
Vol.:(0123456789)1 3

Arabian Journal for Science and Engineering
https://doi.org/10.1007/s13369-021-05455-4

RESEARCH ARTICLE-ELECTRICAL ENGINEERING

Hardware Architecture Exploration for Deep Neural Networks

Wenqi Zheng1 · Yangyi Zhao1 · Yunfan Chen1 · Jinhong Park2 · Hyunchul Shin1

Received: 11 November 2020 / Accepted: 8 February 2021
© King Fahd University of Petroleum & Minerals 2021

Abstract
Owing to good performance, deep Convolution Neural Networks (CNNs) are rapidly rising in popularity across a broad
range of applications. Since high accuracy CNNs are both computation intensive and memory intensive, many researchers
have shown significant interest in the accelerator design. Furthermore, the AI chip market size grows and the competition
on the performance, cost, and power consumption of the artificial intelligence SoC designs is increasing. Therefore, it is
important to develop design techniques and platforms that are useful for the efficient design of optimized AI architectures
to satisfy the given specifications in a short design time. In this research, we have developed design space exploration tech-
niques and environments for the optimal design of the overall system including computing modules and memories. Our
current design platform is built using NVIDIA Deep Learning Accelerator as a computing model, SRAM as a buffer, and
DRAM with GDDR6 as an off-chip memory. We also developed a program to estimate the processing time of a given neural
network. By modifying both the on-chip SRAM size and the computing module size, a designer can explore the design
space efficiently, and then choose the optimal architecture which shows the minimal cost while satisfying the performance
specification. To illustrate the operation of the design platform, two well-known deep CNNs are used, which are YOLOv3
and faster RCNN. This technology can be used to explore and to optimize the hardware architectures of the CNNs so that
the cost can be minimized.

Keywords AI architecture · Neural network architecture · CNN · Design space exploration

1 Introduction

Machine learning techniques are pervasive, and in par-
ticular deep Convolution Neural Networks (CNNs) have
demonstrated to be useful to solve challenging problems,
such as object classification [15, 16], pedestrian detection
[17, 18], and image enhancement [19, 20]. To achieve high

accuracy, the complexity of the deep CNNs and the energy
consumption of the CNNs are increasing. In recent years,
many research teams proposed competitive architectures to
cope with the high complexity of deep CNNs. For instance,
Google has proposed TPU [3], and Cambricon has launched
the DIANNAO series of accelerators [4–9]. In [21, 22], opti-
mal design space exploration based on FPGA is explored
to accelerate the CNN training. However, these works only
focus on designing effective CNN computation or minimiz-
ing the memory access between off-chip memory and on-
chip computing modules for CNN computation [23–25]. In
this research, we try to explore the overall system design
space including memories (DRAM and SRAM) as well as
computing modules. A designer can efficiently explore the
design space by changing the size of SRAM buffer as well
as the size of the computing modules.

The size of the on-chip SRAM and the capacity of the
computing modules are two main parameters to make trade-
off between the neural network performance and resource
cost. For efficient design space exploration, it is important
to estimate the performance of the given neural network in

 * Hyunchul Shin
 shin@hanyang.ac.kr

 Wenqi Zheng
 zhengwenqi@hanyang.ac.kr

 Yangyi Zhao
 zyangyi@hanyang.ac.kr

 Yunfan Chen
 chenyunfan@hanyang.ac.kr

 Jinhong Park
 jhp.park@samsung.com

1 Department of Electrical Engineering, Hanyang University,
Ansan, Republic of Korea

2 Samsung Electronics Inc, Suwon-si, Republic of Korea

http://orcid.org/0000-0003-3020-5130
http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-021-05455-4&domain=pdf

 Arabian Journal for Science and Engineering

1 3

various configurations, because a designer needs to choose
the optimal configuration from many possible combinations.
The objective of this research is to develop system design
techniques and environments for the optimal design of a
hardware architecture, including memories and computing
modules, for deep CNNs. In this work, we have developed
a program to estimate the performance of neural networks
in a specific architecture. This technique helps to effectively
explore the design space to reduce the chip area.

The main contributions of this work are summarized as
follows.

1. We suggest an efficient platform for design space explo-
ration for deep CNNs. As the applications of deep learn-
ing or deep CNNs get popular, this platform will be very
useful to design an optimal architecture for a given deep
CNN.

2. Since two critical parts for deep CNN processing are
data transfer and computation, the platform supports
data transfers from/to memories and computations.

3. Efficient performance estimation techniques are devel-
oped for capitalizing pipelining and parallel processing.

4. Extension to other memory modules and computing
modules are possible. These techniques can help reduc-
ing the design cost and design time (time to market).

The rest of this paper is organized as follows. In Sect. 2,
we introduce the overall platform to explore the design
space. Section 3 presents the hardware architecture, includ-
ing computing modules and memory modules. Section 4
describes how to estimate the performance. Section 5 pre-
sents the experimental results, illustrating how design trade-
off can be achieved. Finally, conclusions are given in Sect. 6.

2 Platform for Design Space Exploration

The chip area and performance are dependent on the on-chip
SRAM size and the computing module size. It is important
to explore the design space and to choose an optimal com-
bination of sizes.

We designed a platform to explore the design space, as
shown in Fig. 1. In the platform, two design parameters are
the SRAM size and the computing module size. To process a
neural network, the data necessary should be transferred and
the required computation should be executed. The amount
of data to be transferred is the sum of the neural network
input feature map size and the weight parameter size for
each layer. We estimate the performance of an architecture
for a deep CNN by estimating the data transfer time and
computation time considering pipelining. The performance
estimation method is explained in Sect. 6. Our platform can
efficiently explore design space for various configurations.

For given SRAM size and computing module size, the
NN performance is estimated. Then, the designer check
whether the performance satisfies the specification. The
designer may vary the SRAM size and computing module
size until a satisfactory optimized design is obtained.

To illustrate the usefulness of the proposed platform, we
explored the design of two well-known neural networks, as
examples of two object detection methods. The object detec-
tion framework can be divided into two categories. One is a
two-stage framework, which first performs regional recom-
mendation and then performs object classification; the other
one is a one-stage end-to-end framework that uses a net-
work to do everything and outputs the results in one stage. A
typical two-stage method is faster R-CNN [12], and a well-
known one-stage method is You Only Look Once (YOLO)
[13, 14]. We used these two CNN examples to evaluate our
design platform.

3 Overall Hardware Architecture

In this section, we present the overview of our hardware
architecture for deep neural networks and explain each
block including memory modules and computing modules
in detail. We also present the transmission rules between
modules. During data transmission and computation, pipe-
line methods and parallel hardware structures are capitalized
to reduce the execution time.

3.1 Overview of the Hardware Architecture

Since general-purpose CPUs can be a limiter for modern
CNNs due to the lack of computational parallelism [10],
a specific hardware accelerator is frequently needed to

Fig. 1 Architecture design exploration platform for deep neural net-
works

Arabian Journal for Science and Engineering

1 3

capitalize parallelism and pipelining for many applications.
Figure 2 shows a typical architecture for deep CNN compu-
tation, which consists of off-chip memory, on-chip buffer
memory, and a set of computing modules.

Currently, our hardware architecture is built based on
Nvidia Deep Learning Accelerator [2] with an on-chip
SRAM buffer and a GDDR6 DRAM as an off-chip memory.
In general, the NVDLA modules can be replaced by other
modules such as TPUs [3] or DIANNAO series [4–9], and
DRAM with GDDR6 can be replaced by a High Bandwidth
Memory (HBM) [11] for wider data bandwidth at higher
cost.

The detailed block diagram of the hardware structure is
shown in Fig. 3. We use NVDLA as the computation model
because it can support multiple commonly required com-
putation modes, including convolution, pooling operation,
activation, and normalization. The GDDR6 [1] DRAM as
off-chip memory provides low-cost solution when compared
to the HBM, and can be used for many applications requiring
“low” and “mid” level performance. In Fig. 3, the RUBIK
module is used to reshape layers in faster RCNN, the PDP
is used for pooling layers, and the SDP is used for activation
functions of a neural network.

3.2 Computing Module NVDLA

In NVDLA, a Convolution Buffer (CBUF), a Convolution
MAC (CMAC), and a Convolution Accumulator (CACC)

are main components used for convolution operations. The
CBUF caches the input feature data and the weight data for
the next stage computation. The CMAC receives the input
feature data and the weight data and operates multiplications
and additions. The results from the CMAC are called partial
sums. The partial sums are accumulated by the CACC. The
Planar Data Processor (PDP) for pooling layer can support
MAX, MIN, and MEAN pooling methods. The Single Point
Data Processor (SDP) is used for activation and batch nor-
malization. The RUBIK for reshape layers can split or merge
data. An atomic operation is a base step for direct convolu-
tion in NVDLA. Atomic operations can work when the chan-
nel width is less than or equals to 128. When the input fea-
ture map channel is more than 128, the channel operation is
needed. A channel operation includes multiple block opera-
t i o n s , a n d t h e n u m b e r o f b l o ck o p e r a -
tion = ceiling

[

input feature map channel

128

]

 . In other cases, the chan-
nel operation is not required and the number of block
operation is 1.

(1) CBUF
 The CBUF has separate bandwidths for the input fea-

ture data and the weight data. Thus, the input feature
data and the weight data can be transferred simultane-
ously. The CBUF can read 128 Bytes of feature data
and 64 Bytes of weight data or write 128 Bytes of fea-
ture data and 128 Bytes of weight data per clock cycle.
When we calculate the transmission time, we take the
longer of the feature data transmission time and the
weight transmission time and ignore the shorter one.

(2) CMAC
 The CMAC consists of multiple MAC cells. The

initial configuration is 16 MAC cells. To improve effi-
ciency, we can increase the number of MAC cells to
32. Each MAC cell contains 128 multipliers for INT
8. When the input feature map channel is less than or
equal to 64, one MAC cell can be divided into two com-
putation modules. When the input feature map channel
is bigger than 64, one MAC cell constitutes one com-
putation module. Each atomic operation spends 7 clock
cycles.

(3) CACC
 The main components in CACC include an adder

array, an assembly SRAM group (ABUF), a delivery
SRAM group (DBUF), and a truncating array. One ele-
ment is 1*1*channel data and the channel width of one
element is less than or equal to 128. The bandwidth
from CMAC to ABUF is 16 elements. The bandwidth

Fig. 2 Generic view of an accelerator

Fig. 3 Hardware Architecture using NVDLA computing modules and
a GDDR6 based DRAM

 Arabian Journal for Science and Engineering

1 3

from ABUF to truncating array is 8 elements. The
bandwidth from truncating array to DBUF is 16 ele-
ments. The bandwidth from DBUF to SDP is 4 ele-
ments. Based on these bandwidths, one can calculate
the transmission time in CACC.

(4) SDP
 The bandwidth from SDP to SRAM is 16 elements.

The SDP receives 4 elements of data from the DBUF
each clock cycle and transfers 16 elements of output to
SRAM each 4 clock cycles.

3.3 Memory Module

Memory modules include an off-chip DRAM and an on-chip
SRAM. GDDR6 8 GB × 16 mode can be used to transfer data
efficiently between the DRAM and the SRAM. GDDR6 × 16
mode has burst length of 16. First, we calculate how many
rows the data occupies with the GDDR6.

where the number of rows (#row) represents the number
of rows the data occupies with the GDDR6, input size and
weight size represent the input feature map size in bits
and weight size in bits, respectively. The number of bits
(#bit) per cell represents the size of bits per cell in GDDR6
DRAM. The number of cells (#cell) per row represents the
number of cells in one row in GDDR6 DRAM.

Before READ or WRITE command, each row is activated.
The activation command takes tRCD . A READ command
or a WRITE command takes tCCD from one column to next
neighboring column. After a READ command, a pre-charge
command is issued and it spends tRTP . To execute a WRITE
command, the first valid data must be available at the input
latch after the write latency (twl). The tDQ is the WRITE com-
pletion flag. After a WRITE command, a pre-charge can also
be issued after tWR . To transfer the next row, the DRAM needs
to be activated again, spending tRP . Therefore, we summarize
the following two equations to calculate the number of clock
cycles to read or to write one row.

#row = ceiling

[

input size (bit) + weight size (bit)

#bit per cell × # cell per row

]

READ time for one row

= tRCD + (n − 1)tCCD + tRTP + tRP

WRITE time for one row

= tRCD + (n − 1)tCCD + tWL + tDQ + tWR + tRP

where n is the number of cells in one row. GDDR6 DRAM
has different number of cells in different configurations. For
GDDR6 8 GB × 16 mode as an example, n = 26 = 64.

Initialization time for GDDR6 is 700us and it is refreshed
each 1.9 us under any commands. However, different extra
clock cycles should be added for different commands, as
shown in Table 1.

In addition to DRAM, we use an on-chip SRAM buffer in
our hardware architecture. The SRAM is initially turned on
by two single read or two single write commands, and then
can operate burst read or burst write commands. A single
read or write command can read or write 64 Bytes in two
clock cycles, and a burst read or write command can read
or write 4*64 Bytes in five clock cycles. When the size of
data is less than 5*64 Bytes, the SRAM won’t operate the
burst command. When the rest data is less than 4*64 Bytes,
SRAM stops the burst command and operates single read or
write commands again.

3.4 Methods to Reduce the Processing Time

In deep neural network computation, there are many data
and weight parameters to be transferred between modules.
To avoid conflict, we first determine the transmission rules.
The overview of data transmission for NN computation is
shown in Fig. 4.

READ time per layer

= #row ∗ READ time for one row

WRITE time per layer

= #row ∗ WRITE time for one row

Table 1 GDDR6 Parameters used in the experiments

Timing Parameter Command
Sequence

tRCD Activation to READ
tCCD READ to READ
tRTP READ to

PRE-CHARGE
tRP PRE-CHARGE to

Next Activation
tWL 2 clock cycles
tDQ 2 clock cycles
tWR 2 clock cycles
twhenrefreshinActivation 256 clock cycles
twhen refresh in READ∕WRITE 180 clock cycles
twhen refresh in PRECHARGE 204 clock cycles

Arabian Journal for Science and Engineering

1 3

The Algorithm 1 finishes when the output data of the last
layer is transferred to the DRAM. Then the neural network
performance estimation can be finished, since all the pro-
cessing times are known.

For each memory modules, we have to check two condi-
tions before transmission. First, we check whether the mem-
ory module has available space for the next data. Second, we
check whether the memory module is not busy (no reading
or writing). When the memory module meets both of the
above two conditions, the transfer begins. Otherwise, the
transfer is postponed until the conditions are met.

(Figure) After transmission, we check whether all the
data.

of the layer have been transferred to the memory module.
If all the data have been transferred, the transfer is complete.
When the data is in the SRAM buffer, we check whether
the computing module is processing previous data. After
the computing module finishes the processing, new data is
transferred for the next processing. If the summation of input
feature size, weight size, and output feature data size is big-
ger than the SRAM size, the results need to be sent to the
DRAM to prevent overflow. In other cases, the results are
stored in the SRAM to be used as the input of the next layer.

Now we describe how to reduce the processing time for
a given neural network by optimizing the hardware archi-
tecture. In computing modules, CACC can start processing
as soon as the CMAC module completes computing. While
the CACC module is working, the CMAC module can con-
tinue to process new data from CBUF because the results of
CMAC are stored in the CACC module. Based on the above
observation, we devised a pipelining technique to reduce the
inference time of a neural network.

The pipelining technique is applied for computing pro-
cesses from CBUF to SDP. When the partial sums are sent
to ABUF, CMAC is available for the next computing. There-
fore, the next data can be processed in CMAC while the
previous partial sums are sent to ABUF.

The number of CMAC cells is the same as the number
of partial sums in the CMAC. When the number of CMAC
cells is 16, the number of partial sums is also 16. If the
number of CMAC cells is increased to 32, the number of
partial sums is also increased to 32. In these two cases, let
k be the number of processing operations required for the
data stored in CBUF. The value of k is determined by weight
size, input data size, and stride. Based on the current param-
eters, the CBUF transfers the input feature map data and the
weights to the CMAC, taking 2 clock cycles. The CMAC
processes the data and 16 partial sums in 7 clock cycles.
The 16 partial sums are stored in the ABUF, taking 10 clock
cycles. The partial sums are accumulated in the ABUF and
become the 16 accumulative sums. The 16 accumulative
sums are transferred from the ABUF to the truncating array
in 2 clock cycles and then transferred from the truncating
array to the DBUF in 1 clock cycle. From the DBUF to the
SDP, the transfer takes 4 clock cycles. After activation in
the SDP, the 16 accumulative sums become 16 elements
of the output feature maps. Finally, the 16 elements of the
output feature maps are stored in the SRAM in 1 clock cycle.
Figure 5 shows the first case, i.e., there are 16 partial sums.
Each row shows the formation process of 16 elements of the
output feature maps. Since there are k processing operations
in Fig. 5, the total number of the output elements is 16*k.
We used three-stage pipelining with a period of ten clock
cycles, as shown in Fig. 5. Using the pipelining technique,
the number of the total clock cycles is 10 k + 17.

Figure 6 corresponds to the second case, i.e., there are 32
partial sums. Because the bandwidth from CMAC to ABUF
is fixed, the 32 partial sums need to be transferred as two
groups. Each pair of two rows shows one processing of 32
elements of output feature maps. Since there are k processing
operations in Fig. 6, the total number of the output elements
is 32*k. In this case, two rows of processing are required to
compute 32 partial sums. Using four-stage pipelining with a
period of ten clock cycles, the number of total clock cycles
to finish the computation shown in Fig. 6 is 20 k + 17.

Fig. 4 Flow of data transmission

 Arabian Journal for Science and Engineering

1 3

To reduce the processing time further, parallel process-
ing can be adopted. The parallel processing uses a greater
number of hardware blocks to reduce the processing time.
Since GDDR6 has 2 channels to read or write, two paral-
lel accelerator architectures can be connected as shown in
Fig. 7. The two accelerators are connected with each channel
of a GDDR6 DRAM. On the one hand, the channel A is con-
nected with the GDDR6 DRAM and NVDLA1. On the other
hand, the channel B is connected with the GDDR6 DRAM

and NVDLA2. The two accelerators are able to process two
images, simultaneously. Because the two accelerators use
different DRAM channels, there is no conflict between the
two image processing paths. Therefore, significant speedup
can be achieved. However, the speedup by using two parallel
hardware modules is less than twice, since the two DRAM
channels are utilized even for one set of SRAM and comput-
ing modules.

4 Processing Time Estimation

We have developed an architecture exploration platform to
efficiently find an optimal architecture for a given neural
network to satisfy the required performance. To effectively
explore the design space, the performance of a specific
architecture should be estimated in a short time.

When a neural network is given, the size of the feature
map and the size of the weight are determined for each
layer. Then, the on-chip SRAM size and the MAC cell size
are given by the user. The performance of the given neu-
ral network is estimated by using the estimation algorithm,
shown in Fig. 8. Table 2 lists important parameters used for
estimation.

Fig. 5 Data transfer timing diagram (16 MAC cells)

Fig. 6 Data transfer timing diagram (32 MAC cells)

Fig. 7 Parallel accelerator hardware structure

Arabian Journal for Science and Engineering

1 3

Let m = input_width = input_height, then the initial fea-
ture map size is m*m*channel. First, we need to determine
if the input image needs padding. When there is no padding
(padding = 0), the input picture size is m*m*channel. When
one pixel padding is used (padding = 1), the input picture
size is (m + 2) * (m + 2) * channel.

Second, we decide the type of the layer, to compute
the number of block operations and the number of weight
groups. The number of block operations is determined
from the number of input channels, the number of weight
groups is determined from the weight size, and the number
of chunks is determined from the input size (width, height).
The weight size and the input feature map size of the current
layer are used to determine the case type for performance
estimation, as shown in Fig. 9. The performance (speed)
estimation is performed for each case in the figure. This esti-
mation is rather straight forward and thus it is not described
in detail.

Third, we determine the number of block operations and
the number of weight groups as shown in Fig. 10. Let C be
the number of the input feature map channels, W be the num-
ber of the weights in a layer, and M be the number of MAC
cells. Since one MAC cell can hold one weight (C > 64) or
two weights (C < = 64), when W > M (C > 64) or W > 2 M
(C < = 64), we have to divide the weights into multiple
groups. A weight group has a set of multiple weights to be
processed in the CMAC, simultaneously. When C is bigger
than 128, multiple block operations are necessary. We need
to calculate the number of block operations and the number
of weight groups. When C is less than or equal to 128, the
number of block operation is 1. When C is bigger than 128,
the number of block operations is �������[C∕128] . Then, we
determine the number of weight groups. When C is less than
or equal to 64, one MAC cell can be divided into two com-
putation units. In other words, one MAC cell can process
two weights, i.e., M MAC cells can process up to 2 M.

weights at once, to reduce processing time. When W is
bigger than 2 M, the weights need to be divided into several
weight groups to be processed group by group. The number
of weight groups is �������[W∕2M] . Each group can have
up to 2 M weights. When W is smaller than or equal to 2 M,

Fig. 8 Flow diagram to compute the execution time for each layer of
NN

Table 2 Parameters for performance estimation

Parameters Definitions

m The width or height of input feature map
C The number of the input feature map channels
W The number of the weights in the layer
M The number of MAC cells
AS_h The width or height of accumulative sum
P The accumulative sum channel

Fig. 9 Classification of case
type of each layer

 Arabian Journal for Science and Engineering

1 3

the weights do not need to be divided and thus the number
of weight group is 1.

When C is bigger than 64, one MAC cell forms one
computation unit and the number of the weights in one
weight group should not exceed the number of the MAC
cells. When W > M, weights need to be divided into weight
groups to be processed group by group. The number of
weight groups is �������[W∕M] . Each group can have up
to M weights. When W is smaller than or equal to M, the
number of weight groups is 1.

After computation in CMAC, the partial sums are accu-
mulated and formed accumulative sums in ABUF. The accu-
mulative sums are sent to the next stage until the accumu-
lative is complete. To prevent accumulation overflow, the
accumulation sum precision of INT34 is used instead of
INT8. The size of the ABUF should be bigger than the size
of one accumulative sum at least. Because ABUF size is
fixed, the input feature map should be divided into multiple
3D chunks (width*height*channel) to be processed chunk
by chunk, if the size of the input feature map is too large.
The input feature map is processed chunk by chunk. One
chunk is processed to form an accumulative sum. All the
accumulative sums are integrated into the output feature
map. There can be overlaps between two adjacent chunks
due to data sharing. However, there is no overlap between
two adjacent chunks when filter size is 1*1, since no data
is shared. When the filter size of the layer is 3*3 and the
stride size is 1, the overlapping size is 2. When the size
of the filter is 3*3 and the stride size is 2, the overlapping
size is 1. The maximum capacity of ABUF is 136B*128
of INT8. Let AS_h be the accumulative sum height and P
be the accumulative sum channel. The accumulative sum
size for one kernel is AS_h2 ∗ P , under the condition that
accumulative sum height = width = AS_h. The examples we

used in our experiments satisfy this condition and most of
the well-known neural networks resize the image into the
same height and width [12, 14]. However, our method can
also be used when this condition is not satisfied, and thus
this condition does not affect the universality of our method.

5 Experimental Results and Analysis

To understand how the on-chip memory storage and com-
putation modules determine the performance of neural net-
work computation, we develop techniques to estimate the
performance and to use it for capitalizing the exploration of
the design tradeoffs. We estimated the processing times of
GDDR6 based DRAM, SRAM, and NVDLA in each stage
with pipelining and parallel architecture.

The processing time was estimated by counting the num-
ber of clock cycles required to compute all the layer of a
given deep neural network.

With a reasonable assumption, the clock frequency of
1.5 GHz was used for the GDDR6, and the clock frequency
of 1.0 GHz was used for both of SRAM and NVDLA. By
using the above frequencies, the performance estimation
results for YOLOv3 and faster RCNN are shown in Table 3.
Table 4 shows the performance when two sets of computing
hardware modules are used for parallel processing.

From the result tables, one can see that when the num-
ber of MAC cells is doubled, the performance can not be
improved twice. That is because the total time is composed
of the computing time and transmission time. Note that the
two channels of the DRAM are utilized with one comput-
ing set as well as with two computing sets. From the six
cases in Tables 3 and 4 the performance of YOLOv3 ranges
0.124 to 0.345 s/frame, and the performance of faster RCNN

Fig. 10 The method to decide
the number of weight groups
and the number of block opera-
tions

Arabian Journal for Science and Engineering

1 3

ranges 0.061 to 0.191 s/frame. This shows that a designer
can easily make trade-offs between the performance and the
hardware cost. This technology can be used to explore the
design space and to optimize the hardware architecture so
that the cost can be minimized while satisfying the required
performance. This research is useful for a designer to find
an optimal solution by exploring the hardware design space
efficiently.

6 Conclusion

In this work, we proposed techniques to estimate the execu-
tion time of the chosen hardware architecture for a deep
neural network. This technology can be used to explore the
design space and to optimize the hardware architecture so
that the cost can be minimized while satisfying the required
performance. It is useful for a designer to efficiently estimate
performance in hardware design. In our experimental results,
YOLOv3 can be executed in 0.124 to 0.345 s depending on
the hardware architecture (resources). Similarly, the faster
RCNN can be executed in 0.061 to 0.191 s. By changing
the hardware architecture such as SRAM sizes, computing

module types, and the number of computing modules for
parallel processing, various tradeoffs can be evaluated and
an optimal design can be found efficiently. The technique
developed in this research looks very useful for the reduction
of both cost and time to market.

Acknowledgements This work was supported by Samsung Electron-
ics Co., Ltd.

References

 1. Graphics Double Data Rate (GDDR6) SGRAM Standard
JESD250B. https ://www.jedec .org/stand ards-docum ents/docs/
jesd2 50b. (2018)

 2. NVIDIA,NVIDIA open source ML accelerator, http://nvdla .org,
(2018)

 3. Norman, P. J.; Cliff, Y.; Nishant, P. et al.: In-Datacenter Perfor-
mance Analysis of a Tensor Processing Unit. In Proceedings of
the 44th Annual International Symposium on Computer Archi-
tecture, ISCA ’17, pp 1–12 (2017).

 4. Tianshi, C.; Zidong, D.; Ninghui, S. et al.: DianNao: A small-
footprint high-throughput accelerator for ubiquitous machine-
learning. In: The 19th international conference on Architectural
support for programming languages and operating systems,
269–284 (2014)

 5. Yunji, C.; Tao, L.; Shijin, L. et al.: DaDianNao: A machine-
learning supercomputer. In: The 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pp. 609–622 (2014)

 6. Zidong, D.; Robert, F.; Tianshi, C. et al.: ShiDianNao: shifting
vision processing closer to the sensor. In: The 42nd Annual
International Symposium on Computer Architecture, 92–104
(2015)

 7. Daofu, L.; Tianshi, C.; Shaoli, L. et al.: PuDianNao: A polyva-
lent machine learning accelerator. In: The Twentieth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pp 369–381 (2015)

 8. Shaoli, L.; Zidong, D.; Jinhua, T. et al.: Cambricon: An instruction
set architecture for neural networks. In: The 43rd International
Symposium on Computer Architecture, 393–405 (2016)

 9. Shijin, Z.; Zidong, D.; Lei, Z. et al.: Cambricon-X: An accelerator
for sparse neural networks. In: The 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture 20, pp 1–12 (2016)

 10. Manoj, A.; Han, C.; Michael, F.; Peter, M.: Fused CNN accelera-
tor. In: The 49th Annual IEEE/ACM International Symposium on
Microarchitecture 22, pp 1–12 (2016)

 11. High Bandwidth Memory (HBM) DRAM JESD235C. https ://
www.jedec .org/stand ards-docum ents/docs/jesd2 35a. (2020)

 12. Shaoqing, R.; Kaiming, H.; Ross, G.; Jian, S.: Faster R-CNN:
Towards real-time object detection with region proposal networks.
Computer Vision and Pattern Recognition (cs.CV), arXiv: (2015)
1506.01497

 13. Joseph, R.; Santosh, D.; Ross, G.; Ali, F.: You Only Look Once:
Unified, Real-Time Object Detection. Computer Vision and Pat-
tern Recognition (cs.CV), arXiv: (2016) 1506.02640

 14. Joseph, R.; Ali, F.: YOLOv3: An Incremental Improvement.
Computer Vision and Pattern Recognition (cs.CV), arXiv:
(2018)1804.02767

 15. Qijie, Z.; Tao, S.; Yongtao, W. et al.: M2Det: A Single-Shot
Object Detector based on Multi-Level Feature Pyramid Network.
In: AAAI (2019)

Table 3 Performance estimation with one computing set

(a) YOLOv3

SRAM size 16 MAC cells 32 MAC cells

1 MB 0.345 s/frame 0.231 s/frame
2 MB 0.320 s/frame 0.206 s/frame
4 MB 0.315 s/frame 0.201 s/frame

(b) Faster RCNN

SRAM size 16 MAC cells 32 MAC cells

1 MB 0.191 s/frame 0.129 s/frame
2 MB 0.182 s/frame 0.120 s/frame
4 MB 0.175 s/frame 0.113 s/frame

Table 4 Performance estimation with two computing sets

(a) YOLOv3

SRAM size 16 MAC cells 32 MAC cells

1 MB 0.210 s/frame 0.154 s/frame
2 MB 0.186 s/frame 0.129 s/frame
4 MB 0.181 s/frame 0.124 s/frame

(b) Faster RCNN

SRAM size 16 MAC cells 32 MAC cells

1 MB 0.107 s/frame 0.077 s/frame
2 MB 0.098 s/frame 0.067 s/frame
4 MB 0.091 s/frame 0.061 s/frame

https://www.jedec.org/standards-documents/docs/jesd250b
https://www.jedec.org/standards-documents/docs/jesd250b
http://nvdla.org
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a

 Arabian Journal for Science and Engineering

1 3

 16. Sachin, M., Mohammad, R., Linda, S., Hannaneh, H.: ESPNetv2:
A Light-weight, Power Efficient, and General Purpose Convolu-
tional Neural Network. In: Proceedings IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR) 2019, pp 9190–9200

 17. Wei, L.; Shengcai, L.; Weiqiang, R. et al.: High-Level Semantic
Feature Detection: A New Perspective for Pedestrian Detection.
In: CVPR (2019)

 18. Irtiza, H.; Shengcai, L.; Jinpeng, L. et al.: Pedestrian Detection:
The Elephant. In: The Room. arXiv preprint arXiv:2003.08799
(2020)

 19. Chen, W.; Wenjing, W.; Wenhan, Y.; Jiaying, L.: Deep Retinex
Decomposition for Low-Light Enhancement. In British Machine
Vision Conference (2018)

 20. Thang, V.; Cao, V. N.; Trung, X. P. et al.: Fast and Efficient Image
Quality Enhancement via Desubpixel Convolutional Neural Net-
works. In: ECCV workshop (2018)

 21. Enrico, R.; Marco, R.; Anna, M. N. et al.: Pareto Optimal Design
Space Exploration for Accelerated CNN on FPGA. In: 2019 IEEE

International Parallel and Distributed Processing Symposium
Workshops (IPDPSW)

 22. Cheng, L.; Man-Kit, S.; Hongxiang, F. et al.: Towards efficient
deep neural network training by FPGA-based batch-level paral-
lelism. In: 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM)

 23. Song, H.; Xingyu, L.; Huizi, M. et al.: EIE: efficient inference
engine on compressed deep neural network. In: 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture

 24. Yongming, S.; Michael, F.; Peter, M.: Escher: A CNN Accelerator
with Flexible Buffering to Minimize Off-Chip Transfer. In: 2017
IEEE 25th annual international symposium on field-programma-
ble custom computing machines

 25. Arthur, S.; Francesco, C.: Optimally Scheduling CNN Convolu-
tions for Efficient Memory Access. IEEE transactions on com-
puter-aided design of integrated circuits and systems (2019)

	Hardware Architecture Exploration for Deep Neural Networks
	Abstract
	1 Introduction
	2 Platform for Design Space Exploration
	3 Overall Hardware Architecture
	3.1 Overview of the Hardware Architecture
	3.2 Computing Module NVDLA
	3.3 Memory Module
	3.4 Methods to Reduce the Processing Time

	4 Processing Time Estimation
	5 Experimental Results and Analysis
	6 Conclusion
	Acknowledgements
	References

