter,
and Qmax is the interference to eNB constraint per chan-
nel. The maximum power constraint means that the total
transmit power per user cannot exceed a given limit Pmax .
Also, the interference constraint means that the interference
experienced at the eNB cannot exceed the threshold Qmax .

B. DEEP LEARNING MODEL FOR DISTRIBUTE POWER
ALLOCATION WITH INTERFERENCE CONSTRAINTS
After the training phase in a central machine, all D2D
devices have the same deep learning model. The model can
autonomously infer transmit power with the location infor-
mation of a transmitter and a receiver only. The proposed
distributed decision scheme can maximize the total D2D rate
in the multi-cell environment while maintaining interference
constraints.

The deep learning model uses a pair of location informa-
tion to derive a pair of transmit power. In the training phase,
the inferred transmit powers from every device are collected
to calculate the sum of throughput. The sum of throughput
is used to update the deep learning model. In conclusion,
the model is trained taking into consideration the inferred
power on the data link and the interference on other data
links. After the training phase in a central machine, all D2D
devices have the same deep learning model. The model can
autonomously infer transmit power with the location infor-
mation of a transmitter and a receiver only. The proposed
distributed decision scheme can maximize the total D2D rate
in the multi-cell environment while maintaining interference
constraints.

1) DISTRIBUTED DEEP LEARNING ARCHITECTURE
Fig. 1 shows that the distributed deep learning architecture.
There are two phases: training phase in (a) and inference
phase in (b). In the training phase, a deep learning model is
trained with all location information of whole D2D devices
in cells. For example, a D2D pair DUE1 has four number:
(x,y) of transmitter and receiver. The four numbers are a
unit of data. The K units of data are used to train the deep
learning model as independent input data. It means that the
model infers transmit power differently to each pair. After
that, the inferred transmit power are evaluated with the sum
of throughput and constraints. The throughput of each pair
is not maximized independently. The deep learning model
is trained to maximize the sum of the throughput. After the
training phase in a single machine, all D2D devices have
the same deep learning model. Consequently, the models

FIGURE 1. Distributed learning model which autonomously determines
transmit power to maximizes the total throughput. (a): Training phase,
(b): Inference phase.

autonomously determine the transmission power of eachD2D
device only with local location information while maximize
global objective function: the sum rate of D2D in multi-cell.
In [40], the similar concept has been introduced but the pro-
posed scheme has advanced features. The biggest difference
is that we use one model. It simplifies overall training process
and enhances feasibility of the proposed scheme. If multiple
models are adopted for difference devices, then each model is
trained by different data set. In that case, it is ambiguous that
which model should be given to which device. If online learn-
ing is adopted instead of pre-trained model, another problem
can be occurred. In online learning, deep learning can be
affected by too much initiative data. Overfitting can also be
occurred in the initiative data. If the multiple models use the
same data set during training phase, those would become the
same model consequently. Thus, one large model is more
efficient to achieve the same result compared to cooperative
multiple models. The distributed architecture is described as
follows. Typically, θ is defined as a policy parameter. The
policy for a D2D pair k is θk . Then, the optimal set θ̄∗k can be
defined as

θ̄∗k = argmax
θ̄k

∑
k∈K,θk∈θ̄k

Tk (pk (θk )) (4)

where pk (θk ) is transmit power which is derived from the
policy θk for D2D pair k . Each element of θ̄∗k are different
from each other to optimize Eq. 3. However, the proposed
model pursues that every D2D device has the same machine
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to determine their transmit powers to achieve the near optimal
spectral efficiency. It means that every device in the same
set K has the same θK as

θ∗K = argmax
θ

∑
k∈K

Tk (pk (θ )) (5)

where θ∗K is the optimal θK. Note that all pairs of devices
k have the same θ∗K in K. Also, the results of θ∗K should
approximate the result of the optimal set θ̄∗k as∑

k∈K
Tk (pk (θ∗K)) .

∑
k∈K,θ∗k ∈θ̄∗k

Tk (pk (θ∗k )) (6)

Extensively, a set of K can be defined as K̄ = {K1,K2,

. . . ,KB} where B is the number of sets. From that, the θ also
can be redefined for K̄ as

θ∗K̄ = argmax
θ

∑
K∈K̄

∑
k∈K

Tk (pk (θ )) (7)

Finally, we define the target θ which is independent to distri-
butions of other devices while satisfy∑

K∈K̄

∑
k∈K

Tk (pk (θ∗K̄)) .
∑
K∈K̄

∑
k∈K,θ∗k ∈θ̄∗k

Tk (pk (θ∗K)) (8)

It is difficult to approximate θ∗K̄ to have the result of the
optimal θ̄∗k in Eq. 4. It is why deep learning should be adopted.
Therefore, the policy θ can be redefined as a set of weights
and bias in the DNN, {W , b}. According to θ , the neural
network can determine the transmit power p so the θ is still
the policy parameter. Thus, the p can be redefined with DNN
as

pk (θ∗K̄) = DNN (k, θ∗K̄) (9)

where DNN is a neural network, which can determine the
transmit power pk based on the D2D pair k and the weights
and bias set for K̄. Deep learning is a process for finding the
optimal θ . Intuitively, if θ∗K̄ is sufficiently large, it can include
all the meanings of the elements of θ̄∗k .

2) COST FUNCTION
In DPADIC, two constraints should be reflected to the cost
function: i) transmitting power constraints, ii) interferences to
eNB constraints. We adopt the Lagrange function to express
the two constraints in the cost function. In deep learning
process, a cost function defines a way to give benefit or
penalty to update DNN. In other words, a cost function can be
customized if it can give benefit or penalty. Therefore, we use
throughput directly to the cost function of deep learning itself
in the proposed scheme, as shown in Eq. 2. Thus, labels of
data are not required. Although throughput and constraints
are non-convex, it can be approximated by using deep learn-
ing. The power constraint ηp is expressed as follow:

ηp(pk ) =
∑
k∈K

log2(1+
ReLU (

∑
n∈N pn,k − Pmax)
Pmax

) (10)

where ReLU is the rectified linear unit (ReLU) function
which is ReLU (x) = max(0, x). If the sum of the transmit
power of a D2D transmitter is under the threshold Pmax , ηp
would be 0. Therefore, it only delivers a penalty if the transmit
power of the transmitter exceeds the constraint. Besides, it is
designed like Shannon capacity for being easy to make simi-
lar scale. Note that ReLU (

∑
n∈N pn,k−Pmax) is a ratio unit as

similar to the definition of SINR. If the difference of scale is
too large between independent terms in a cost function, deep
learning cannot maintain balances of terms while training.
Traditionally, additional constants, e.g) Lagrange multipliers,
are used to balance the terms. We also adopt them but finding
appropriate multipliers for deep learning is another challenge.
Instead of that, we make constraints having similar scales to
Shannon capacity. There are two points: using ReLU and sim-
ilar form to Shannon capacity tomake easy to find appropriate
Lagrange multipliers.

The interference to eNB constraint is also designed in a
similar way like that to the power constraint. Before defining
the constraint formula, the term of interference to eNB should
be defined, which can be expressed as follows:

Qn,k,b(pk ) =
∑
k∈K

(Hn,k,b)2pn,k (11)

where b means an eNB, and it is b ∈ B. According to Eq. 3,
the interferences to eNB constraints are set for each channel.
Note that the noise is not adopted for the formula. This
formula aims to estimate the impact of each D2D transmitter
on the eNB. Thus, the random noise factor should be ignored.
Therefore, the interference to eNB constraints, λif , can be
formulated as follows:

ηif (pk ) =
∑
k∈K

∑
b∈B

∑
n∈N

log2(1+
ReLU (Qn,k,b(pk )−Qmax)

Qmax
)

(12)

Finally, the cost function, C , of the proposed method can be
described as follows:

C(pk ) = −
∑
k∈K

Tk (pk)+ λif ηif (pk )+ λpηp(pk ) (13)

where λif and λp are Lagrange multipliers. Finding appropri-
ate λif and λp are easy because they have a similar form to
the objectives and ReLU in C .

C. DEEP LEARNING PROCESS
We adopt a multi-layered neural networks (MLP) to predict
transmit powers. The number of features in an input data are
only four, which are the locations of transmitter and receiver,
so other extended deep learning architectures such as Convo-
lutional neural network (CNN) do not need to be considered.
For activation function, we use a sigmoid, which is 1

ex+1 ,
instead of the ReLU. The defined problem is a regression
problem. Thus, ReLU, which is a concept that identifies the
required partial feature, is not appropriate. Sigmoid is suitable
for the proposed method because it can deliver gradient to
the previous layer with a back-propagation algorithm while
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preventing divergence of the neural network. If a vanishing
problem is revealed, ResNet [41] can be used to deal with it
but such a complicate network is not required because the
input data consists of four features. In particular, the pro-
posed method is more sensitive to germination, as there is
a constraint for maximum power.

The learning process in the proposed scheme is similar to
typical deep learning, except that simulation can be included
in the training phase. In the proposed scheme, the deep learn-
ing process is merged with the simulation, which generates
the location information of D2D nodes as input data to the
learning process. It is a distinguished feature of the proposed
scheme compared to typical deep learning process.

Input data and labels are important components for suc-
cessful deep learning. Deep learning is trained to deliver
output data to be similar with the labels of the input data.
Thus, a successful learning process may not be guaranteed
for the input data without labels. The problem to be solved in
this paper corresponds to this case. The system cannot know
the proved optimal solution before the resource and power
allocation.

Instead of labels from the proved optimal solution, we use
the objective function Eq. 13 as the cost function of deep
learning. Because of this, the simulation generates new data
every time for training batch data. Thus, the simulation gener-
ates as much input data as required at each iteration. It means
that there is no overfitting. The detailed learning process is
described in Algorithm 1.

We adopt Xavier initiation [42]. n_epoch is the number
of iterations. The simulation is designed to deliver a batch,
which is a set of input data. The size of a batch is given as
batch_size. Train() function is the actual training part in 1.
Get_Throughput(X,P) delivers the throughput as defined in
Eq. 2. Finally, the throughput results are included in a set
Throughput . The throughput results are collected in order of
iteration in the set Throughput . Train() inferences the power
set P with input data X and θ . Then, the cost function is
defined as c with the input data as X and the predicted power
as P. The cost function is the main part of this train function.
It is implemented using Eq. 13.
X and P may have several data sets because the several

input data sets are trained simultaneously. In the cost function,
Eq. 13 of each input data set is derived, and the results are
averaged.We also use the Adam optimizer in [44] to adjust θ ,
which deals with the cost function itself, not the result of
the cost function. The Adam optimizer differentiates the cost
function to trace the changes. Consequently, θ is gradually
changed by the optimizer to minimize the cost function.
In Inference(), the reshape function is used to change the
shape of the input data.

The first shape of the input data is [batch_size, K, 4], which
means that there is a number of batch_size and an input data
set has K number of D2D pairs. A D2D pair has four features:
x, y of the transmitter and receiver, respectively. It should be
changed to [batch_size × K, 4] because each D2D pair data
should be independent of distributed learning. Thus, there

Algorithm 1 Proposed Scheme
Input : input_size=4, output_size=8, width, depth,

n_epoch, batch_size
Output: Throughputs

1 θ = Xavier_initiation(θ )
2 for i = 1, . . . , n_epoch do
3 X = Simulation(batch_size)
4 P, θ = Train(X , width, depth, batch_size, θ )
5 T = Get_Throughput(X , P)
6 Throughputs.append(T )
end

7 return Throughputs

Function Train()

Input : X , batch_size, width, depth, θ
Output: P

1 P = Inference(X, width, depth, batch_size, θ )
2 c = cost(X, P)
3 θ := AdamOptimizer(c) [44]
4 return P, θ Function Inference()

Input : X , width, depth, batch_size, θ
Output: Ypred

1 W , S, Z = θ
2 X = reshape(X, [batch_size * K, 4])
3 for j = 0, . . . , depth-1 do
4 X = dense_layer(X ,width)
5 X = batch_norm(X ) [43]
6 X = 1

1+eX

end
7 X = dense_layer(X , outputsize)
8 X = 1

1+eX

9 P = reshape(X, [batch_size, K, 8])
10 for p = each element of P do
11 p = p× 170− 150

end
12 return P

are batch_size × K D2D pairs. The function dense_layer()
is a neural layer. After the output layer, it should be rescaled
between −150 and 20, because the unit of output power is
in dBm.

According to the proposed scheme, it can reflect
large-scale fading including path-loss and shadowing.
The path-loss can be modeled as a function of distance
statistically. Because distance can be easily implied from the
location, we can understand that the computation of path-loss
is implicated inside of the neural network.

The shadowing effect is dependent on the location of a
device because it is closely related to physical obstacles to
signal, such as buildings or trees. In simulations, however,
it is difficult to reflect the effects of random variables based
on a neural network if the random value is not one of the input
data. This problem can be mitigated to use enough practical
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FIGURE 2. (a): Spectral efficiency, (b): Transmit power of each D2D transmitter and (c): Interference experienced at the eNB where B = 3.

data in the learning process or adopt more detailed channel
model.

Small scale fading is usually defined with a normal
distribution, and thus it is impossible to estimate small fading
effect with only location information. However, the small
scale fading can be negligible because of the purpose of the
proposed scheme: drastically shortening the resource alloca-
tion latency instead of focusing on a near-optimal solution of
the non-convex problem. Thus, to consider the small scale
fading is out of scope in this paper but we remain it as a
future work. The problem of adopting small fading to D2D
communications can be covered by applying recent works to
estimate the channel models [45].

IV. RESULTS
We consider the same experimental assumption with [25].
The simulation parameters are summarized in Table 1.
We assume hexagonal cells with radius R = 500m. The
maximum distance between D2D pairs is Dmax = 100 m,
while they are uniformly distributed in [0,Dmax]. In addition,
we consider multi-cell cases: B = 3 and B = 7 where B is the
number of cell. The number of D2D pairs is 8 per cell. Thus,
the number of D2D pairs K is 8 · B. The number of OFDMA
subchannels N is set to 8, and then the spectral efficiency

η is derived as η =
∑
Tk

(K×N ) . The maximum transmit power

constraint Pmax is set to 0.25 W. The channel attenuation is
expressed by the path loss with distance, including shadowing
and fading. The path loss exponent α is 4, with shadowing and
standard deviation σ =8 dB on log normal distribution. The
additive zero-mean Gaussian noise in the cellular network

TABLE 1. Parameters of simulation.

TABLE 2. Parameters of DNN.

from D2D is set to −130 dBW in [46]. This simulation is
implemented using Tensorflow [47].

We use 50 data sets for a batch and total iterations are
100K. Thus, we use 5M cases of drops for training and
there are no duplicated data because the data sets are newly
generated in every iteration. The learning rate of the opti-
mizer is 0.0001. If the learning rate is increased, DNN can
attain a converged D2D rate earlier with fewer iterations.
However, the final converged D2D rate may be decreased.
Hyper parameters are 7 layers and 1500 perceptrons per
layer. The size of neural network can be regarded as too
large, but it is not a problem with computing power with
this entry-level GPU. With these parameters, the learning
time is about 3 4 hours. We use I7-6700K processors and
a GTX 1080 Ti. It is another area of deep learning research
that producing the same result with a smaller neural network.
In addition, the function of inference is able with CPU, which
means that it requires less computing power. Those deep
learning parameters are summarized in 2.

Fig. 2 and Fig. 3 describe the performance of the pro-
posed scheme where B = 3 and B = 7 respectively. They
tend to converge to a constant value after 30K iterations.
Smaller Qmax cases tend to be converged earlier because the
initial transmit power is close to zero, as shown in Figs.2-(b)
and 3-(b). We set the range of power between −150 and
20 dBm. The initial powers are set near the middle of the
range. The power is increased to find a better throughput
by using the optimizer. Figs. 2-(c) and 3-(c) shows that
DNNobtains the converged throughput whilemaintaining the
constraint of interference to eNB.

In the proposed scheme, there are two significant param-
eters for adopting constraints, λif and λp. They should be
determined manually, but it is not difficult because the valid
range of the parameters is wide enough. Fig. 4 show the
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FIGURE 3. (a): Spectral efficiency, (b): Transmit power of each D2D transmitter and (c): Interference experienced at the eNB where B = 7.

FIGURE 4. Spectral efficiency with interference to the eNB constraint
factor, where B = 3 and QMAX = −140 dBW.

FIGURE 5. Spectral efficiency with the transmit power factor, where B = 3
and QMAX = −110 dBW.

effects of the interference to the eNB constraint factor, λif .
If too small λif is used, the interference to eNB constraints can
be ignored. In that case, it is more profitable to ignore λif ηif
in minimizing the cost, though DNN takes the penalty from
λif ηif . Thus, the spectral efficiency T is high but it is not valid
because the interference to eNB exceeds the limit,Qmax . If λif
is high enough, DNN cannot ignore the constraint. Then,
DNN should maintain the constraints with reduced transmit
power. If a much higher λif is used, T can be reduced, but

FIGURE 6. Comparison to IADRMPIC [25] with various Pmax , where B = 7.

the falling is not meaningful. Note that ηif includes ReLU
function. It turns off the constraint if it does not exceed the
threshold. Because of this, an effect of a high λif is limited.
However, D2D transmitters are dropped randomly, and it may
be very close to the eNB. Thus, there can be a few cases of
exceeding Qmax though it has a very small transmit power.
The cases affect the results. Consequently, T can be reduced
slightly with larger λif .
Fig. 5 describes the effect of the transmit power constraint

factor, λp, which is less sensitive than λif , because Pmax is
0.25W. Similar to the case of λif , DNNmay ignore the power
constraint if λp is not high enough. With a very small λp,
η can be increased but cannot maintain the constraint. DNN
adopts the transmit power constraints appropriately where λp
is over 10. Unlike λif , a larger λp does not has a problem.
Even when λp is 200, the performance of spectral efficiency
does not change. It is because there is no D2D transmitter,
which is over the Pmax after enough training.

Fig. 6 compares the Iterative Approximated Distributed
Rate Maximization Problem with Interference Constraint
(IADRMPIC) in [25] and the proposed scheme with various
Pmax andQmax . With the four cases of differentQmax , the pro-
posed scheme has similar throughput to the IADRMPIC.
Note that the purpose of the proposed scheme is to achieve
similar throughput without any involvement of other nodes.
It shows that DPADIC can achieve a meaningful throughput
via a prediction method with deep learning.
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FIGURE 7. Spectral efficiency with various number of devices, where
B = 3.

FIGURE 8. Spectral efficiency with various hyper parameters, where B = 3
and the number of devices per a cell = 16.

Fig. 7 shows the scalability of the proposed scheme.
Scalability with various numbers of devices is important to
a system because DPADIC uses pre-trained deep learning
model. We compare two deep learning models which are
trained with 8 pairs and 12 pairs, respectively. The learn-
ing model also considers the constraint of eNB interference
factor, λif . The models have been tested for various numbers
of devices: ranging from 2 to 24 pairs. Throughput decrease
as the number of devices increases because of the effect of
interference.

Note that there is no meaningful difference between two
pre-trained models. The deep learning model is trained to
achieve that the eNB interference constraint in any distri-
butions, so the policy from the deep learning is set con-
servatively. It means that there is a room for additional
devices to meet the eNB interference constraint. According
to this experiment, the pre-trained model can show valid
performance for sufficiently diverse cases of the numbers of
devices.

Figs. 8 and 9 show that T with various hyper parameter
cases, where training with 16 devices and 24 devices respec-
tively and B = 3. Depth means that the number of layers
and width is the number of perceptrons in a layer. According
to these experiments, both depth and width are important
to achieve enough performance of deep learning. Note that

FIGURE 9. Spectral efficiency with various hyper parameters, where B = 3
and the number of devices per a cell = 24.

the case of 24 devices requires more hyper parameters than
those of the case of 16 devices. It means that the case of
more devices is regarded as a more complex problem to
solve. For scalability, it is advantageous to set higher hyper
parameters. Optimizing hyper parameter is another challeng-
ing issue for most deep learning schemes [48], [49]. However,
the proposed scheme, it does not focus on optimizing hyper
parameters. Also, the experimental results show that the
range of valid hyper parameters is large enough. Therefore,
an additional optimizing hyper parameter algorithm is not
required. The reason for the low association between hyper
parameters and spectral efficiency is that the large amount
of data can prevent overfitting. Overfitting is a phenomenon
where performance is rather poor when the size of the neural
network is too large for the number of data. In this system,
the data can be generated by simulation, so it is hard to have
the overfitting problem.

Fig. 10 and 11 show visualized training results for each
cell environment respectively. Because of the interference
constraints to eNB, the D2D power allocations are more
distributed in a cell edge area. With 100k iterations, it can
get almost converged results. These results indicate DNN
divides the compartments for power allocation to maximize
throughput. It allocates fractionally transmit power by very
slight subdividing. In particular, it is remarkable that the
transmit power of the cell in the edge area increase. This
implies that D2D links with the proposed method can be
helpful to improve throughput of cell edge users. The signals
of cell edge users can be combined or multi-hopped by D2D
communication. Furthermore, DPADIC can be derived in a
distributed way, which means that the performance enhance-
ment for the cell edge users can be conducted without eNB
involvement.

In Fig. 12, power distributions with distorted and
non-hexagonal cell architecture where Qmax = −150 dBW
and B = 7 are depicted. To show that the proposed scheme
can work independently from the architecture of cells,
distorted cell architectures are simulated by shifting two right
cells to left. Deep learning is a mapping function of the

VOLUME 8, 2020 107861



J. Kim et al.: Autonomous Power Allocation Based on Distributed Deep Learning

FIGURE 10. Cell power distribution during the learning process, where Qmax = −150 dBW and B = 3 with various iterations; (a) 0, (b) 1K, (c) 10K, and
(d) 100K.

FIGURE 11. Cell power distribution during the learning process, where Qmax = −150 dBW and B = 7 with various iterations; (a) 0, (b) 1K, (c) 10K, and
(d) 100K.

FIGURE 12. Power distribution with distorted and non-hexagonal cell architecture by shifting the two right cell to left; (a) Non-shifted, (b) 20%,
(c) 40%, and (d) 60%.

location and the transmit power to maximize cell throughput.
Even if the distribution of the cell changes, the mapping
ability of the deep learning does not decrease.

V. CONCLUSION
We propose a distributed power allocation scheme for D2D
links underlaying a cellular system. We describe the models
that the D2D devices work autonomously. Then, the sum
of the results of decisions at each device can achieve
near-optimal spectral efficiency of the related result. It can
be expressed that the D2D devices memorize the appropri-
ate transmit power with location information to meet the
near-optimal result. The proposed method also has another
technical point that can be generalized. There are two features
that can be adopted for not only wireless communication but
also other optimization problems. The first feature is that it
supports to solve general maximizing problems while main-
taining specific constraints using deep learning.We show that
it can be operated to optimize a problem while maintaining
several constraints. Another feature is the distributed deep

learning architecture. We solve the distributed power alloca-
tion problem for D2D links using this architecture, which can
be applied to develop a centralized system into a distributed
system. In the future, we will improve the proposed scheme
for more complex system, which is difficult to cope with
conventional schemes.
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