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ABSTRACT The energy management strategy of a hybrid electric vehicle directly determines the fuel
economy of the vehicle. As a supervisory control strategy to divide the required power into its multiple power
sources, engines and batteries, many studies have been conducting using rule-based and optimization-based
approaches for energy management strategy so far. Recently, studies using various machine learning
techniques have been conducted. In this paper, a novel control framework implementing Model-based
Q-learning is developed for the optimal control problem of hybrid electric vehicles. As an online energy
management strategy, a new approach could learn the characteristics of a current given driving environment
and adaptively change the control policy through learning. Especially, for the proposed algorithm, the internal
powertrain environment and external driving environment are separated so they can be learned via the
reinforcement learning framework, which results in a simpler and more intuitive control strategy that can be
explained using the vehicle state approximation model. The proposed algorithm is tested and verified through
simulations, and the simulation results present near optimal solution. The simulation results are compared
with conventional rule-based strategies and optimal control solutions acquired from Dynamic Programming.

INDEX TERMS Hybrid electric vehicle, optimal control, power management, Q-learning, reinforcement

learning.

I. INTRODUCTION
Energy management strategies for hybrid electric vehicles
(HEVs) are one of the most important factors determining
the fuel economy performance of a vehicle. Coordinating
multiple power sources, generally fossil fuel energy and elec-
tric energy in HEVs, the energy management strategy is a
supervisory control method to operate each power source by
determining when and how much energy to use according to
the driving environment [1].

Simple and applicable rule-based approaches are mainly
used for the controllers of real vehicles, which usually focus
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on obtaining the best efficiency for each powertrain com-
ponent as well as calibration of the control parameters are
based on heuristics or engineer’s intuition. Examples of
rule-based control can be found in [2], [3]. More math-
ematical approaches have also been conducted based on
optimal control theories. One of the most widely known
algorithms is Dynamic Programming (DP) [4]. The dynamic
programming approach is a powerful tool that shows the
best available fuel economy of the vehicle. Therefore, the
results of the DP simulation for HEV can be used to obtain
an intuition for the control policy of powertrain [5], [6].
However, DP is not available for real-time control since
it needs the entire driving speed profile before vehicle
departure.
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At the same time, optimization-based control strategies
for real-time application have been developed in various
ways. One of the most representative methods widely studied
is a control strategy based on instantaneous optimization
techniques such as Equivalent Consumption Minimization
Strategy (ECMS) [7]-[9] and Pontryagin Minimum Principle
(PMP) [10], [11]. ECMS and PMP have the advantage that
they can be used as a real-time control strategy to achieve fuel
efficiency optimization through equivalent calculations of the
engine and fuel. However, similar to DP, these strategies need
to reflect future driving information for control to achieve
high fuel economy, which is given as an equivalent factor or
co-state that represents the balance between fuel and electri-
cal energy usage. As a result, to improve the fuel efficiency
of hybrid vehicles as in DP, it is necessary to calculate an
optimized solution that reflects the driving conditions of the
vehicle [12], [13]. Accordingly, recent studies have been
conducted in to predict and utilize future driving conditions.
However, it is not easy to accurately predict these future
driving speed profiles, and changing and learning the optimal
control method according to the changing driving conditions
of the vehicle requires a sophisticated algorithm and compu-
tational burden [14], [15]. Because of these problems, recent
approaches have attempted to solve hybrid control problems
using machine learning.

Reinforcement Learning (RL), a field of machine learning
that has been actively researched in recent years, has a frame-
work that can be applied to control problem suitably [16].
RL is one type of machine learning that has been developed
based on the foundations of dynamic programming. There-
fore, problems previously solved using DP such as the HEV
optimal control problem are suitable for the control problem
framework by applying RL. In fact, these RL techniques have
been applied to HEV control, considering previous studies on
stochastic dynamic programming (SDP) [17]-[19].

Much work has been done regarding RL for energy man-
agement strategies of HEV control, especially Q-Learning.
In [20], RL was applied to the power management strategies
of HEVs, in which a Temporal Difference (TD)-learning
algorithm was used to derive the optimal control policy.
In [21], RL was applied to the power management strategy
for a Plug-in hybrid electric vehicle (PHEV), in which the
remaining distance to travel was chosen as a state variable
and the immediate reward was defined as the sum of the
fuel consumption cost and battery energy usage cost. In [22],
RL was used to optimize the power distribution between the
battery and the ultra-capacitor for a PHEV. In this paper,
the transition probability matrices were updated based on
the driving cycle and Kullback-Leibler divergence rate. [23]
presented the RL-based energy management strategy for a
hybrid electric tracked vehicle, in which Q-learning and the
Dyna algorithm were applied to generate the optimal con-
trol policy. [24] suggested a predictive energy management
strategy based on RL and velocity prediction was applied
to the parallel HEV. More recently, [25] utilized a Deep Q
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FIGURE 1. Vehicle simulation model.

Network (DQN), which combined Q-learning and a deep
neural network for HEV control.

In this paper, as in previous studies, we conducted a study
on the HEV optimal control problem using RL. In partic-
ular, to apply RL to HEV control, we constructed a novel
RL framework more suitable for the HEV optimal control
problem based on previous studies [26], [27]. Especially,
by separating the vehicle’s internal powertrain environment
and the vehicle’s driving environment on the learning frame-
work, we constructed a model-based Q-learning algorithm for
energy management strategy of HEV, which is a more intu-
itive and explanatory learning framework for vehicle power-
train control. Accordingly, this approach was developed not
just to find a generalized offline control policy according to
many different driving patterns, but also to develop an online
data-driven energy management strategy in which the vehi-
cle controller is optimized with respect to the current given
driving environment, thus allowing it to adaptively change
the control policy according to change in the environmental
data. The contribution of this paper is that by developing
a novel optimal control framework using model-based Q
learning applied to the HEV optimal control problem, the
characteristics of the HEV optimal control problem and the
intuition of the RL control technique for the HEV controller
are better understood.

The remaining chapters are organized as follows.
Chapter II gives a description of the HEV simulation model
used in this paper. Subsequently, in Chapter III, the opti-
mization problem to be solved in this paper is defined, and a
novel algorithm using RL is proposed. Chapter IV discusses
the feasibility and various features of the proposed algorithm
based on simulation result, and finally, Chapter V gives the
conclusions.

Il. VEHICLE MODELING
In this study, the fuel efficiency performance and validity of
the proposed algorithm are tested based on a vehicle simula-
tion, thus it is very important to have a reliable vehicle pow-
ertrain model to perform simulations. In this study, we use
a vehicle powertrain models consisting of each component
model based on quasi-static modeling. For the powertrain
structure, a parallel HEV is used, as given in Fig.1.

First, for engine modeling, a quasi-static engine fuel con-
sumption model is utilized. It is assumed that the engine
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FIGURE 2. Engine fuel consumption map.

transient behavior such as the combustion dynamic are much
faster than vehicle system level dynamics for energy flow
analysis. The fuel consumption rate of the engine 7 is repre-
sented using map, as given in Fig.2 and (1), using the engine
torque T,,, and engine speed wepg:

m :ﬁ‘uel(Teng9 CUeng)- (1)

For the motor, the efficiency of the motor 7,,,; is calculated
using the pre-determined map, and battery power output Pp,;
is also presented using the motor torque 7T7,,; and motor speed
Wmot» a8 shown in (2).

Ppar = nfnoz  Thnor - Wmor (2)

The efficiency of the motor 7,,,; is a function of the motor
torque Ty,0: and motor speed wy,o; as given in Fig. 3. If the
machine is used as a motor, then k = —1, and if machine is
used as a generator, k = 1. It is also assumed that the effects
caused by the transient dynamics of the electric motor are
sufficiently small, thus can be neglected. The battery power
in (2) changes the State of Charge (SOC) in the battery,
as modeled by the SOC dynamics described in (3), by con-
sidering an equivalent circuit model for the battery as shown
in Fig. 4.

1 Voc -V Vozc — 4P, batRbat

Obar 2Rpar

Here, the open circuit voltage of the battery is V., the electric
power consumed outside the battery is Pp,, the internal
resistance is R and the battery capacitance is Qpq;. For the
battery model, a simple internal resistance model is used. The
open circuit voltage and internal resistance of the battery are
determined by a pre-determined map, as shown in Fig. 5. For
the powertrain, drivetrain dynamics from the transmission
input shaft to the wheel can be expressed as shown in (4),
(5), and (6) when a clutch is engaged.

SOC = —

3

Ty = ((Teng + Tnor — Tgb_loss) *Vgb — de_lass) . ;gb 4

Wr = Vgb * Lgb - Owh (5)
T; = Teng + Tinor (6)
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Here, T, is the wheel torque, T, is the engine torque,
Tnor 1s the motor torque, Tgp_joss i the torque loss in the
transmission, Yy, is the gear ratio, Ty joss is the final drive
torque loss, ¢, is the final drive gear ratio, w; is the trans-
mission input speed, w,,; is the wheel speed, and T; is the
transmission input torque. The loss for the gear box is given
as a three-dimensional map, as given in (7), as a function of
T}, wy, and the gear step number igp.

Tgbﬁloss = gb(Tt, Wy, igb) @)

For the final drive gear, Tf;_ss is given as function of the final
drive input speed wyy and the final drive input torque 7.

Tta_tjoss = Lia(Tra, wpa) )
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TABLE 1. Vehicle model parameters.

Component Value

Internal
Combustion Engine

Maximum power 122 (kW)
@ 6000 (rpm)
Permanent Magnet Synchronous Motor

Electric Motor Rated power: 30 (kW)

Battery Capacitance: 5.3 (Ah)
Final Drive Gear
Ratio 3.23
Gear Box 6 speed Automatic Transmission
(4.21, 2.64, 1.80, 1.39, 1.00, 0.77)
Vehicle Mass 1700 (kg)

The vehicle model can be described simply as (9) and (10) by
considering only the longitudinal vehicle dynamics.

. TwhRiire — Forake — Floss
V= )
(Mye, + Meq)

Floss = fo+fi x v+ x v? (10)

Here, v is vehicle speed, Ry, is the tire radius, Fpqke 1S the
brake force, and Fj, is the road load loss, which includes the
road grade. M,y is the vehicle mass and M, is the equivalent
mass for the rotating inertia of the powertrain component.
Finally, fo, f1, and f> are the driving resistance coefficients.
Some of the vehicle model parameters are shown in Table 1.
Based on these vehicle models, the algorithm presented in the
paper was tested and verified. The next chapter describes the
algorithm.

IIl. ONLINE DATA-DRIVEN ENERGY MANAGEMENT
STRATEGY FOR HYBRID ELECTRIC VEHICLE

In this paper, RL is used for energy management of HEV.
In RL, learning is accomplished through feedback, giving
appropriate compensation for the outcomes of the learning.
The difference between supervised learning and RL is that
unlike supervised learning, in which it explicitly corrects
undesired behaviors, RL focuses on the online performance,
which is one of the advantages that it is more suitable
for applications in real-time control strategies for HEVs.
Among the RL algorithms, Q-learning is utilized in this study.
Q-learning is a method that allows the learning of optimal
control online, where the Q function is learned using the
temporal difference method based on interactions between
the controller and environment. Based on Q-learning, as men-
tioned in the introduction, a novel energy management strat-
egy has been developed specifically for the optimal power
distribution problem of HEV control. Prior to this, the optimal
control problem is explained first, followed by the new energy
management strategy.

VOLUME 8, 2020

A. OPTIMAL CONTROL PROBLEM
First, the optimal control problem is defined to minimize the
expected total cost over an infinite horizon as shown in (11).

N-1
minJ,; (xg) = Nli_)moodF; {Z vkg (o, 7 (Xk))} (1)
k=0

constrained by

Weng,min = weng(k) = Weng,max

Teng,min(@eng(k)) < Teng(k) < Teng,max(weng(k))
Tnot,min(@m (k) , SOC(k)) < Tinor (k)
< Tnot,max(wm (k) , SOC(k))
SOC in < SOC(k) < SOC ax

Here, x; is the state variable, g is the instantaneous cost
incurred, y is the discount factor that represents the future
cost as the expected value of the cost at current time step,
Jr (xp) is the expected cost when the system starts at state xg
and follows the policy 7, and u is the engine power P,, which
is also discretized as

P, € {P;,Pg,...,PN"], (12)

e

where N, is the number of discretized control inputs. The
state variable x; is composed of a four-dimensional state
space as given below (13).

xx = [SOC, Pgem, v, Eon] (13)

Here, SOC is the battery state of the charge, and E,, is the
engine on/off state. The engine on/off state is considered to
avoid fuel consumption due to frequent engine changes to the
on/off states. The instantaneous cost incurred g is defined as
the equation below.

8 = Whiet + £(SOC) + B - AE,, (14)

Here, Wy, is the instantaneous fuel consumption and 8 is the

coefficient for the engine on/off penalty. ¢ (SOC) is a term that

penalizes the SOC deviation for charge sustenance as given

below.

1t (SOC = SOCrf)’  if SOC > SOC i

if SOC < SOC in
(15)

£ (80C) = {

CPenalty

Here, u and Cpepairy are positive constant values for the SOC
deviation. The underlying meaning of the optimal control
problem is that the overall expectation of the cost for the
infinite horizon is minimized instead of for a finite horizon,
therefore the control policy result is time invariant, which can
be easily implemented as a real-time vehicle controller. Note
that the definition of this optimization problem is different
from what the existing DP normally defines for the finite hori-
zon or when using the Monte-Carlo method, which can learn
from an episode of experience, and the final SOC constraint
in DP is considered for the instantaneous cost.
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FIGURE 6. Concept of model-based reinforcement learning for an energy
management strategy of hybrid electric vehicles.

B. MODEL-BASED Q LERNING

In this paper, to apply the Q-learning algorithm to the HEV
control problem, a new energy management strategy based
on the RL framework is developed. First, in Q-learning, the
optimal cost J* (xx) and optimal control policy 7* (x;) can
be found as in the below equation using the Q-function:

J* (%) = min (0" (xk, ) (16)
7" () = arg min (Q” (xe, ). a7

Further, the Q-function value can be updated as the below
equation.

0 (xk. ) = O (i )+t (g + ¥ min © (rer, 1)
- 00w w))  (18)

When the system is in some state xi, (i.e., in this HEV control
problem, when the vehicle is in some state according to
SOCk, Pgem.k» k> and Eyp i), the control uy is selected which
has a minimum Q value. According to the action uy, the state
xx changes to x;4; with immediate reward g, then based
on the Q value at the new state x;1 and g, the Q-function
value Q (x¢, ux) is updated with the Bellman equation. Equa-
tion (18) presents the baseline of the Q-learning algorithm.

Based on this algorithm, a new online data-driven energy
management strategy using model-based Q-learning is pro-
posed in this study. In the case of conventional Q-learning,
the most important one is that of convergence. When applying
Q-learning to various problems, including the HEV control
problem, there is often difficulty considering the convergence
properties or the state dimension is too large, thus taking a
long time to converge. Additionally, there is the issue of the
curse of dimensionality, as in DP. In this paper, we propose an
algorithm that fits the framework of the HEV optimal control
problem.

Fig. 6 and Fig. 7 present the concept of the algorithm and
pseudo code, respectively. The idea of the algorithm pre-
sented in this paper is as follows. In HEV control problem:s,
the states in (13) can be divided into stochastic and deter-
ministic parts. That is, considering the driving environment
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Algorithm for HEV control

Initialize Q (xg, ug)
Repeat each step k =1,23, ...
1. Choose action optimal wu;, based on Q(xy,uy)
2. Taking action u;, observe reward g(xp,ug) , state x4,

3.1 Update model based on observation
900, 1) = gl use) + G’(Qk —g(xy, Hk))
Hrr (e ) Xpp s (o) + @(Xpers — X2 (0 )

3.2 Update Q using model for all admissible action u;

QU ur) < QU up) + H(ﬂk + ymin Q41 u) — QO@H“}J)

4 Xy« X

FIGURE 7. Pseudo code of the algorithm.

of the vehicle (i.e., Py, and v), the vehicle moves proba-
bilistically with uncertainty, while the state of the vehicle
(i.e., SOC and E,,) moves deterministically via the control
input according to the given control policy with the given
driving environment. Further, the fuel consumption Wy, can
be modelled deterministically for the given driving condi-
tion and control input. In many existing papers, when using
Q-learning or DQN, the vehicle and environment states are
grouped together and trained entirely free of the model.
The advantage of this model-free approach is a feature of
Q-learning. However, if we model the powertrain of the
vehicle and the state in vehicle dynamics, we should con-
sider model-based techniques. In this study, the algorithm is
composed by approximating the vehicle model, as shown in
Fig. 6, thus there is an inner-loop process in which a learning
process can conducted separately. In the proposed algorithm,
first the control u is chosen based on Q (xi, ux). However,
unlike the conventional Q-learning algorithm, in which an
e-greedy policy is used often, here the action uy is selected
only based on Q (xx, ux) (i.e., minimum Q value) without any
exploration strategy. Instead, the Q-function value is updated
based on interactions between the agent and vehicle state
approximation model using the driving cycle information.
While the optimal action u; is chosen and implemented in
the environment, the agent updates the Q-function value by
investigating all admissible actions u; based on the vehicle
model (considering the burdensome computation, the action
number of u; in the inner-loop can be reduced). The reward
8k+1 and vehicle state xx41 (which are SOCy, and E,, k)
according to the action uy is obtained using the vehicle state
approximation model, and the Q-function value is updated by
combining these data with the driving cycle state xx41 (which
are Pgem i, and vy).

The underlying meaning of this structure is that in terms
of the exploration-exploitation dilemma, by separating the
deterministic vehicle model state from the stochastic vehi-
cle driving environment state, exploration of the control
according to the vehicle driving environment is increased
while exploitation of the control policy is secured. Thus,
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the proposed algorithm works differently from existing
Q-learning or DQN, where an e-greedy policy is used often.
That is, random selection of the control input for the HEV
control problem decreases the fuel economy performance
for exploration. Additionally, considering that these random
control inputs in the exploratory strategy can cause unde-
sirable behavior or even fatal errors in the vehicle system,
the proposed algorithm has the advantage of stability and
robustness, which is very important for vehicle control char-
acteristics. Further, similar to DQN, experience replay could
be conducted by updating Q using the vehicle model for
different actions, which helps convergence.

On the other hand, the vehicle state approximation model
is updated using the information obtained from interactions
between the agent and environment as in the equation below.

8 (g, ug) < g (X, ug) + o (g — g Xk, ug)) (19)
X1 oy ur) <= X1 (0, wg) + @ (1 — X1 (Xk, Uk))
(20

The vehicle model is defined as above and updated using the
results of the interaction between the actual agent and the
environment. Note that it is still possible to have a model-free
property, which is an advantage of Q-learning. The initial
approximation of the vehicle model only helps faster learning
and convergence of the algorithm. In other words, even if
the model is not accurate, it can be modified by learning
from the driving data, which allows optimal control to be
explored. The vehicle approximation model (battery SOC and
fuel consumption) is given as a four-dimensional look-up
table that is a function of the state and control as written in
equations below.

SOCk+1 = fs0c(SOCr, Pdem, v, u) (2D
Wﬁtel = ﬁuel(Pdemv v, Eon, ) (22)

Fig. 8 and Fig. 9 present examples of the battery SOC model
and fuel consumption model, respectively.

The advantage of the proposed algorithm is that it separates
the vehicle model from the environment differently from
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the existing Q-learning-based energy management strategies.
In the case of the vehicle state approximation model, the
future vehicle state and reward (battery SOC, engine on/off
state, fuel consumption) can be derived when certain control
inputs are given with along with the current vehicle state
information. However, in the case of driving cycle informa-
tion, it is not easy to accurately predict the change in vehicle
speed and the required power demand. Therefore, for the
vehicle powertrain, the state approximation model is consid-
ered in the control algorithm through modeling and is updated
based on the initial value and learning. However, in the case
of the vehicle driving cycle, the model is configured to learn
the driving data based on interactions between the agent
and environment as in the existing Q-learning based energy
management strategy. Thus, based on the vehicle state model
approximation, the uncertainty of the state transition model
can be significantly reduced, and based on these vehicle
state approximation, the decision making process could be
explained more explicitly; this is unlike in conventional RL,
which lacks visibility for the learning process.

Therefore, the state related vehicle model and control can
be learned using full backups, and the driving environment
can be learned using sample and shallow backups. Compared
to the SDP algorithm, in which the driving cycle informa-
tion is expressed as a transition probability matrix (TPM),
the proposed algorithm updates instantaneous driving cycle
information using the Q-function value and is stored based
on the Bellman equation as if the TPM is updated at every
moment. On the other hand, in the proposed algorithm, using
the vehicle model, it is possible to derive the optimum con-
trol value by examining the vehicle state change and the
compensation value according to all possible control inputs,
as in SDP.

IV. SIMULATION ANALYSIS

The effectiveness of the proposed algorithm described above
was verified through vehicle simulations. We investigated
how well the learning process is actually conducted using
the proposed algorithm, and how accurate the fuel economy
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TABLE 2. Simulation conditions.

Minimum  Maximum
Parameter Interval
value value
Vehicle speed, v (m/s) 0 40 1
Battery SOC, SOC (%) 45 75 0.01
Power demand, P 4o, (W) 0 96000 2000
Engine on/off, E,, 0(off) 1(on) -
Engine Torque T,y (NM) 0 205.2 4.1
TABLE 3. Equivalent fuel economy (km/I) results.
Driving Cycle
Algorithm
UDDS HWFET
Deterministic DP 26.1 26.2
RL-based 24.9 25.7
Rule-based 21.5 22.8

performance results based on learning are compared to the
fuel economy of the DDP, which represents the optimal
fuel economy. Additionally, simulation results with the con-
ventional rule-based strategy are presented for compari-
son. First, discretization of the parameters is performed as
in Table 2.

A. SIMULATION USING STANDARD DRIVIG CYCLE

Standard driving cycles for the Urban Dynamometer
Driving Schedule (UDDS) and Highway Fuel Economy
Test (HWFET) are used for the learning process and the
vehicle simulation. Fig. 10 presents the learning curve for
UDDS, in which the cumulative reward decreased rapidly as
iterations were repeated. As the iterative learning continues,
the cumulative reward value becomes smaller and conver-
gence can be confirmed. Fig. 11 presents the battery SOC
results for each simulation for UDDS. First, there is noth-
ing previously learned, thus the battery SOC is decreased;
this is because the controller will select the control to min-
imize the immediate fuel consumption and SOC deviation
penalty without considering the discounted cost of the next
state. Thus, the battery SOC value becomes smaller to reach
the minimum boundary SOC value (0.45). However, as the
learning process is repeated, the battery SOC is sustained
near the target battery SOC value (0.60). In the same way,
the simulation for HWFET is conducted. The strategy is
simulated using the HWFET driving cycle repeatedly for
learning, and the fuel efficiency performance is measured.
Table 3 presents the equivalent fuel economy performance
of the strategy for UDDS and HWFET, which are trained
for each cycle separately. The simulation results show that
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FIGURE 12. Engine operating point of the RL-based, rule-based and DDP
strategies for vehicle simulation using UDDS.

in the case of UDDS, the RL-based strategy exhibits a fuel
economy performance of 24.9 km/l, which is 95.4% of the
optimal fuel efficiency for DDP. For the HWFET RL-based
strategy, the fuel economy is 25.7km/l which is 98.1% of
the DDP results. In both cases, we confirmed that the results
of the RL-based strategy are better than the results of the
rule-based strategy. The RL-based strategy presents a very
similar behavior for the engine operating point with the DDP,
as shown in Fig. 12. Fig. 12 shows that in both the DDP and
RL-based strategies, the engine is operated near the optimal
operating line, which has a relatively high Brake Specific Fuel
Consumption (BSFC) efficiency. However, the fuel economy
results for the RL-based strategy cannot reach that of DDP
even though it is trained repeatedly using the driving cycle.
This is because the optimization problem is defined with an
infinite time horizon rather than a finite driving cycle, thus the
derived optimal control is not suitable for the deterministic
case.
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TABLE 4. Equivalent fuel economy (km/I) for the learning ability
simulations.

Driving Cycle
Algorithm
UDDS HWFET

Deterministic DP 26.1 26.2
UDDS 24.9 24.6
RL- HWFET 239 25.7
based  HWFET+UDDS 24.9 254
UDDS+HWFET 24.9 25.7
Rule-based 21.5 22.8
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FIGURE 13. Equivalent fuel economy results of vehicle simulations using
UDDS for a pre-learned setup with HWFET.
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FIGURE 14. Equivalent fuel economy results of vehicle simulations using
HWFET a pre-learned setup with UDDS.

B. ONLINE DATA-DRIVEN LEARNING

On the other hand, the learning ability of the proposed strat-
egy was also tested through simulation. In these simulations,
the UDDS and HWFET driving cycles are used for learning,
and learning is performed again for different driving cycles
(HWFET and UDDS) to determine whether new learning
occurs with the existing learned data. Fig. 13 presents the
equivalent fuel economy results as learning is performed
for the UDDS driving cycle using pre-learned data with the
HWFET driving cycle. It is seen that equivalent fuel economy
is increased as iterations are repeated. Similarly, Fig. 14
shows the process for re-learning the HWFET driving cycle
using the data learned during the UDDS driving cycle. Addi-
tionally, it can be confirmed that the fuel consumption value
increases as learning is repeated, eventually converging to a
constant value. Table 4 shows the fuel efficiency performance
for the UDDS and HWFET cycles of the learned strategy for
different cycles. In the case of the UDDS driving cycle, learn-
ing with only UDDS exhibits the best fuel economy, while
learning with HWFET only shows the best fuel economy
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FIGURE 15. Vehicle fuel consumption model change based on
assumption.

for the HWFET driving cycle. However, the fuel efficiency
with different cycles exhibits reduced performance. When
two cycles are learned, a similar fuel economy performance is
seen compared to best fuel efficiency. The simulation results
show that even when the proposed algorithm is implemented
in a driving environment different from the initially trained
driving environment (for example, from UDDS to HWFET,
or HWFET to UDDS), a competitive fuel economy can be
obtained based on the generalized control policy learned from
existing learned data.

C. APPROXIMATION MODEL LEARNING

Finally, the model-free approach is tested via simulation.
Generally, vehicles are exposed to various driving environ-
ments and performance deteriorates naturally. For example,
aging of the engine or the performance degradation of the
powertrain over time can happen in real vehicles, thus adap-
tation of the controller according to corresponding changes
in the vehicle component performance is a necessary factor
for minimizing the fuel efficiency reduction. One advantage
of the proposed strategy is that the algorithms can learn by
themselves and find the optimal control according to such
environmental changes. In this case study, we deliberately
changed the fuel consumption map of the engine model under
the assumption that the engine consumes more fuel with a
high torque area according to the performance reduction, and
we verified that the proposed algorithm can work adaptively
to learn and derive the optimal control rules according to this
change. The fuel consumption map is intentionally modified
as shown in Fig. 15, where the faint part of the high engine
torque indicates the fuel consumption is rising. With this
modified engine model, the RL-based energy management
strategy is implemented with the HWFET driving cycle.

As a result, the strategy dynamically changes the existing
set of parameters according to the change in elements to find
the optimum control rule. Fig. 16 presents the vehicle fuel
consumption approximation model in the RL-based energy
strategy before and after changes in the fuel consumption
map. Fig. 17 presents the BSFC map of the engine and the
simulation results for the engine operating point with the
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when control input uy (engine torque) is 121.5 Nm, and Eop (engine
on/off signal) is 2.
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FIGURE 17. Engine operating point results with the original fuel
consumption data.

original fuel consumption map data. On the contrary, Fig. 18
presents the simulation results for the engine operating points
with the changed fuel consumption map data. It is seen that
the BSFC map is changed as the fuel consumption map is
modified intentionally; however, the engine operating point
remains with the same area after the 1% iteration, as seen
in Fig. 18 (a). After a few iterations, the engine operating
point moves to the most efficient area of the BSFC, as seen in
Fig. 18 (b), and (c). Additionally, according to the learning
process, the fuel economy performance is also increased
from 23.6 km/1 for the 1 iteration to 24.6 km/I for the 20
iteration.

These results show that the control algorithm can adap-
tively find the optimal control policy when the performance
or characteristics of the vehicle powertrain are changed, and
those changes can be found using the vehicle state approx-
imation model. This is possible by constructing the control
framework for the powertrain model and the driving environ-
ment separately. Thus, the characteristics of the HEV optimal
control and learning process of the RL control technique
can be explained and understood more simply and intuitively
through the vehicle powertrain engineering view, while the
conventional RL-based strategy cannot explicitly describe the
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FIGURE 18. Engine operating point results according to the fuel
consumption map data changes. Engine operating points move toward
the efficient region as learning is conducted and equivalent fuel economy
performance increases as a result.

decision making process. Thus an engineer also can check
the model uncertainty in their powertrain model via reverse
engineering or explain the control decision making process
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considering component characteristic changes such as degra-
dation of the battery performance or engine aging.

V. CONCLUSION

In this study, an RL-based control strategy was developed
for the optimal control problem of HEVs. In the proposed
RL- based control strategy, the transition probability of the
vehicle’s driving speed profile is learned online based on the
driving data, and the control strategy is optimized based on
model-based Q-learning. To obtain an improved fuel econ-
omy in HEVs, it is necessary not only to increase the effi-
ciency of the vehicle powertrain, but also characterize the
speed profile of the vehicle for use in the control strategy.
The proposed control strategies in this paper have a pow-
erful mathematical framework using reinforcement learning
to model the driving cycle information from the stochastic
view, and then solving the HEV supervisory control problem
based on optimization using model-based approaches with an
explainable and tunable vehicle state approximation model.
As future work, experimental validation of the proposed con-
trol strategy is needed. Since the control strategy is verified
based on simulations, it is necessary to verify the strategy
based on experiments. Further, the tradeoff relationship of
computational burdensome and fuel economy performance
of the strategy should be investigated based on experimental
evidence. Finally, combined with other practical issues such
as emission or drivability, we expect that it is possible to
advance the proposed strategy so that it is more practical and
realistic.
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