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Abstract: In recent decades, building maintenance has been recognized as an important issue as
the number of deteriorating buildings increases around the world. In densely populated cities,
building maintenance is essential for ensuring sustainable living and safety for residents. Improper
maintenance can not only cause enormous maintenance costs, but also negatively affect residents
and their environment. As a first step, the service life of building components needs to be estimated
in advance. Mechanical, electrical, and plumbing (MEP) components especially produce many
maintenance-related problems compared to other components. In this research, a model was
developed that applies the genetic algorithm (GA) and case-based reasoning (CBR) methodologies to
estimating the service life of MEP components. The applicability of the model was tested by comparing
the outputs of 20 randomly selected test cases with those of retrieved similar cases. The experimental
results demonstrated that the overall similarity scores of the retrieved cases were over 90%, and the
mean absolute error rate (MAER) of 10-NN was approximately 7.48%. This research contributes to
the literature for maintenance management by not only presenting an approach to estimating the
service life of building components, but also by helping convert the existing maintenance paradigm
from reactive to proactive measures.

Keywords: building maintenance; service life estimation; case-based reasoning; genetic algorithm;
MEP (mechanical, electrical and plumbing); residential building

1. Introduction

In recent years, maintenance has become a key issue of concern for the life cycle of aged buildings
around the world [1–3]. Proper maintenance can not only preserve the building performance, but also
improve the safety and quality of the residents’ lives by allowing deterioration to be recognized
in advance [3–5]. In particular, the service life or pattern of building components needs to be
carefully examined because it can provide essential information for building management, such as
managerial factors and the deteriorated status of components [3,6]. Considering the importance
of maintenance for aging residential buildings, being able to estimate when major maintenance
will be incurred during a building’s life cycle is important [3,7]. In the 1970s, massive numbers of
apartment buildings were constructed in South Korea due to urbanization and industrialization [1,3,8].
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Such apartment buildings have increased because of the housing supply policy promoted by the
government [3] and make up the majority of housing in Korea [9]. According to the Ministry of
Land, Infrastructure, and Transport [9], outdated buildings over 30 years old account for 44.6%
(3,205,774 buildings) of all buildings (7,191,912 buildings) in South Korea, and the proportion is
expected to continue to increase [10,11]. As indicated in Table 1, residential buildings account for
64.3% (4,625,077 buildings) of all aged buildings [9], which may lead to safety-related problems and
degrade the original performance. These buildings can experience diverse problems such as concrete
neutralization, corrosion of reinforcing steel, and equipment disorder that affect maintenance and
commonly begin 10 years after the building is completed [3,10].

Table 1. Status of deteriorating buildings depending on the region in Korea.

Classification Residential Commercial Industrial Factorial Cultural and Educational Sum

~10 years 630,503 283,755 98,130 39,635 195,405 1,247,428
~10–15 years 237,776 145,490 51,846 29,535 108,892 573,539
~15–20 years 325,726 157,442 50,188 27,154 89,013 649,523
~20–25 years 412,553 152,590 36,986 29,061 139,960 771,150
~25–30 years 473,771 145,370 30,403 17,034 77,920 744,498
~30–35 years 355,470 94,446 14,011 10,434 22,924 497,285

~35 years 2,189,278 291,871 35,601 41,185 150,554 2,708,489
Sum
(%)

4,625,077
(64.3%)

1,270,964
(17.7%)

317,165
(4.4%)

194,038
(2.7%)

784,668
(10.9%)

7,191,912
(100%)

Especially, mechanical, electrical, and plumbing (MEP) components incur many of the
maintenance-related problems of a building. MEP refers to nonstructural building facilities such
as electricity, gas, water supply, heating, air conditioning, ventilation, and elevators [3,12,13].
MEP-related maintenance costs may account for 50% of the total life cycle cost (LCC) for a large
and complex building [12,14]. MEP is a significant part of buildings because it provides essential
functions for the sustainable and comfortable living of residents. Therefore, appropriate maintenance
management is required to preserve the original function and performance during its operation.
Inadequate maintenance management can not only cause economic damage to residents because of
building deterioration but also degrade the quality of the residents’ lives [1,15]. As a first step for
building management, efforts need to be made to systematically estimate the service life in advance
before significant deterioration begins.

Various studies and efforts have focused on estimating the optimal service life of components to
determine when the maintenance of a building should be carried out. However, previous research
presents limited performance towards estimating the service life from a long-term perspective because
of the lack of collected past data and estimation methodologies. Furthermore, there has been limited
consideration of various factors such as the building characteristics, maintenance types, number of
maintenances, completion year, environment, and maintenance cost. Meanwhile, traditional building
maintenance is based on fixed repair cycles of components, where each component is commonly
repaired according to a predetermined mean time. However, such a deterministic approach has
a limited ability to consider maintenance-related factors or uncertainties of building components.
Furthermore, the scope of the maintenance is very extensive to be covered because a building
comprises a number of components. This makes it more challenging to estimate the service life for
maintenance and consequently deal with potential maintenance-related problems. In this respect,
maintenance management based on previous data can be utilized as an alternative or supplement
to current estimation approaches. This is because data from past projects have various types of
information, such as the gross area, number of floors, number of households, parking lots, area for
management, year of completion, and type and number of repairs, which enable reliable estimation.
Thus, the present research focused on applying previous data regarding building maintenance to
estimation. However, relevant past data are not systematically organized, and the factors associated
with the service life of components and building maintenance have been inadequately examined.
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To deal with this limitation, a model is developed for estimating the service life for maintenance
based on previous data during the preconstruction phase. The scope of this research is limited to
examining the service life of MEP components for which building repair occurs on a large scale,
which would have a significant effect on the building performance. First, preliminary research is
conducted on building maintenance and service life estimation based on an extensive literature review.
Then, the limitations of existing approaches are identified. A model for estimating the service life for
building maintenance is developed for application to current maintenance management. A database
is established based on previous data or cases associated with the service life. Next, attributes are
extracted and then weighted with the genetic algorithm (GA). Based on the weighted values of
attributes, the similarity among cases is computed from the weighted Euclidean distance (WED).
The most similar cases are extracted from the database in order to estimate the service life or pattern.
Finally, the estimated values are validated by comparison with the original service life of the test cases.
This estimation approach can be used to investigate the maintenance or repair that may be incurred by
the aging or deterioration of building components; thus, it is expected to help contractors establish a
preventive strategy for building maintenance in advance.

2. Preliminary Research

2.1. Literature Review

Building maintenance management is essential to ensuring the performance of a building during
its life cycle and has been recognized as a major issue as the number of deteriorating buildings
gradually increases [3,16]. Thus, proper management is needed to maintain the building performance
and ensure residents’ safety and needs. However, this is a challenge because a building comprises
various components that are affected by different factors such as the lifestyle, surrounding environment,
usage pattern, and weather [1,12]. In particular, MEP components are an important part of buildings [12].
MEP components typically comprise diverse subsystems such as heating, ventilation, air conditioning,
power distribution, fire protection, water supply, and drainage [3,12,13]. In other words, they are
combinations of subsystems complexly connected with equipment, wire, and pipes. Thus, inappropriate
maintenance management may cause significant costs or degradation of the building performance.
To deal with building maintenance problems, the service life or pattern should be identified as a first
step towards establishing preventive measures. Many researchers have devoted a lot of efforts to
improve current maintenance management and establishing management plans, as listed in Table 2.

Table 2. Approaches and factors highlighted in previous research.

Authors Research Objective Target and
Scope

Research
Methodology Highlighted Factors Outcomes

Arif et al. [20]
To propose decision support

framework related to
infrastructure maintenance

Infrastructure Mathematical,
Probabilistic

Route, age of infrastructure,
traffic, capacity, aging condition,
safety, accessibility, affordability

Decision support
framework

Cho and Yoon
[21]

To develop a model for
determining cost-effective

renovation time

Building
renovation Mathematical

Temperature, energy cost, area,
operation period, renovation

time
Decision support model

Choi et al. [19] To determine a maintenance cost
based on regression analysis Highway

Statistical,
Regression, and
Cluster Analysis

Temperature, pavement age,
maintenance cost, precipitation Maintenance cost

Elcheikh and
Michael [22]

To predicting maintenance cost
for asset management Canal system

Probabilistic,
Monte Carlo
simulation

Asset type, maintenance cost Maintenance cost

Kim et al. [3] To evaluate maintenance cost in
apartment building

Residential
Building

Probabilistic,
Monte Carlo
simulation

Period after completion, work
trade, maintenance cost, area,

year of repair, number of
households

Maintenance cost
distribution

Lee and Ahn
[12]

To analyze service pattern in
building MEP components

Building’s MEP
component

Probabilistic,
Monte Carlo
simulation

Work trade, repair period Service life distribution

Sharma et al.
[17]

To estimate preliminary cost for
operation and maintenance

Water
treatment plant Mathematical Work trade, capacity,

construction cost of subsystems
Annual operation and

maintenance cost

Stenbeck [18] To examine the effect of snow on
maintenance cost in highway Highway Statistical,

Mathematical
Weather (climate), maintenance

cost, location
Relationship on snowfall

and maintenance cost

Park et al. [1] To examine maintenance period
in finishing work

Finishing
component

Probabilistic, Monte
Carlo simulation Work trade, repair period Service life distribution
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Park et al. [1], Kim et al. [3], and Lee and Ahn [12] suggested probabilistic methods for estimating
the maintenance cost and service life pattern of apartment buildings. Kim et al. [3] used a loss
distribution approach (LDA) to create a detailed matrix associated with the risk for maintenance.
They thought that it is essential to consider the uncertainty when estimating the maintenance cost.
Thus, they applied a Monte Carlo simulation (MCS) to deal with the uncertainty depending on the
building conditions and characteristics. Based on the matrix, a distribution was derived for total the
maintenance cost. The distribution demonstrated that maintenance 11–20 years after construction
is closely associated with the repair cost. Park et al. [1] and Lee and Ahn [12] attempted to analyze
service life patterns from a long-term perspective. They also adopted a probabilistic approach based on
historical data to identify repair patterns in residential buildings. They focused on examining the service
life for MEP and finishing components because these account for the majority of maintenance-related
problems. They showed the service lives of building components based on a probabilistic distribution,
and confirmed that each component has a different repair pattern depending on its characteristics.
Their works are notable in that they suggested predictive methods for identifying maintenance-related
costs and service life based on historical data. However, they merely focused on a stochastic approach
towards maintenance management, so their ability to validate their results was limited. Furthermore,
their research may have limited applicability to building maintenance because they only presented the
probabilistic distribution for the maintenance cost or repair period; this is inadequate for site managers
to recognize a specific degree of maintenance cost and service life.

Some groups have estimated the maintenance cost by focusing on the infrastructure.
Sharma et al. [17] estimated the maintenance cost of water treatment plants during the planning phase.
They developed an equation for estimating the maintenance cost based on historical data updated
with the construction cost index (CCI). They performed multiple regression analysis on the updated
cost to develop a preliminary cost estimation model that includes operation and maintenance costs.
They compared the estimated results with the original bidding cost to validate the proposed equation.
Their model is a simple and convenient method for estimating the cost, but they did not ensure
the accuracy because the cost estimation can change significantly depending on the site conditions,
weather, competition among bidders, and economic conditions. Furthermore, the estimation scope
addressed by the model is very extensive. These limitations may cause inaccurate results. Stenbeck [18]
elaborated upon the correlation between highway and maintenance costs during the winter season.
In order to identify the linear relationship, the maintenance costs and snowfall based on weather data
were utilized. The results confirmed that the cost and highway stations are correlated. This research
is applicable to selecting the optimal location with regard to weather. However, there was limited
consideration of various factors related to maintenance because the analysis focused only on snowfall
data. Choi et al. [19] developed a model for estimating future maintenance costs based on five factors:
the pavement age, temperature, precipitation, thickness, and traffic loading. Statistical approaches,
such as cluster analysis and regression analysis, were utilized to derive influential factors with regard
to the maintenance cost. They found that the traffic load is the most critical factor that affects pavement
degradation. However, some results regarding precipitation are limited because they may be changed
depending on the data used in the experiment.

Other groups focused on strategic maintenance management and planning to support
decision-making. Arif et al. [20] proposed a framework for supporting decision-making regarding
infrastructure maintenance investment. They adopted the multiattribute utility theory (MAUT),
Markov decision process (MDP), and portfolio management to derive decision support results.
They assessed their framework through case studies of four bridges in terms of three aspects:
socioeconomic, infrastructure utilization, and physical condition. The developed framework provides
useful data for infrastructure maintenance (i.e., performance trend curves, decision logic maps, and a
network-level maintenance investment plan). Cho and Yoon [21] developed a decision support model
for estimating the best renovation time in terms of economics. They carried out a case study to identify
the optimal cost-effective time. They analyzed five parameters to verify the developed model: the
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installation costs, energy costs, benefit, alternative value, and renovation time. The results demonstrated
that the renovation time is closely associated with the initial installation cost. Elcheikh and Burrow [22]
developed an integrated maintenance model that considers data uncertainty. They performed a
probabilistic approach based on MCS to identify the maintenance cost and deal with uncertainty
related to building deterioration and repair cost. They found a large variation between preventive
maintenance and repair costs, which represents larger uncertainty in assets. Their findings can be
utilized in asset management to improve upon existing decision-making associated with cost budgeting
and investment. These studies are noteworthy because factors from diverse perspectives were applied
to the estimation. However, such approaches are limited at estimating the maintenance-related cost
during preconstruction because they address extensive scopes such as economics and assets. Thus,
the cases or data for validation are inadequate. This makes reliable estimation for repair cost and
validation of the proposed approaches a challenge.

The previous literature can be summarized as follows. Some groups estimated the maintenance
cost regarding infrastructure to establish strategies and plans for maintenance management, which can
further support decision-making by maintenance managers. However, they covered extensive ranges
to determine the maintenance cost or renovation time. Thus, there are insufficient data for estimating
the cost or time of specific maintenance. In addition, a limited number of factors were considered.
Other groups focused on estimating the maintenance cost and service life of apartment buildings.
They used MCS as a primary methodology to deal with the uncertainty of building components.
However, their works depended on the probabilistic approach, which has a limited ability to provide
the specific maintenance cost or service life to building managers. Furthermore, it is challenging for
managers to determine a specific maintenance cost or time for repair because the estimated results
represent approximate tendencies according to a probabilistic distribution.

2.2. Case-Based Reasoning

In this research, case-based reasoning (CBR) was utilized to estimate the service life of a building
component during the preconstruction phase. CBR is an artificial intelligence method that solves
a given problem based on data and knowledge retrieved from past similar cases. It stems from
cognitive science and is based on how humans think [23–27]. This methodology has been widely
adopted in diverse fields such as cost estimation, market selection, safety diagnosis, and building
maintenance [28–31] because it can find solutions even when the current problems are well-structured
or related data are insufficient or limited [32–34]. Nevertheless, applying CBR to maintenance cost
estimation is a challenge because relevant data have not been collected systematically. Therefore,
a database needs to be established first. In general, CBR is composed of four phases: case retrieval,
reuse, revision, and retention [23,30,34]. Depending on the similarity score, the most similar cases
to a given case are extracted. The extracted cases are reused to solve the current problem. If the
estimated results are limited or inadequate as a solution, they should be revised to match the problem.
Then, the evised results are retained as a new case in the database [35,36]. This research focuses
on case retrieval and reuse because they are recognized as the critical phases of CBR [31,35,37,38].
This approach has the following benefits. First, CBR can address various attributes for the estimation,
including numerical and nominal data (e.g., areas, building type, number of households, year of
completion, and repair items) [28,31]. The results estimated from similar cases are reliable and accurate
because they are based on actual cases in the past. CBR enables contractors or site managers to
estimate the service life from a long-term perspective. In CBR, cases are retrieved based on similarity,
which is determined by the distance measurement function and weights of the attributes [23,34]. Thus,
the optimal weights of the attributes need to be determined [39,40]. Because of its importance to
the retrieval phase, many researchers have focused on finding the optimal weight for extracting the
most similar cases [31,40–43]. Various weighting methods have been considered, such as feature
counting (FC), the gradient descent method (GDM), the analytic hierarchy process (AHP), and multiple
regression analysis (MRA) [39,40,44]. However, such methods fail to search for the optimal weights or
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perform an unnecessary search process, which reduces the reliability of the retrieved cases [42,45,46].
In this research, a genetic algorithm (GA) is utilized because it is recognized as the most effective
weighting method [39,41,45]. The attribute weighting is described in Section 3.3.

2.3. Genetic Algorithm

In this research, GA is adopted to calculate the weights. This is a heuristic optimization algorithm
based on the evolutionary concepts of natural selection and genetics [38,45,47–49]. Principles of
biological evolution such as selection, crossover, mutation, and recombination are used to determine
the optimal weights for explaining the relationships between the attributes and output [49,50]. GA has
been widely applied to optimization problems in business, engineering, and the natural and social
sciences because it has a powerful search ability and supports simple computations without derivatives
of the objective function, even if a given problem is nonlinear or difficult to solve [38,49,51,52]. In GA,
the fitness of a set of genes represents how well a solution satisfies a given problem [38,48]. GA performs
a parallel search, while traditional algorithms start a search at one point. During evolution, genes of
each generation exchange information accumulated by previous generations and start searching for
a new area [50,52]. The search direction is determined probabilistically for each generation. Thus,
GA can search for a global optimal solution and reduce the probability of falling into a local optimal
solution [49,50]. A GA model sets the candidate solution and fitness function (i.e., objective function)
to evaluate the solution. The candidate solution is a set of parameters that represent a proposed
solution to the problem. In order to search for the optimal value, the parent population is first selected
at random to include a chromosome with a dominant trait. The population size refers to how many
chromosomes are in one generation. If there are too few chromosomes, GA has few possibilities for
crossover, and only a small part of the search space is explored [45]. If there are too many chromosomes,
GA slows down [45,49,50]. The fitness function evaluates strings (chromosomes) in order to select
dominant ones that continue into the next generation [38,51]. As illustrated in Figure 1, GA only selects
genes suitable to a given problem. The genes are selected and crossed with each other to transfer better
genes to the next generation [45,52]. Then, the chromosomes including genes are mutated because
the selection of the best genes can cause a problem related to the local optimal point. Thus, stochastic
mutation needs to be performed on a newly generated chromosome. Finally, the global optimal
genes for a given problem remain. This process is repeated until the predetermined requirements are
met [50,51].Sustainability 2019, 10, x FOR PEER REVIEW  7 of 18 
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3. Model Development

As discussed in the previous sections, a model is developed for estimating the service life of
MEP components based on previous data. The model comprises four different modules: (1) data
collection, (2) attribute selection, (3) attribute weighting based on GA, and (4) case retrieval. In the
data collection module, a case base is constructed from the maintenance-related data of past projects.
The acquired cases need to be carefully reviewed because they have a major effect on the estimation
accuracy [39,43,53]. For research progress, GA and WED are adopted as component methodologies.

More specifically, the process of the estimation model is initiated by inputting the extracted
attributes. Then, the optimal attributes are determined by changing iteratively attribute weights
based on GA. The attribute weights representing each case need to be reliably computed because
the weights are essential to measuring the degree of similarity between cases. Meanwhile, the case
retrieval module computes the similarity scores for the test cases. In this process, similarity function
based on the WED with attribute weights is used. According to the similarity scores, similar cases
are extracted from database. The estimated and original service lives are compared to validate the
developed model. In the following sections, the specific processes of the developed model illustrated
in Figure 2 are explained.
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3.1. Data Collection

In order to examine the reliability and usefulness of the proposed model, a database is established
based on previous data provided by Korea Land and Housing Corporation (LH). This is a recognized
public corporation that has conducted and managed a number of construction projects over a long
period of time. The acquired data from LH can be reliably used to estimate the service life for building
maintenance because they include various maintenance-related activities and information that occurred
in the past. A model based on such data will enable more accurate and reliable estimation. This research
focused on the service life of MEP components because the related repairs account for a large portion
of the total building maintenance [12]. MEP components consist of various subsystems including
heating, air conditioning, ventilation, lighting, power, pipelines, elevators, electricity, and water
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pumps [12,13]. These components are closely associated with the quality and comfort of residents’
lives in apartment buildings.

In order to construct the database for estimating the service life of the building, historical cases
that include the maintenance or repairs of buildings are carefully reviewed. The cases provide diverse
information, such as the management area, heating system, areas for management, completion year,
age of building, maintenance cost, and number of repairs, in addition to general building information
such as the building coverage ratio, floor area ratio, number of buildings, number of floors, number of
households, and number of parking lots. Apartment buildings completed from 1978 to 2009 are used
to construct the database.

In total, 712 cases related to the maintenance of apartment buildings were collected to establish
the database. However, cases including erroneous data or omitted values may not only decrease
the reliability of the database but also negatively affect the accuracy of the estimated results [43,54].
To ensure the reliability and consistency of the collected cases, outliers with inappropriate data were
excluded and screened from the database [34,35]. In total, 276 of the collected cases were selected.
These were preprocessed for computing the case similarity and retrieving similar cases. More specifically,
the raw data in the cases need to be standardized and normalized because the attributes are expressed
on various scales [31,34]. Ratio standardization is applied because it is a commonly used method
to present raw data from different cases on an equivalent scale [34,38,55]. The normalization is an
important process because it can reduce distortions in the similarity measurement that stem from data
with different scales [38]. The raw data are normalized as follows.

Normalizationi =
xi − xmin

xmax − xmin
(1)

where xi is the value of attribute i and xmin and xmax are the minimum and maximum values, respectively,
of each attribute. The normalized data are used to compute the case similarity, which is discussed in
the next section.

3.2. Attribute Selection

The process of selecting and extracting attributes is described here. In order to estimate the service
life for building maintenance with CBR, the attributes affecting the repair and maintenance of apartment
buildings should be selected and weighted with GA. This is because the weights of the attributes are
essential to calculating the case similarity. Figure 3 illustrates the process of selecting and extracting the
attributes. First, relevant variables are investigated. In order to establish a variable pool, various papers
and reports in the literature addressing maintenance cost estimation methodology [3,17,18], service life
pattern identification [1,12], strategic planning for maintenance [20–22], and statistics and guidelines
regarding building maintenance and repair [9,56] are extensively reviewed.
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Based on the variables’ pool, maintenance-related factors are identified. The next step is to derive
key attributes closely associated with maintenance. Twenty-three factors were extracted, then, 20 experts
were interviewed to identify key attributes. These experts had experienced careers in the construction



Sustainability 2019, 11, 3074 9 of 17

industry covering fields such as cost management (5 persons), construction management (4 persons),
safety and health management (3 persons), environment management (3 persons), and maintenance
management (5 persons). They are thought to be qualified to determine the key attributes. Based on
the interviews, 11 attributes were selected for measuring the similarity and estimating the service
life of MEP components. The selected attributes were divided into project-related general data
and maintenance-related data. The maintenance-related data included the management area (MA),
heating system (HS), completion year (CY), maintenance cost per unit area (MC), and service life (SL)
because they are closely associated with the deterioration of a building. In addition, project-related data
such as the number of buildings (NB), number of floors (NF), number of households (NH), parking lots
(PL), floor–area ratio (FA), and building–coverage ratio (BC) were included to search for previous cases
similar to a given case [43]. Furthermore, the multicollinearity among the extracted attributes was
examined because the attributes comprising a case have a high possibility of covariance, which can
reduce the accuracy and reliability of the estimated results [31,53,57]. The variance inflation factor
(VIF) was used to identify correlations among attributes. The degree of multicollinearity is calculated
as follows.

VIFi =
1(

1−R2
i

) (2)

where R2
i is the coefficient value obtained by regression of all independent attributes in the dataset.

The VIF scores of NB, NF, NH, PL, FA, BC, HS, MA, CY, and MC were 2.004, 3.533, 1.507, 3.259, 2.274,
1.188, 1.180, 1.495, 1.736, and 1.219, respectively. Attributes with a VIF score of 5 were not observed,
which indicates insignificant multicollinearity between the attributes [43,58,59]. Thus, the final 10 input
attributes were extracted: NB, NF, NH, PL, FA, BC, HS, MA, CY, and MC. In addition, SL was set as the
output attribute. The remaining attributes that are excluded from the inputs and output were sorted as
reference information.

3.3. Attribute Weighting Based on GA

As discussed previously, this research adopts a genetic algorithm (GA) to weight the extracted
attributes. This is an optimization algorithm that simulates an evolutionary process [38,45,60].
As shown in Figure 1, GA consists of four steps: initialization, fitness calculation, selection and
crossover, and mutation.

1. Initialization. In this research, values between 0 and 1 are used as a chromosome (i.e., a set of
attribute weights). Randomly selected weights are utilized to initialize the optimization process.
A chromosome is made up of nine genes representing the attribute weights.

2. Fitness calculation. For an efficient search, it is necessary to select an appropriate fitness function
for determining superior chromosomes. In this research, the error ratio of the training set was
used as a fitness function to determine superior chromosomes.

3. Selection and Crossover. Parent chromosomes with the highest fitness are generally selected
to generate offspring. However, this method is not suitable for global optimization because it
greatly degrades the diversity. In this study, the roulette wheel and elitism selection methods are
employed to find superior chromosomes. Crossover is applied to the selected two chromosomes.

4. Mutation. To avoid the problem of falling into a local optimal point, random mutation of a newly
generated chromosome is necessary. Thus, the weights of some attributes in one chromosome are
randomly changed.

In summary, GA is used to weight the attributes. One chromosome is produced based on the
following ratio; roulette wheel (0.1), elitism (0.1), crossover (0.3), and mutation (0.5). The process is
repeated to derive the optimal weights. Of the 276 total cases, 201 cases are used as a training set to find
the optimal weight. The remaining cases are used to validate the developed model in the experiment.
Table 3 indicates that CY (0.3530) and MC (0.3529) are critical attributes. This may be because these
attributes are closely related to the deterioration of building maintenance.
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Table 3. Configuration of extracted attributes and weight based on genetic algorithm (GA).

Data Type Attribute Attribute Type Measurement Scale Attribute Weight

Project-related
general data

Building coverage ratio (BC) Numeric Percentage (%) 0.03545
Floor area ratio (FA) Numeric Percentage (%) 0.03629

Number of building (NB) Numeric Integer 0.04869
Number of floor (NF) Numeric Integer 0.02921

Number of households (NH) Numeric Integer 0.03283
Parking lots per household (PL) Numeric Ratio 0.03267

Maintenance-related
data

Heating system (HS) One of a list Binary (1 or 0) 0.03942
Management Area (MA) Numeric Real number (m2) 0.03946

Completion year (CY) Numeric Real number (year) 0.35300
Maintenance cost per unit area (MC) Numeric Real number 0.35298

Output Service life (SL) Numeric Real number (year) -

Reference data
Number of maintenance (NM) Numeric Integer -

Total maintenance cost Numeric Real number -

3.4. Case Retrieval

The cases in the database can be represented as attributes and solutions [45]. The case similarity
can be computed based on the attribute weights and similarity function. As described previously,
GA is used as a method for assigning weights for the selected attributes. Then, the case similarity is
computed based on data normalized with the NORMSDIST function of Microsoft Excel.

This is essential to the case retrieval phase of CBR [23,39,41,43,61]. This is because previous cases
are extracted depending on the similarity score, and an appropriate similarity measurement can reveal
hidden relationships between attributes comprising cases [38,61]. Various similarity measurements
are available, such as the WED, Minkowski distance, Mahalanobis distance, and arithmetic
summation [31,53,62,63]. This research adopts WED to calculate the similarity because it is commonly
used [34,35,37,43]. In Euclidean space, the similarity is computed based on the relative locations of
attributes, which represent each case in the database [38,43]. The similarity distance between cases is
determined by the square root of the sum of the squares of the differences between attributes [34,37]:

SIM
(
xi, x j

)
= 1−DIS

(
xi, x j

)
= 1−

√√ n∑
r=1

wr[ar(xi) − ar
(
x j

)
]2 (3)

where SIM(xi, xj) is the similarity value for the independent cases xi and xj and DIS(xi, xj) is the
relative distance between these cases. In addition, ar(x) is the value of the rth attribute of case xi and
wr is the weight of the case determined from GA [31,34,38,43]. This equation is used to determine
similarities between selected cases. The most similar cases are retrieved according to the similarity
scores. The k-nearest neighbor (NN) algorithm is used to estimate the service life based on retrieved
cases, where the estimated values are the average of k similar cases [27,34,43]. In the estimation,
the use of redundant nearest neighbors may cause the extraction of dissimilar cases, which can produce
inaccurate results [43,49]. On the other hand, a limited number of nearest neighbors will also reduce
the reliability and accuracy of the estimated results. Determining the optimal nearest neighbors is a
concern in CBR. In this research, the service life is estimated based on outputs determined from 3, 5,
and 10-NN.

4. Experiment

4.1. Experimental Process

This research focused on estimating the service life for maintenance based on previous cases.
To verify the applicability of the developed model, an experiment was performed as schematized in
Figure 4. First, 20 test cases were randomly selected. Second, GA was employed to weight attributes
based on 201 cases in the training dataset. The weights were used to compute the similarity distance
between the test cases and collected cases. The remaining 75 cases in the validation dataset were used
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to retrieve cases similar to the test case. Based on the similarity scores, k-similar cases were extracted
from the database. In this research, ten similar cases were retrieved for each test case. The retrieved
cases were used as the essential data to estimate the service life of the MEP components. Finally,
the estimated values were validated by a comparison to the actual service life in terms of the absolute
error ratio (AER) and difference.
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4.2. Results and Discussion

As noted previously, 201 training cases were used to determine the attribute weights in the
experiment. As indicated in Table 3, the weights were calculated in accordance with GA process in
Java. The error rates were calculated for the training set based on leave-one-out validation (LOOCV),
which is a type of k-fold cross-validation [31]. The error rates of 1-, 3-, 5-, and 10-NN were 8.84,
7.17, 6.96, and 7.43%, respectively (see Table 4). This indicates that the derived outcomes are reliable
and accurate with an error ratio of about 7%. However, such results were determined based on the
optimized weights for the training set. This implies that inaccurate results may be produced if they are
applied to different datasets. Thus, a further experiment was performed on the validation dataset to
confirm the applicability of the developed model.

Table 4. Case similarity and error rate for 201 training sets

Classification
k-Nearest Neighbors

1-NN 3-NN 5-NN 10-NN

Similarity 98.88% 98.66% 98.52% 98.28%
MAER (%) 8.84% 7.17% 6.96% 7.43%

An experiment was carried out on 75 cases in the validation dataset based on the 20 randomly
selected test cases. First, similarity scores were calculated based on WED. Then, cases similar to each
test case were extracted. The estimated and real service lives were compared with 1-, 3-, 5-, and 10-NN.
Table 5 presents the profile and input attributes that were randomly selected for model validation.

Table 6 presents the similarity scores summarized by the 1-, 3-, 5-, and 10-NN approaches.
The similarities ranged from 85.2 to 99.8%, which are high similarity scores. The overall similarity
and standard deviation (SD) of 10-NN were 97.4% and 0.033, respectively, which indicates that most
cases extracted by 10-NN are similar to the given cases. However, some cases such as T8 showed a
lower similarity score. The similarities of 1-, 3-, 5-, and 10-NN for T8 were 88.7, 86.7, 85.9, and 85.2%,
respectively. This seems to be because the cases similar to the T8 are lack in the database. The similarity
scores were used to extract cases and estimate the service life for building maintenance [31,34,43].

Table 7 presents the experimental results for the actual and estimated service lives of the MEP
components. The service lives estimated with 1-, 3-, 5-, and 10-NN were compared with the actual
service life according to the AER and difference. The mean absolute error rates (MAERs) with 1-,
3-, 5-, and 10-NN were 8.19%, 6.92%, 6.63%, and 7.48%, respectively. The maximum and minimum
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AERs were 27.27% and 0%, respectively, for 1-NN; 24.24% and 0%, respectively, for 3-NN; 25.45% and
1.05%, respectively, for 5-NN; and 26.25% and 0.80%, respectively, for 10-NN. Overall, the estimated
values showed reliable accuracy with an error rate of about 7%. However, the error rates with 1-, 3-, 5-,
and 10-NN were high for several test cases: 12.50%, 20.83%, 15.00%, and 26.25%, respectively, for T2;
23.81%, 19.05%, 18.10%, and 17.14%, respectively, for T8; and 27.27%, 24.24%, 25.45%, and 17.27%,
respectively, for T14. This may be because cases with low similarity were retrieved. However,
this may not necessarily be due to low similarity scores [43]. The estimation results with CBR are
case-sensitive, which implies that the estimated results can change depending on the output of the
retrieved cases [31,34]. Therefore, even though the similarities between the test and retrieved cases
were very high, the estimated output can differ from the actual value of the test case depending
on the project conditions or unique characteristics. In this regard, the lower performance can be
explained because some extreme cases with disparate service lives were included in the retrieved
cases. According to Christensen and Dysert [64], the general range for low variation is from −20% to
−50%, and the range for upper variation is from +30% to +100%. Therefore, the slightly high AER
in some cases may be even acceptable for estimation during the preconstruction phase for which
relevant data are insufficient [43,64]. Therefore, this present that the developed model is applicable to
estimating the service life of building components. The model can be used by building managers in
the preconstruction phase to identify when major maintenance-related problems will occur.

Table 5. Profiles and input attributes for the test cases.

Case
Number

Project-Related Attributes Maintenance-Related Attributes

BC FA NB NF NH PL HS MA CY MC

T1 28% 374% 2 15 299 1.5 1 27,604 m2 1992 0.0132
T2 21% 360% 3 25 214 1.0 0 21,278 m2 2003 0.2430
T3 18% 296% 2 23 408 1.0 0 42,987 m2 1998 0.4533
T4 30% 88% 28 3 762 0.4 0 63,412 m2 1988 1.2606
T5 20% 204% 28 14 4424 1.1 1 471,336 m2 1979 0.3033
T6 26% 302% 2 22 329 1.1 0 35,088 m2 1996 0.1618
T7 22% 281% 2 18 182 0.9 0 21,445 m2 1993 6.7615
T8 17% 192% 25 15 3481 0.5 1 2,374,050 m2 1990 0.3855
T9 19% 218% 7 15 468 1.5 0 67,027 m2 1993 4.5238
T10 27% 385% 5 26 791 0.9 0 87,872 m2 1996 0.0541
T11 15% 208% 10 15 1800 0.4 0 106,560 m2 1992 0.4603
T12 20% 200% 2 13 214 1.0 1 21,602 m2 1988 0.3045
T13 14% 179% 4 15 375 1.0 1 95,337 m2 1984 1.2636
T14 21% 123% 6 6 300 1.0 0 47,430 m2 2003 0.1951
T15 14% 115% 9 9 432 0.7 0 41,893 m2 1985 2.6308
T16 21% 198% 10 15 700 1.1 0 62,776 m2 1988 0.0717
T17 17% 232% 12 15 1980 0.2 1 169,224 m2 1988 4.1010
T18 22% 293% 5 13 312 0.5 0 74,751 m2 1979 0.2332
T19 21% 283% 5 25 345 1.2 0 61,388 m2 1999 1.3847
T20 12% 138% 122 24 5540 1.0 1 646,257 m2 1988 2.6194

Note: BC = Building coverage ratio; FA = Floor area ratio; NB = Number of building; NF = Number of floor;
NH = Number of households; PL = Parking lots per household; HS = Heating system; MA = Management Area;
CY = Completion year; MC = Maintenance cost per unit area.

Table 6. Case similarity for 20 test cases.

NN
Number of Test Cases

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

1 98.5 99.1 99.4 97.7 94.4 99.7 99.7 88.7 99.0 99.1 98.5 99.3 99.6 98.6 98.9 99.5 98.7 99.8 93.0 99.0
3 98.1 99.1 99.4 97.6 94.3 99.4 99.5 86.7 99.0 99.0 98.4 98.9 99.5 98.4 98.9 99.4 98.7 99.0 92.9 98.7
5 98.0 99.0 99.3 97.6 94.2 99.3 99.4 85.9 98.9 98.9 98.3 98.7 99.4 98.2 98.9 99.3 98.7 98.8 92.8 98.7
10 97.7 98.8 99.1 97.5 94.1 99.1 99.3 85.2 98.9 98.7 98.2 98.4 99.1 97.9 98.6 99.2 98.4 98.3 92.5 98.6

Note: Unit: percentage (%)
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Table 7. Experiment results.

Case
Number

Service Life of MEP Component
Difference

Absolute Error Rate
(AER, %)Actual

(Years)
Estimated (Years)

1-NN 3-NN 5-NN 10-NN 1-NN 3-NN 5-NN 10-NN 1-NN 3-NN 5-NN 10-NN

T1 19 20 20.0 18.8 18.7 −1.0 −1.0 0.2 0.3 5.26% 5.26% 1.05% 1.58%
T2 8 9 9.7 9.2 10.1 −1.0 −1.7 −1.2 −2.1 12.50% 20.83% 15.00% 26.25%
T3 15 14 15.0 14.8 14.2 1.0 0.0 0.2 0.8 6.67% 0.00% 1.33% 5.33%
T4 25 26 25.0 24.6 24.7 −1.0 0.0 0.4 0.3 4.00% 0.00% 1.60% 1.20%
T5 34 30 31.7 29.0 27.5 4.0 2.3 5.0 6.5 11.76% 6.86% 14.71% 19.12%
T6 17 17 16.7 16.8 16.4 0.0 0.3 0.2 0.6 0.00% 1.96% 1.18% 3.53%
T7 19 20 19.0 18.8 19.2 −1.0 0.0 0.2 −0.2 5.26% 0.00% 1.05% 1.05%
T8 21 26 25.0 24.8 24.6 −5.0 −4.0 −3.8 −3.6 23.81% 19.05% 18.10% 17.14%
T9 18 19 20.0 20.0 20.1 −1.0 −2.0 −2.0 −2.1 5.56% 11.11% 11.11% 11.67%
T10 17 14 15.7 16.0 16.4 3.0 1.3 1.0 0.6 17.65% 7.84% 5.88% 3.53%
T11 20 21 21.0 20.6 20.6 −1.0 −1.0 −0.6 −0.6 5.00% 5.00% 3.00% 3.00%
T12 25 25 24.7 25.4 25.4 0.0 0.3 −0.4 −0.4 0.00% 1.33% 1.60% 1.60%
T13 29 29 28.7 28.6 28.2 0.0 0.3 0.4 0.8 0.00% 1.15% 1.38% 2.76%
T14 11 8 8.3 8.2 9.1 3.0 2.7 2.8 1.9 27.27% 24.24% 25.45% 17.27%
T15 28 25 25.3 26.2 26.6 3.0 2.7 1.8 1.4 10.71% 9.52% 6.43% 5.00%
T16 25 23 23.7 24.2 24.0 2.0 1.3 0.8 1.0 8.00% 5.33% 3.20% 4.00%
T17 25 25 24.7 24.4 24.8 0.0 0.3 0.6 0.2 0.00% 1.33% 2.40% 0.80%
T18 34 31 30.7 30.2 28.3 3.0 3.3 3.8 5.7 8.82% 9.80% 11.18% 16.76%
T19 13 12 13.3 13.2 13.5 1.0 −0.3 −0.2 −0.5 7.69% 2.56% 1.54% 3.85%
T20 26 25 24.7 24.6 24.9 1.0 1.3 1.4 1.1 3.85% 5.13% 5.38% 4.23%

Minimum absolute error rate 0.00% 0.00% 1.05% 0.80%
Mean absolute error rate (MAER) 8.19% 6.92% 6.63% 7.48%

Maximum absolute error rate 27.27% 24.24% 25.45% 26.25%

Table 8 presents reference information for T10 that can be utilized as important data for building
maintenance management, such as component types for maintenance, number of maintenances,
and overall maintenance cost. Managers can use this information to assume how much building
maintenance will occur after completion. More specifically, the reference information shows that
components such as M2 (27.87%), P2 (13.11%), and P3 (24.59%) should be carefully considered.
In other words, managers can identify factors regarding which MEP components will primarily cause
maintenance-related problems. Furthermore, Figure 5 illustrates the probability distributions of the
service life and maintenance cost based on MCS, which is a computational approach that depends
on random samplings to gain statistical results [65,66]. These distributions were determined based
on the beta-PERT distribution, which is a recognized method for estimating values from insufficient
information because it can handle diverse types of skewness [43,67,68]. In this research, 10,000 iterations
were carried out to determine the distributions of the components.

Table 8. Reference information of retrieved cases for T10.

NN
MEP Component Service Life

(Years)
Maintenance

Cost (US$)M1 M2 M3 M4 E1 E2 E3 E4 P1 P2 P3

1 0 2 0 0 0 1 0 1 0 0 1 25 41,992
2 0 0 0 0 0 0 0 0 0 0 3 16 4,584
3 0 0 0 0 0 0 1 0 0 1 1 10 24,321
4 0 6 0 7 1 0 0 0 0 6 6 7 106,528
5 3 0 0 0 0 0 0 0 0 0 1 10 241,796
6 0 7 0 0 0 0 0 1 0 0 1 11 16,663
7 1 0 0 0 0 0 0 0 0 0 0 10 85,853
8 0 2 0 0 0 0 0 0 0 1 1 30 59,236
9 0 0 0 0 0 2 0 0 0 0 1 10 130,198

10 2 0 0 0 0 0 1 0 0 0 0 12 14,380
Avg. 0.6 1.7 0 0.7 0.1 0.3 0.2 0.2 0 0.8 1.5 14.1 72,555

% 9.84% 27.87% 0.00% 11.48% 1.64% 4.92% 3.28% 3.28% 0.00% 13.11% 24.59% - -

Note: M1 = Heating facility; M2 = Elevator and lift; M3 = Ventilation facility; M4 = Security/crime prevention
facility; E1 = Spare power facility; E2 = Substation; E3 = Lightning protection facility and outdoor lighting;
E4 = Communication and broadcast; P1 = Hot-water supply facility; P2 = Water pump; P3 = Drainage facility.
Maintenance cost is converted from South Korea won (KRW) to U.S. dollars (USD); exchange rate: KRW/USD = 1134.5
(prevailing rate on 1 April 2019).
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The distributions indicate that the minimum, average, and maximum maintenance costs were
5661, 89,066, and 227,004 USD, respectively, and the minimum, average, and maximum service lives
were 7.09, 15.57, and 28.68 years, respectively. By synthesizing the information with the estimated
results, building managers can identify not only the specific service life of building components but
also the number of repairs and approximate maintenance cost in a comprehensive manner. Therefore,
the developed estimation model can support more systematic building maintenance than current
approaches because the outcomes are determined based on reliable data extracted from previous cases.
It also provides various useful information for a preventive approach towards building maintenance.

5. Conclusions

The number of maintenance-related problems continues to increase as aging buildings deteriorate,
which may cause safety-related problems and increased maintenance costs. Thus, building maintenance
is globally recognized as an issue of concern, especially in densely populated areas. In particular,
MEP components account for a large portion of building maintenance because they are essential to
ensuring a sustainable environment and lifestyle for residents. Thus, maintenance with regard to MEP
components should be carefully carried out. As a first step, the time or period for maintenance needs
to be estimated. Although various studies have focused on estimating the service life for maintenance,
doing so during the planning phase is very challenging because maintenance-related data and a
systematic estimation methodology have not been established. To address these limitations, a model
was developed to estimate the service life for building components according to previous similar cases
which utilized GA and CBR. To validate the developed model, experiments were performed with
20 test cases, and the estimated results of 1-, 3-, 5-, and 10-NN were compared with the actual service
life in term of AER. The experimental results indicated that the MAERs with 1-, 3-, 5-, and 10-NN were
8.19%, 6.92%, 6.63%, and 7.48%, respectively. These results demonstrate that the developed model can
be used to estimate the service life of MEP components with a high reliability. The model can be used
by maintenance managers to identify and evaluate when maintenance-related problems will occur.
Also, it can be utilized to develop preventive measures against building deterioration and establish
a maintenance strategy. The developed estimation model will help enhance existing maintenance
management of buildings. This research contributes to the literature on building maintenance by
proposing a method of estimating the service life of building components. In order to improve the
usability of the model, the more specific service lives of individual components need to be addressed,
and the number of repairs for specific components and the maintenance cost of each component should
also be considered. However, the collected data did not include such specific details. This seems to be
because a building consists of very diverse and complex components, which makes it difficult to record
or collect specific data and information related to building maintenance from a long-term perspective.
Because of these limitations, the total number of repairs and maintenance cost were presented here as
reference information. Future research should address more specific content such as the maintenance
cost for each trade or components that are essential to building maintenance. Furthermore, this research
was primarily carried out based on CBR, which depends on the collected cases. Thus, more cases



Sustainability 2019, 11, 3074 15 of 17

need to be collected to improve the reliability and accuracy of the estimated results. Other attribute
weighting methods should also be considered to ensure the applicability of the model. This study
should improve current building maintenance and support managers in decision-making related to
building repair by estimation of the service life of components.
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