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Due to the low-cost and low-power requirement in an individual sensor node, the available computing resources turn out to
be very limited like small memory footprint and irreplaceable battery power. Sensed data fusion might be needed before being
transmitted as a tradeoff between procession and transmission in consideration of saving power consumption. Even worse, the
application program needs to be complicated enough to be self-organizing and dynamically reconfigurable because changes in
an operating environment continue even after deployment. State-driven operating system platform offers numerous benefits in
this challenging situation. It provides a powerful way to accommodate complex reactive systems like diverse wireless sensor
network applications. The memory usage can be bounded within a state transition table. The complicated issues like concurrency
control and asynchronous event handling capabilities can be easily achieved in a well-defined behavior of state transition diagram.
In this paper, we present an efficient and effective design of the state-driven operating system for wireless sensor nodes. We
describe that the new platform can operate in an extremely resource constrained situation while providing the desired concurrency,
reactivity, and reconfigurability. We also compare the executing results after comparing some benchmark test results with those on
TinyOS.

1. Introduction

With the aid of rapid advances in microelectromechanical
systems technology, it is of great convenience to construct
a smarter world if we deploy a network of wireless sensor
nodes to a target field [1]. A wireless sensor node consists
of a low-cost and low-power microcontroller with memory,
a short-range radio frequency (RF) communication unit,
and an integrated unit of multifunctional sensors in general.
For example, a typical configuration uses an 8-bit ATmega
microcontroller, which has an RF module with 5–50m
communication range and a code memory of 128 kB and a
data memory of about 20 kB as a sensor node in the finite
state machine based operating system implementation. We
then can construct a wireless sensor network (WSN) using
largely deployed sensor nodes to a target field as many as we
need, all of which should be properly programmed to control
sensing units and process sensed data according in order to
accommodate various missions defined in a node.

Although the previously described features of WSNs
enable us an opportunity of a wide range of smart applica-
tions, the computational environment can be rather uniquely
or differently characterized by at least three notable aspects.
First, we, as operating system architects, should be aware
of the resource scarcity in an embedded sensor node. In
other words, the computing power of microcontroller is
very low, the memory contains just a few hundred kilo-
bytes, and the supplied battery power is limited and even
worse mostly irreplaceable. Second, a WSN application is
a heavily distributed computing platform consisting of tens
of thousands of autonomously cooperative processes. Even
in a conventional computing situation, writing a distributed
program is not an easy task at all. If we have to write a heavily
distributed program in a self-organizing network under lots
of resource constraints in terms of memory footprints and
computing power, it seems to be almost impossible to write
such a correct program. Last but not least, we are not writing
an everlasting program because the wireless sensor network
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is doomed to be disposable eventually and hardly recyclable
afterwards.

Thus, we cannot write a meticulous program in advance.
It needs to be rewritten from time to time even in the
run time. Therefore, we should minimize the amount of
program update cost because the network is endangered to
be wasted for application program reconfiguration. Note that
data transmission activity is the single largest source of power
consumption in WSNs. Sensed data transmission conforms
with the existential purpose of WSNs while rewritten code
transmission does not. It turns out to be merely an unavoid-
able maintenance cost that should be spared. Unless there is
a proper reprogrammability from a system side, the networks
would be useless in spite of the remaining battery power, and
itwould be almost impractical to reconfigure applications and
deploy them to each and every one of sensor nodes in the
network. The update cost to accomplish the reconfiguration
task would be simply too huge to reconfigure the network
application. Thus, the state-driven system needs not only
to be able to run in a lightweight manner, but also to be
able to support reconfigurability in a minimal update cost.
Concurrent processing, asynchronous event handling, and
data-centricity should be properly supported as well. The
finite state machine model as an execution platform can
be a viable solution to meet those seemingly contradictory
requirements in the design of a new operating system.

In this paper, we explore a state machine based execution
model as an ideal operating system design for a networked
sensor node and present its implementation with some
benchmark tests. In summary, the design goals for the
new operating system architecture are as follows. First, the
system size should be small enough to reside on the small
memory footprint in a sensor node. In recent technology,
the flash memory size for this purpose is about 128 kB.
Second, the reconfiguration is indispensable, and the update
cost should be maintained as less as possible. Third, the
system should be able to provide a friendly programming
environment that alleviates the programming burdens in
sensor network application programs. Last, in spite of all
these seemingly contradictory constraints, the final system
performance should not be severely sacrificed as compared
to existing operating systems for sensor nodes [1–5].

The remainder of the paper is organized as follows.
Section 2 describes the related work in the area of operating
system concerns for wireless sensor networks. Section 3,
presents the finite state machine model as a sensor node
operating system. Under the state machine based operating
system like ours, application programs are represented by
a set of state transition tables. We present such a state
transition table as a sensor node application program.
Section 4 presents the architectural structure of the state-
driven operating system. We also discuss how to implement
the fundamental services of the state-driven operating system
like concurrency and reactivity event scheduling. Section 5,
shows preliminary benchmark test results that compare ours
with TinyOS as presented in TinyBench programs [6]. We
conclude this paper in Section 6.

2. Related Work

Considering the nature of embedded systems in wireless
sensor networks, traditional real-time embedded operating
systems like VxWorks [7] can become the first target of
a sensor node operating system platform. However, the
target hardware requirements for modern embedded real-
time operating system easily exceed those of wireless sensor
nodes. Although there are minimized operating systems
designed for much smaller and deeply embedded systems,
they are developed for control-centric applications like in
motor controllers or microwave ovens.

As one of the most popular operating systems for sensor
nodes, TinyOS [2] was developed first to possess concurrent
and asynchronous event handling capabilities and support
distributed anddata-centricmodelswith efficientmodularity.
TinyOS provides a very lightweight thread support and
efficient network interfaces. The target hardware for the
early version of TinyOS is very much memory constrained,
for example, with 8 kB of flash as a program memory and
512 bytes of SRAM as the data memory. Although TinyOS
can provide all the essential services for sensor nodes,
writing an application program under TinyOS is not an
easy task due to the intrinsic complexities in embedded
programming for largely distributed sensor networks. There
are two derived research thrusts from the underlying oper-
ating system toward reconfigurability and ease of using the
network.

In the original TinyOS, we need to rewrite a program
to come up with a revised binary code. Although such an
approach provides maximum flexibility for reconfigurability,
the resulting update cost for the entire sensor nodes in the
wirelessly connected network would be immensely huge.
To lessen the reprogramming cost, TinyOS employs the
bytecode interpreter called Maté [3] that runs on it. Using a
virtual machine like Maté, the reprogramming cost may be
confined to the reasonable amount, but we cannot expect the
same degree of necessary flexibility in writing an application
program. Later, the TinyOS team published an additional
work on this matter that is to grant a more customizable and
extensible abstraction boundary in the virtual machine [4].
Other research groups developed an operating system called
SOS [5] that provides a modular binary update approach to
strengthen the reprogrammability with an acceptable update
cost.

TinyOS has been developed as a tailored operating
system only for microsensor nodes. In TinyOS, each node
runs a single runtime image that is statically linked and
needs to be distributed to remote nodes via costly wireless
communication links. Even a single point of code change
requires an entire image uploading from the beginning.
When we define update cost as the sum of all intangible
efforts required to reconfigure the sensor network, there are
two distinct approaches to save it: script language based
approach using virtual machine or modular binary upgrades
using dynamic linking mechanism. Maté [3] provides virtual
machine framework for TinyOS, which is the first attempt at
providing a script language description for application sce-
narios. It is easy to reconfigure without having to redistribute
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an entire image because of preinstalled virtual machine at
each node. However, the script language based description
severely restricts the flexibility to update. SOS [5] adopts
dynamic linking approach in modular basis to provide
dynamic reconfigurability. No flexibility is restricted in such
system, but it is also possible to incur relatively higher
update cost for simple application-level modifications like
parameter tuning. Moreover, the most flexible mechanism
that encompasses a whole spectrum of update costs from full
image upgrades like in TinyOS to simple parameter tuning
like in sensor network management system (SNMS) [8] is
proposed as (Dynamic Virtual Machine) DVM [9] that is
equipped with SOS-like kernel for dynamic linking and a
virtual machine implemented on top of SOS.

All of the above approaches share a common background,
which is an effort to come up with tailored operating system
architecture for sensor nodes in emphasis of embedded
system constraints over general-purpose functionality. They
rooted in the same origin that is the de facto standard
sensor node operating system, TinyOS. Other related works
[10] include synthesizing software programs where a finite
state machine (FSM) description language is used to express
embedded control applications. Using a state machine to
write an embedded control program can be quite straight-
forward and well written as in Gomez’s article [11]. Unfortu-
nately, the authors in [10] assume that the FSM part should
be operated on top of a real-time OS that will give them
the necessary concurrency. Since wireless sensor network
applications are natural candidates for mechanization as a
statemachine, it would be ameaningful attempt to design and
implement state machine based operating system architec-
ture for sensor nodes. In this paper, we present a full-fledged
finite state machine execution platform as a sensor node
operating system.The earlier version of conceptual design on
FSM-based operating system has been presented in [12].

3. FSM-Based Program Execution Platform

Writing a complicated reactive control program is a difficult
task. To deal with the complexity in representing the reactive
part of the program, Harel [13] introduced a visual formalism
called a “statechart.” Since then, a state machine has been
an effective and powerful model to describe complex reac-
tive and event-driven systems like WSN applications. Our
mission is to provide a lightweight execution engine that
implements such a well-proven formalism as a programming
model. In the finite state machine implementation, a valid
input (or event) triggers a state transition, and output is
generated accordingly in a way ofmaking progress bymoving
the current state to the next one as defined in the transition
table. Such a state transition takes place instantaneously,
and an output function associated with the state transition
is invoked. Using this execution mechanism, a finite state
machine sequences a series of actions or handles input events
differently depending on the state of the machine. Many
embedded real-time systems are naturally amenable to the
finite state machine model. The model is also suitable to
represent the networked sensor applications.
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Figure 1: Operating system architecture and its components.

To implement a finite state machine, we need five com-
ponents as follows: (1) a memory pool consisting of event
pool and state transition table, (2) an event queue that stores
inputs in a FIFO order, (3) a callback installer with a set
of preinstalled callback function library that contains output
functions, (4) a state transition table loader with a set of state
transition tables to define valid state transitions and their
associated callback functions, and finally (5) a state sequencer
that accepts an input from an event queue to initiate a
proper state transition as shown in Figure 1. Each callback
function should satisfy the “run-to-completion” semantics to
prevent nested state transitions that are activated by other
events captured by the system. Thus, all of those external
events are going to be ignored temporarily. They will be
stored in the event queue for later services during executing a
callback function. Figure 1 schematically depicts the internal
architecture of the FSM-driven operating system with its
components.

Figure 2 shows a sample application represented by a state
modeling diagram. The corresponding state transition table
is shown as well, which is executable on FSM. The dotted
states and events in the diagram will be represented simply
by adding extra state transitions in the table. Update cost
becomes merely the size difference between transition tables.
The state-driven operating system is suitable to execute such
a state transition table with proper callback library functions.
This shows why the platform is inherently superior in terms
of reconfigurability.

4. Implementation of FSM-Based Sensor Node
Operating System

We have implemented the state machine based sensor
node operating system on 8-bit MCU ATmega128L (8MHz)
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Figure 2: State modeling and state transition table.

Figure 3: Callback library registry and operation.

equippedwithCC2420 (Zigbee) RFmodule that has a reliable
50m in-building range. A sensor node has four independent
memory banks, each of which has 32 kB flash memory as
shown in Figure 2. In the experimental implementation, we
hire ten sensor nodes and one sink node (PC). The system is
downloaded onto the sensor node that is directly connected
to the host PC via a serial communication initially, and then
all other nodes obtain the sameOS via wireless RF communi-
cation.The size of the operating system is 2,686 bytes of code
and 292 bytes of data, so less than 3 kB in total. Even if the
device drivers are included, the entire size does not exceed

14 kB, which is compact enough to reside in a 32 kB memory
bank. The development environment consists of the cross
compiler avr-gcc, the fusing program PonyProg2000, and
AVR Studio debugging program that is provided by Atmel
Corporation. We confirmed the compactness and efficiency
of a state machine based operating system which will be
presented in Section 5.

The system is divided into a hardware dependent part
and an independent one as shown in Figure 1. The hardware
dependent component has an event message parser, an inter-
rupt handler, and device drivers for an RF communication
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Figure 4: State transition table structure and management.
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Figure 5: Multihop and surge packet ratio, routing latency, and power usage.

module and a set of sensing units. In the middle level, the
kernel architecture is comprised of a state sequencer and an
event queue, a state transition table, and a callback library.
An input (or event) triggers a state transition if the event
queue handles all incoming events in a proper order. The
kernel keeps track of the finite state machine in a safe manner
by means of employing a mutex to guarantee the run-to-
completion semantics. The callback library is nothing but a
set of predefined functions to help application programmers
in advance. The internal structure of the callback library
repository and its operation are illustrated in Figure 3.

The operating system architecture also contains a runtime
monitor that serves as a dynamic application loader. As
mentioned before, the necessity of dynamic reconfiguration
is quite demanding. We implement a dynamic application
loader that chooses an application to run among a list of
legitimate state transition tables. Dynamic reconfiguration
can be made in two ways: system and application levels. In
system level reconfiguration, some of callback library will be
seamlessly replaced by the loader. In application level, it is
rather easier than in system level reconfiguration since what
we need to be is to update proper rows and/or columns in an
existing state transition table.The dynamic loader is in charge
of both cases.When the system receives an application reload
message via an interrupt from a communication adapter, the
monitor puts the kernel into a safe state, stops the kernel, and

reloads a new state transition table. Note that the monitor
is allowed to interrupt the kernel at any time unless it is in
state transition. Since state transition is guarded by a mutex,
the safety of a state machine is not compromised by such an
interruption. Figure 4 shows a brief internal structure of the
state transition table and how it can be managed.

5. Performance Evaluation

The performance data were retrieved to compare them with
those of TinyOS through the TinyBench environment [6].
Surge [14] is the simplest test application that was con-
ducted in the TinyBench. It is a direct implementation of a
multihop routing algorithm with a couple of sensed data-
like temperature and humidity. As shown in Figure 5, the
state-driven operating system implementation shows slightly
worse performance than those of TinyOS in terms of the
packet delivery rate, the routing latency, and the power usage.
Note that the difference is still negligible.

To measure the scheduling overhead and the CPUs active
rate, we run a blank form which does nothing. For the
duration of 500ms, the number of average instructions and
the execution cycles are shown in Figure 6. Still, the overhead
and the code size are slightly larger than that of TinyOS, but
they are sufficiently affordable in the conventional memory
size and CPU performance for a sensor node. Note that
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Figure 6: Scheduling overhead and CPU active rate.
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Figure 7: Operating system components: module sizes and system
overheads.

the purpose of a finite state machine based sensor node
operating system is to improve productivity in application
development. We also conducted a larger benchmark like the
implementation of the directed diffusion algorithm.Through
the test, we confirmed that the development productivity is
achieved while the increase of code and data size is restricted
within the hardware capability. Based on these benchmark
tests, we corroborated the trade-off relationship between
productivity and execution performance under finite state
machine based operating system. Figure 7 shows a list of
component modules for the state-driven operating system
implementation and the system overheads in terms of code
size and execution time.

6. Conclusions

We have presented the state-driven sensor node operating
system as a finite state machine execution platform for

wireless sensor nodes. It consists of the kernel, monitor,
and replaceable state transition tables and call back libraries.
Programmers can easily write a sensor node application
and derive executable code using a proper design tool and
load the executable code at runtime using the monitor
as an agent. Such a state-driven operating system offers a
number of benefits. First, its implementation is truly compact
and efficient since it is based on a state machine model.
Second, it supports dynamic node reconfigurability in a very
effective manner using replaceable state transition tables and
callback libraries. Third, it can be extended to implement
a sensor network management protocol, which is one of
the largely untouched regions of sensor network research.
Specifically, power management protocol is illustrated to
show the dynamic reconfigurability of the system. It gives us
an important refinement on application layer support for the
sensor network protocol stack. Consequently, programmers
can write application programs of higher abstraction for sen-
sor networks. These benefits render the finite state machine
platform as a sensor node operating system, which is ideal
for most recent WSN applications like intrusion detection
[15], energy efficient clustering protocols [16], disaster sur-
vivor detection system [17], and so on. We confirmed the
compactness and efficiency of the implementation through
TinyBench based performance evaluation.
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