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Abstract: Compressive strength of concrete is a significant factor to assess building structure 
health and safety. Therefore, various methods have been developed to evaluate the 
compressive strength of concrete structures. However, previous methods have several 
challenges in costly, time-consuming, and unsafety. To address these drawbacks, this paper 
proposed a digital vision based concrete compressive strength evaluating model using deep 
convolutional neural network (DCNN). The proposed model presented an alternative 
approach to evaluating the concrete strength and contributed to improving efficiency and 
accuracy. The model was developed with 4,000 digital images and 61,996 images extracted 
from video recordings collected from concrete samples. The experimental results indicated a 
root mean square error (RMSE) value of 3.56 (MPa), demonstrating a strong feasibility that 
the proposed model can be utilized to predict the concrete strength with digital images of their 
surfaces and advantages to overcome the previous limitations. This experiment contributed to 
provide the basis that could be extended to future research with image analysis technique and 
artificial neural network in the diagnosis of concrete building structures. 
 
Keywords: Concrete compressive strength, deep learning, deep convolutional neural 
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1 Introduction 
For the assessment of durability and performance of concrete based building, it is 
essential to acquire the various ingredients influence the performance of concrete. 
Compressive strength of concrete is a representative parameter to evaluate the 
performance of concrete structures [Beushausen and Luco (2016)]. To obtain the 
compressive strength, various test methods are developed, such as destructive test and 
non-destructive test [Kaouther (2014)]. In the past, the performance of concrete was 
generally assessed using destructive tests such as core drilling, to recognize their 
compressive strength [Bickley (1982); Denys (2010)]. However, destructive tests not 
only destroy critical structural components but also lead to safety problems damaging 
during the drilling the sample from the structures [Denys (2010); Shih, Wang, Lin et al. 
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(2015); Vona and Nigro (2015)]). In order to address these problems, non-destructive test 
(NDT) methods that minimize the damage caused to the structure have developed. Denys 
et al. [Denys (2010); Khoudja, Sbartaï, Breysse et al. (2017)]. At present, the Schmidt 
Hammer test, the Ultrasonic Pulse Velocity (UPV) test and Electrical Resistivity 
measurement are the representative NDT methods to determine the compressive strength 
of concrete structures [Ju, Park and Oh (2017); Kaouther (2014)]. However, although 
these methods are simple and effective, NDT produces different results depending on the 
formula applied [Breysse (2012); Elaty (2014)] and also suffers from low reliability 
[Yaseen, Deo, Hilal et al. (2018)].  
Since it is important to measure the compressive strength accurately for assessment of 
building performance, many studies have sought to develop better compressive strength 
measurement methods [Bickley (1982); Chen, Fu, Yao et al. (2017b); Denys (2010); 
Elaty (2014); Ju, Park and Oh (2017); Kaouther (2014); Omar, Boukhatem, Ghrici et al. 
(2017); Park and Jung (2010); Shih, Wang, Lin et al. (2015); Yaseen, Deo, Hilal et al. 
(2018)]). Several researchers have developed advanced methods to evaluate the 
compressive strength of concrete using algorithms based on fuzzy logic, data mining, and 
machine learning techniques to boost the accuracy of concrete performance predictions 
[Chen, Fu, Yao et al. (2017b); Omar, Boukhatem, Ghrici et al. (2017); Yaseen, Deo, Hilal 
et al. (2018); Elaty (2014)]). The proposed methods present quite good results to evaluate 
the concrete strength producing reliable predictive values when the mixing ratio 
information is known. Although these methods improved the accuracy and effectiveness 
in evaluating concrete compressive strength, they still required specific information 
related to test specimen such as the mix ratio. Because it could be challenging to 
determine the composition ratio information for existing concrete structures, apparent 
limitations are restricting their utility.  
Hence, a new method to overcoming the traditional approach is required to easily and 
simply evaluate the performance of concrete. To address these limitations, the effective 
methodologies based on image analysis in evaluating the strength of concrete have been 
proposed [Lange, Jennings and Shah (1994); Başyiğit, Çomak, Kilinçarslan et al. (2012); 
Dogan, Arslan and Ceylan (2017)]. These studies were implemented with the assumption 
that the surface image of concrete provides a good correlation with concrete strength in 
accordance with a good correlation between the strength and characteristics of concrete 
(e.g., pore properties, cement paste, aggregate, water/cement ratio). Researchers have 
reported a correlation between a digital image of the concrete and its compressive 
strength, indicating this is indeed a valid way to examine many of the parameters known 
to affect the strength of concrete such as pore properties, water/cement ratio and cement 
paste [Wong, Pappas and Zimmerman (2011); Hu and Li (2014); Akand Yang and Gao 
(2016); Shi, Wu, Lv et al. (2015); Dogan, Arslan and Ceylan (2017); Siregar, Rafiq and 
Mulheron (2017)]. In this regard, many studies have conducted to improve the accuracy 
and effectiveness of concrete strength evaluating models using digital vison data. 
However, image-based analytic methods require to extract the appropriate thresholds for 
feature segmentations [Wong, Head and Buenfeld (2006)]. Since the heterogeneous 
mixtures such as concrete are composed of a complex element, it is difficult to feature 
extract by hand-craft for analyzing digital vision data [Lin, Nie and Ma (2017)]. To 
address these limitations of image analysis methods, a deep learning-based method was 
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proposed for extracting features autonomously using deep convolutional neural networks 
(DCNN) [Russakovsky, Deng, Su et al. (2015)]. The DCNN-based neural network has 
advantages its automatic computation as a feature extractor [Wang, Ma, Zhang et al. 
(2018); Cha, Choi and Büköztürk (2017)]. Moreover, this approach is both fast and 
efficient, it could be contributed to reducing the cost and time required to solve problems 
using traditional analysis methods considerably.  
Therefore, in this study, we proposed a digital vision based concrete compressive strength 
evaluation model using DCNN technologies. Since the characteristics of concrete with 
various surfaces depend heavily on the state of the surface particles, this method can 
evaluate the compressive strength of concrete structural based on a detailed examination 
of their surface features [Hilsdorf and Kropp (2004)]. To verify the accuracy of the 
proposed method, we tested three different DCNN algorithms that are widely used for 
image classification because of their high accuracy. The algorithms were modified 
appropriately and then applied to improve the performance of the concrete compressive 
strength evaluation model. The experimental results obtained confirm the feasibility of 
using this new approach for assessing the compressive strength in concrete structures. 

2 Methodology 
Deep learning based convolutional neural network (CNN) methods are becoming very 
popular for computer vision field analyses [Cha, Choi and Büköztürk (2017); Krizhevsky, 
Sutskever and Hinton (2012); Schmidhuber (2015); Szegedy, Liu, Jia et al. (2015); Xu, 
Luo, Wang et al. (2016)] as they represent a close-to-human level of image recognition 
[Krizhevsky, Sutskever and Hinton (2012); Szegedy, Liu, Jia et al. (2015)]. Such 
methods can solve highly complex problems through learning, and for applications where 
sufficient data is available, their analytical performance continues to increase. In the past, 
traditional methods have also proven to be useful when hand-crafted features must be 
defined. However, since some domain knowledge involves high-dimensional data such as 
images, speech, or text-hand-crafting features, the performance of older learning 
algorithms is severely limited. When the domain knowledge of the image data is 
undefined, an analysis based on CNNs will be more accurate because a CNN learns 
features from raw image pixels without the need for any further information about the 
application images. This state-of-the-art method trains itself autonomously to identify 
features in hidden layers of the deep neural networks, and because deep convolutional 
neural networks (DCNNs) represent a data-driven approach, algorithms can learn the 
relevant features by analyzing the data on their own. 
In this study, deep learning techniques were applied to examine surface images of 
concrete specimens in order to predict the compressive strength of the concrete. Deep 
learning can understand and imitate complex and abstract concepts and to identify the 
characteristics of the input data and classify the data accordingly [Wang, Ma, Zhang et al. 
(2018)]. This feature allows the algorithm to extract features from the algorithm itself and 
classify data as being similar to those characteristics, even if the characteristics of the 
object are not previously known [Wan, Wang, Hoi et al. (2014)]. This methodology 
makes it a suitable approach for analyzing data with complex, high-dimensional data with 
few known features, even though it differs from existing methods for determining the 
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properties of an object. It has become possible by applying deep learning to existing 
artificial intelligence algorithms. The concept of deep learning was introduced in 1998 by 
LeCun et al., who developed the first deep neural network [LeCun, Bottou, Bengio et al. 
(1998)]. It generally consists of three layers: a Convolution Layer, a Pooling Layer, and a 
Fully-Connected Layer [Ki and Cho (2017)] (Fig. 1). Once the image is recognized, the 
convolution layer and the pooling layer are repeated multiple times until the features of 
the hierarchical structure have been extracted. These can then be input and classified into 
the target group [Krizhevsky, Sutskever and Hinton (2017)]. 

 
Figure 1: Architecture of the Alexnet [Krizhevsky, Sutskever and Hinton (2012)] 

Most image recognition algorithms use filters to extract features [Chen, Su, Cao et al. 
(2017a); Soltani, Zhu and Hammad (2016)]. The layer that serves as a filter in CNN is 
called the Convolution layer, and a feature-map is formed through learning in this layer. 
Pooling is used to reduce the size of the feature-map image obtained through the 
Convolution layer. At this point, features that represent the image are extracted. Finally, 
these global features are integrated into a fully connected network, capable of providing 
optimal recognition results through learning. For this study, appropriate data are collected 
to enable the algorithm to extract relevant features from images of the concrete surface 
that are then used to predict the material’s compressive strength. The three algorithms, 
Concnet_A, Concnet_G, and Concnet_R, used to evaluate the concrete’s compressive 
strength, are modified from Alexnet [Krizhevsky, Sutskever and Hinton (2012)], 
Googlenet [Szegedy, Liu, Jia et al. (2015)], and Resent [He, Zhang, Ren et al. (2016)], 
respectively. the characteristics of each algorithm (Tab. 1) are as follows.  
Concnet_A is a modified version of the neural network architecture proposed by 
Krizhevsky et al. (Fig. 1) [Krizhevsky, Sutskever and Hinton (2012)]. Its learning rate is 
improved by using the ReLU model instead of the Tanh and Sigmoid functions used in 
conventional neural networks, and the error rate is reduced by overlapping the pooling 
layers [Krizhevsky, Sutskever and Hinton (2012)].  
Concnet_G is a modified version of the neural network introduced by Szegedy et al. 
[Szegedy, Liu, Jia et al. (2015)] which solves the problem of side effects such as 
overfitting and the increase in computation that can be caused by using 22 layers by 
applying the nine inception module concept (Fig. 2). Concnet_G extracts various features 
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locally by using Convolution in parallel with various kernel sizes, and the number of 
feature maps is reduced by using a 1×1 Convolution. Hence the amount of computation 
required is controlled. Besides, the auxiliary classifier is used to prevent the loss of 
gradients that can occur while learning [Szegedy, Liu, Jia et al. (2015)]. 

Table 1: Characteristics of DCNN algorithms 

Model Layers Characteristics Advantages 

Concnet_A 8 

Neural networks with non-
saturating ReLU nonlinearity Consistent learning rate 

Overlapping pooling Suppresses overfitting and 
reduces error rate 

Concnet_G 22 

Uses various kernel size 
convolution in parallel 

Easy to extract various 
feature 

Uses 1×1 convolution 
Reduces the number of 
feature maps adjusting the 
amount of computation 

Avoids the loss of gradient 
with an auxiliary classifier 

Avoids converging to zero 
through multilayers 

Concnet_R 50 
Residual learning Prevents the loss of the 

gradient 
Identify shortcut Computational optimization 

 

 
Figure 2: Inception module with dimension reductions [Szegedy, Liu, Jia et al. (2015)] 

Concnet_R is a modified model of the Residual net (Resnet) initially proposed by 
Szegedy et al. [Szegedy, Liu, Jia et al. (2015)]. It consists of a network with many layers, 
created by repeatedly stacking several residual blocks (Fig. 3). The original Resnet 
architecture consisted of 152 layers, but in the Concnet_R model, this is reduced to 50 
layers because the concrete image size for training is smaller at just 84×84 compared to 
the 224×224 image size in the original. Although the number of layers is higher than in 
either Alexnet or Googlenet, the difficulties frequently encountered in deep neural 
networks such as vanishing, exploding, the gradient problem and the increasing number 
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of parameters, are solved through the skip connection. The Resnet architecture, therefore, 
presents higher accuracy by learning more complicated problems and can learn the depth 
of layers to predict the compressive strength of concrete by extracting the features [He, 
Zhang, Ren et al. (2016)]. Therefore, this study explored three modified algorithms to 
analyze the characteristics of heterogeneous materials distributed on the concrete surface. 
The experimental results were identified and the accuracy of each algorithm was 
compared in chapter 4. 

 
Figure 3: The residual network with 34 parameter layers [He, Zhang, Ren et al. (2016)] 

3 Experimental procedure 
In order to develop a DCNN algorithm for predicting concrete compressive strength, it is 
necessary to define the input, output and input/output parameters of the algorithm and 
design the detailed structure of the DCNN, including the layer type. It involves 
determining the optimum number of layers, defining the convolutional layer and the fully 
connected layer, and selecting the filter type, which involves determining the optimum 
number of filters and the filter size. The performance of the algorithm depends on 
precisely how the input and output of the DCNN are defined [Schmidhuber (2015)]. 
When image data is used, the input data is typically defined by the input size, 
preprocessing, and augmentation of the image. The output type can be expressed in terms 
of the target value as it stands or can be transformed into various normalization or 
category forms. It means that a DCNN’s input and output must be carefully defined in 
order to generate an accurate prediction algorithm. For this study, an image of a concrete 
surface was set as the input data, and the concrete compression strength was set as the 
output data. Since no existing data is linking compressive strength with images, data sets 
suitable for DCNN algorithm learning had to be collected. In order to develop a set of 
suitable concrete surface images covering a wide range of compressive strength data sets, 
concrete specimens were prepared to utilize various mix proportions. 

3.1 Input data collection 
Twenty-five concrete specimens (Φ100×200 mm) were prepared at three water/cement 
mixing ratios to collect a suitable set of concrete images showing various compressive 
strength performances. Samples with a water content of 68% (9 samples), 50% (8 samples), 
or 33% (8 samples) were created and cured for periods ranging from 3 days to 4 weeks in 
order to obtain a broad range of compressive strengths based on the mix proportions 
indicated in Tab. 2. The dataset for experiments was collected on concrete samples with a 
specific combination in the laboratory environments. The experimental conditions are 
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shown in Fig. 4. First, we prepared the concrete specimens to implement the performance 
test and repeatedly and randomly recorded several 25 mm×15 mm images of the surface of 
each to build an appropriate image dataset that could then be linked to their known 
compressive strength (subsequently measured as described below). Images of the surface of 
each specimen were captured from a distance of 15 mm with a digital camera; the original 
image pixel size of 4,096×2,160 was reduced to 224×224 to prevent overfitting of the 
algorithm. Each sample was photographed 300 times, with the camera moved between 
shots to ensure the image captured showed a different section of the surface each time. 

Table 2: The mix proportion of experimental concrete specimens 

W/C  
(%) 

Water 
(L/m3) 

Cement 
(kg/m3) 

S/A 
(%) 

Fine 
aggregate 
(kg/m3) 

Cores 
aggregate 
(kg/m3) 

Ad. 
(%) 

Slump 
(mm) 

Air 
Content 
(%) 

33 160 480 45 749 965 0.6 150 4.4 

50 165 330 48 852 973 0.5 150 4.6 

68 170 250 61 932 944 0.5 150 4.9 

W/C: Water/Cement, S/A: Sand/Aggregate, Ad.=Superplasticizer 

If the size of the image is large, the amount of information it contains is also significant, 
which can lead to problems with high dimensionality and overlapping pixels interfering 
with the algorithm’s learning process. However, if the size of the image is too small, the 
amount of information is significantly reduced, potentially to the point at which it 
becomes effectively worthless. Therefore, to achieve an excellent DCNN algorithm 
performance and learning capability, it is crucial to identify the optimal input image size. 
For this study, setting the image data size to 84×84 was found to be adequate for 
algorithm learning. As the accuracy of a deep learning algorithm increases as the amount 
of data available for learning increases, the data was amplified using random cropping 
and horizontal flipping as shown Fig. 5.  

 
Figure 4: Schematization about experimental conditions for building image dataset 
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          (a) Random cropping                                 (b) Horizontal flipping 

Figure 5: Data augmentation using random cropping and horizontal flipping 

Tab. 3 shows the number of image datasets used as the input in this study. Data 
augmentation was performed on 65,996 datasets obtained from video images of the 
surface to secure sufficient data. The training, validation, and test data were utilized at a 
ratio of 7:2:1. The dataset was trained using 70% of the training data, and this was 
doubled by flipping. The resulting 112×112 images were then randomly cropped multiple 
times to create images that were 84×84 in size, and the data was amplified 28×28 times. 
As a result, the data used as input for the training algorithms consisted of about 72 
million images.  

Table 3: The number of parameters of the derived algorithms 

Data augmentation Images (A) Images extracted from video (B) Total 
dataset 4,000 61,996 

A+B Train (*0.7) 2,800 43,397 
Flip (*2) 5,600 86,793 
Random-crop (28*28) 4,390,400 68,045,712 72,436,112 

3.2 Output data collection 
The specifications selected for the output information from the deep learning algorithm 
determine what can be obtained from the input information and algorithm analysis. Here, 
the output information was the compressive strength of the concrete, but since the 
compressive strength and the image data have not yet been linked in an existing database, 
the compressive strength of the specimens had to be measured experimentally and then 
compared with the images of the specimen surface taken immediately beforehand. The 
samples created for this experiment were therefore tested after the image capture process 
was completed using the procedure specified in KS F 2405 and found to have 
compressive strength values between 8.89 MPa and 41.48 MPa.  
The performance of the new algorithm was measured in terms of the difference between the 
actual and predicted concrete performance values. Based on a range of compressive 
strengths corresponding to the measured values, namely 8.89 to 41.48 MPa, the Euclidean 
Loss Equation shown below in Eq. (1) was used as a loss function for the DCNN learning 
to predict this output value. Here, N is the total number of points in the dataset, oi is the 
output value of DCNN, and 𝑦𝑦𝑖𝑖  is the compressive strength measured. As the algorithm 
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utilizes this loss function and applies a reversed wave algorithm, the weights of the DCNN 
are learned in such a direction that this error function becomes a minimum. 

Loss function = 1
𝑁𝑁
∑ (𝑜𝑜𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑖𝑖
𝑁𝑁                                                                                          (1) 

As the range of compressive strength test results obtained from the test was quite wide, a 
performance improvement test was performed via normalization, with the value changing 
from 0 to 1 through a min-max normalization of the type shown in Eq. (2).  

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟−𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                              (2) 

4 Experiments and results 
Data for the 4006 images collected by the digital camera, along with the training, 
verification, and test data, were classified, as shown in Fig. 6. The image data collected 
for each sample was distributed as follows: 70% training data, 10% validation data, and 
20% test data. A total of 2,804 images extracted from the 4,006 images collected were 
used for training. The images for all the compressive strengths were used equally for the 
three (training, validation, and test) algorithms. The algorithm learns by using the 
concrete specimen images distributed across the test set, and we monitored the 
performance of the algorithm by using the validation set and adjusting the amount of 
learning. Finally, the test set was used to examine the error rate of the algorithm.  

 
Figure 6: Concrete specimen surface image data distribution 
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Figure 7: Validation loss of proposed algorithms 

 
Figure 8: Root mean square error according to the algorithm 

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

0.04

0.03

0.02

0.01

0.00

0.05

Va
lid

at
io

n
 L

o
ss

Iterations

Concnet_A
Concnet_G
Concnet_R



 
 
 
Digital Vision Based Concrete Compressive Strength Evaluating Model                  921 

 
Figure 9: Prediction tendency achieved by the three algorithms 

As the validation curve in Fig. 7 shows, overfitting was not a problem. As explained 
earlier, more than 72 million concrete surface images from specimens with a range of 
compressive strengths were collected for this study by implementing data augmentation 
with random cropping and horizontal flipping. The validation loss flow can be interpreted 
as evidence that sufficient data sets have been collected for the training process. 
Fig. 8 indicates the accuracy of the RMSE for each concrete compressive strength value. 
The lowest root means square error (RMSE) of 3.56 is for Concnet_R, which is 0.08 
lower than Concnet_G (3.64) and 0.26 lower than Concnet_A (3.82), corresponding to a 
prediction performance that is 2.0% and 6.8% better. RMSE values are distributed in 
various ways and represent the difference in the amount of learning data available for the 
target value. The results of the RMSE for each target are shown in Tab. 4. 
Fig. 9 shows the distribution of the predicted values according to each algorithm. This 
graph demonstrates that the results for Concnet_R were distributed most closely to the 
target values. The RMSE for Concnet_R (3.56) demonstrates its superior performance 
compared to either of the other two algorithms.  
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Table 4: Concrete surface digital camera image distribution and RMSE 

No. Target 
(MPa) 

Training 
Set  

Validati
on 
Set  

Test 
Set  

RMSE 

Concnet_A Concnet_G Concnet_R 

1 8.89 5.0% 3.0% 3.5% 0.82 0.89 0.95 

2 9.21 3.0% 2.0% 3.0% 4.49 4.02 3.51 

3 10.29 9.5% 7.5% 9.0% 2.30 2.76 2.64 

4 10.57 3.0% 2.0% 3.0% 2.00 2.41 2.60 

5 10.54 3.0% 4.0% 3.0% 2.62 3.71 3.29 

6 16.67 6.0% 5.5% 7.0% 2.91 2.85 2.07 

7 16.77 6.0% 6.0% 7.0% 3.17 2.21 1.98 

8 17.09 3.0% 4.0% 4.0% 3.59 4.75 4.91 

9 17.29 6.0% 6.0% 5.0% 3.18 3.39 1.79 

10 17.73 3.0% 3.0% 3.5% 4.50 4.61 5.80 

11 18.08 3.0% 3.0% 3.0% 4.68 3.84 2.79 

12 18.70 4.0% 3.0% 3.0% 2.22 3.05 2.78 

13 18.83 3.0% 3.0% 3.0% 6.53 6.14 7.21 

14 20.27 3.0% 5.0% 4.0% 4.89 5.11 4.61 

15 25.96 6.0% 6.0% 5.0% 1.83 1.80 2.12 

16 26.28 6.0% 5.5% 5.0% 3.07 2.14 2.43 

17 27.58 6.0% 6.0% 5.0% 3.53 4.20 3.82 

18 27.97 3.0% 4.0% 3.0% 6.41 4.33 4.69 

19 28.29 3.0% 5.0% 3.0% 4.48 4.46 5.04 

20 30.58 3.0% 3.0% 4.0% 5.76 4.77 4.05 

21 33.83 3.0% 4.0% 3.0% 3.63 3.86 2.93 

22 34.99 3.0% 2.0% 3.0% 3.63 3.45 2.74 

23 40.59 3.5% 4.0% 4.0% 5.60 4.87 5.60 

24 41.48 3.0% 3.5% 4.0% 4.51 3.59 3.53 

Average 3.82 3.64 3.56 

The accuracy of the image-based DCNN method performed in this study was then 
compared with the accuracy achieved by conventional machine learning and NDT 
methods to determine the suitability of the new algorithm for estimating the compressive 
strength of concrete. 
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Table 5: Comparison with existing NDT prediction results 

Author Methods Algorithm Input Data RMSE 

Chen et al.  
[Chen, Fu, Yao et al. 
(2017b)] 

NDT Regression Rebound hammer test value 
Ultrasonic pulse velocity test value 

4.90 
4.90 

Rashid et al. [Rashid 
and Waqas (2017)]  

NDT Regression Rebound hammer test value 
Ultrasonic pulse velocity test value 

12.4 
37.9 

Yaseen et al.  
[Yaseen, Deo, Hilal 
et al. (2018)] 

Machine 
learning 

SVM Concrete cement 
Concrete oven dry density 
Concrete water/binder 
Concrete foam 

4.35 
3.57 
4.00 
3.33 

Machine 
learning 

M5 Tree Concrete cement 
Concrete oven dry density 
Concrete water/binder 
Concrete foam 

3.30 
2.17 
6.84 
2.29 

Machine 
learning 

MARS Concrete cement 
Concrete oven dry density 
Concrete water/binder 
Concrete foam 

3.68 
1.37 
6.41 
3.57 

Machine 
learning 

ELM Concrete cement 
Concrete oven dry density 
Concrete water/binder 
Concrete foam 

3.25 
1.06 
3.80 
1.48 

Proposed Models DCNN Concnet_A Concrete Surface Digital Image 3.82 

DCNN Concnet_G Concrete Surface Digital Image 3.64 

DCNN Concnet_R Concrete Surface Digital Image 3.56 

Tab. 5 lists the existing RH and UPV test values collected by previous researchers. The 
accuracy of the compressive strength estimation formula analyzed by the regression has 
an RMSE of 4.9. In the SVM, M5 Tree, MARS, and ELM algorithms used by Yaseen 
[Yaseen, Deo, Hilal et al. (2018)], the distribution ranges from RMSE 1.06 to 6.84 using 
the information on the cement, oven dry density, water/binder, and foam. Our new 
approach based on Alexnet (Concnet_A), Googlenet (Concnet_G), and Resnet 
(Concnet_R) achieved RMSEs of 3.82, 3.64, and 3.56, respectively. Of these, the 
prediction using Resnet achieved the highest accuracy. The mean error value of 
compressive strength was measured within 4 MPa using only surface image information 
for the concrete, which is a significant step forward. 

5 Discussion and limitations 
The DCNN algorithm developed in this study was designed to predict the compressive 
strength of concrete based on a digital vision data of the concrete's surface. The proposed 
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model provides a new approach to support the efficient assessment of concrete building 
performance. In this study, an innovative image-based approach for measuring the 
compressive strength of concrete was developed. The results demonstrate that it is indeed 
possible to verify the performance of concrete facilities using digital camera equipment. 
The proposed method indicates that this has the potential to become an efficient and 
accurate way to evaluate compressive strength values using a digital image and deep 
neural network in samples with no structural defects. However, as the experiment was 
carried out using concrete specimens prepared in a laboratory environment, this study has 
only a limited range of data to draw on; concrete surface images exposed to real 
environments were not utilized. Under real-world conditions, where many parameters 
influence the surface properties of the concrete, as yet the best way to measure the 
compressive strength of concrete structures remains to test samples extracted from the 
structures to gain a real picture of a structure's concrete performance. Nevertheless, this 
study is a significant first step in verifying the potential effectiveness of an efficient new 
approach to evaluating concrete performance. 
In future research, these limitations should be addressed by directly observing the current 
status of a wide range of concrete structures and predicting their compressive strength by 
analyzing their observed images. Deep learning algorithms represent a new and robust 
way to detect features from complex porous concrete surfaces. It is not unreasonable to 
assume that the DCNN technique can also learn to assess the compressive strength of 
concrete structures based on characteristics such as microcracks, pores, and transition 
shear features that appear on the surface of a concrete structure.  

6 Conclusion 
This paper proposed a digital vision-based evaluation approach for assessment building 
performance. By collecting over 4,000 single images and 61,996 video extracted images 
and measuring the associated concrete performance values, a DCNN model was proposed, 
and the optimum data file size determined. The performance of the proposed method was 
validated based on data collected in the laboratory, revealing an RMSE value of less than 
3.56 for the Concnet_R algorithm. It signifies that the concrete compressive strength 
error value predicted by proposed model was within 3.56 MPa of the true value. The 
proposed model presented a great promise as a way to predict compressive strength 
through examining images of the surfaces of concrete structures. Moreover, the results 
demonstrate that the deep learning approach provides a valuable opportunity to contribute 
to improving the efficiency for assessment of concrete structures. As yet, however, this 
model was developed only to evaluate the compressive strength of concrete samples with 
specific proportions produced in the laboratory environment. More research is required to 
build a database that is capable of recognizing surface images of deteriorated concrete 
structures in various environments and then strengthening the algorithms to enable them 
to predict how concrete reacts to being exposed to different environments. Advanced 
models that can predict various performance indicators such as chloride diffusion 
coefficient, porosity, and compressive strength also need to be developed to achieve a 
comprehensive performance index for concrete structure and infrastructures. 
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