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Abstract

This paper describes an approach to extracting a predicate-argument structure (PAS) in building design rule sentences
using natural language processing (NLP) and deep learning models. For the computer to reason about the compliance of
building design, design rules represented by natural language must be converted into a computer-readable format. The rule
interpretation and translation processes are challenging tasks because of the vagueness and ambiguity of natural language.
Many studies have proposed approaches to address this problem, but most of these are dependent on manual tasks, which
is the bottleneck to expanding the scope of design rule checking to design requirements from various documents. In this
paper, we apply deep learning-based NLP techniques for translating design rule sentences into a computer-readable data
structure. To apply deep learning-based NLP techniques to the rule interpretation process, we identified the semantic role
elements of building design requirements and defined a PAS for design rule checking. Using a bidirectional long short-term
memory model with a conditional random field layer, the computer can intelligently analyze constituents of building
design rule sentences and automatically extract the logical elements. The proposed approach contributes to broadening the
scope of building information modeling-enabled rule checking to any natural language-based design requirements.
Keywords: automated rule checking; building information modeling (BIM); natural language processing (NLP); predicate
argument structure

1. Introduction of the dependence on 2D drawing plans and manual examina-
tion. Automated rule checking has been researched to address
these problems and building information modeling (BIM) en-
ables quantitative and precise compliance checking using com-
putable information of building objects (Sacks, Eastman, Lee, &
Teicholz, 2018).

With interest in automated rule checking increasing, sev-
eral problems have emerged for the real-world implementa-
tion of rule-checking systems. In a review of diverse automated
rule-checking systems, Eastman et al. identified that the BIM-
based rule-checking process is widely implemented with four
steps: (i) rule interpretation and logical structuring, (ii) building
model preparation, (iii) rule execution, and (iv) reporting of the

Rule checking is conducted to assess the quality of building de-
sign generated during the design process. The building design
must comply with regulatory requirements that have a binding
force to obtain permission during the administration process. In
addition to the regulations, following the owner’s specifications
or request for proposal (RFP) are also important for developing
the building design and proceeding into subsequent stages. A
failure to assess the building design accurately leads to a de-
lay in the construction process and wasted budgets (Macit ilal &
Glinaydin, 2017). Despite its importance, the conventional rule-
checking process was time consuming and error prone because
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checking results (Eastman, Lee, Jeong, & Lee, 2009). Encoding the
human-readable building design rule sentences into machine-
readable rules is one of the challenges in implementing a rule-
checking system. The accuracy of rule interpretation and log-
ical structuring (the rule-making process) is crucial to precise
rule checking. However, the vagueness and complexity of nat-
ural language sentences are bottlenecks for translating natural
language sentences into structured data (Nawari, 2012).

Since the early period of rule-checking research in the 1960s,
various approaches to encoding natural language have been de-
veloped. However, rule-making approaches were still based on
manual interpretation and translation. Manual interpretation
can ensure the accuracy of the rule-making process, but compli-
cates generating or modifying computer-readable rules. Numer-
ous requirements for building design have recently emerged as
complexity and building size increases. The application of an au-
tomated rule-checking system for each building design project
requires the translating of diverse requirements for each project.
Computer-readable rules for these regulations must also be
updated based on the revised building codes and by-laws. Track-
ing the requirement changes and updating the correspond-
ing computer-readable rules reduce the efficiency of the rule-
making process. To address these problems, a more intelligent
approach to the rule-making process must be developed.

Accordingly, this paper proposes an intelligent rule-making
process that uses deep learning-based natural language process-
ing (NLP) techniques. Application of artificial intelligence (Al)
technology in architecture, engineering, and construction indus-
try has been carried out since the computer-aided design was
proposed (Mitchell, 1975). As Al technology has been developed,
the adoption of machine learning methods is increasing in archi-
tecture, engineering, and construction domain. Research for de-
veloping rule-checking system also has been attempted to adopt
the machine learning methods. The representative example is a
research area called “semantic enrichment” that aims to check
the semantic integrity of BIM objects or infer the semantic in-
formation (Rafael et al., 2017; Bloch & Sacks, 2018; Koo & Shin,
2018; Koo, La, Cho, & Yu, 2019). Several studies have employed
NLP techniques for information extraction in the rule-checking
process. J. Zhang and El-Gohary proposed an automated code
compliance system and automated rule translation with NLP
techniques (J. Zhang & El-Gohary, 2017). However, the previous
research used rule-based information extraction, which is only
applicable to limited scope of design rule sentences.

This paper proposes a deep learning-based information
extraction model that can process building design rule sen-
tences from more diverse sources. From the previous research,
we found that machine learning-based NLP techniques could
help the computer learn the relevancy of semantic meaning
with neural network-based word embedding, and the word-
embedding results could be used in the rule-making process
(Song, Kim, & Lee, 2018). The relevancy training results are
used to train the deep learning-based information extraction
model for an automated design rule-checking system. As an
early phase of the research, this paper focused on extracting the
semantic role of each component in a given sentence based on
the predicate-argument structure (PAS). The scope of this paper
is to propose a deep learning-based PAS extraction process and
validate the proposed process by implementing the process.

This paper is organized into six sections, with the remain-
der of this paper as follows. Section 2 reviews the rule-making
process and information extraction techniques in general do-
mains. Section 3 describes the approach to applying information
extraction to automated design checking, defines the semantic

role in regulatory sentences, and classifies the PAS types. Section
4 proposes the deep learning-based PAS extraction process for
Korean building design sentences. Section 5 validates the per-
formance of the proposed PAS extraction model with a demon-
stration. Section 6 concludes the paper with contributions and
discussion of the application of intelligent techniques.

BIM can facilitate the quantitative evaluation for building design
based on the computational data of building objects and their
associated properties. The computational information of build-
ing elements helps to conduct not only the visual inspection of
3D model but also the variable assessment in design phase. Sim-
ply deriving or calculating the data of building elements, archi-
tects, or other stakeholders can assess the construction safety
(Zhang, Teizer, Lee, Eastman, & Venugopal, 2013), building circu-
lations for evacuation, and walkability of given building design
(Choi, Choi, & Kim, 2014; Shin & Lee, 2019). As the adoption of
rule checking has been expanded to various domains, the range
of design rule also expanded (Solihin & Eastman, 2015).

Interpretation and translation of natural language-based reg-
ulations for automated rule checking have been researched
since 1966 when Fenv investigated decision tables to represent
structured regulatory codes (Preidel & Borrmann, 2016; Ismail,
Ali, & Iahad, 2017). In early development projects, most of the
rules were hard-coded into the rule-checking software. Solibri
Model Checker, which is one of the most well-known software
program for design assessment, was also implemented with
hard-coded rule sets. In Solibri Model Checker, end-users can
adjust certain parameters with given rule templates using the
Solibri Ruleset Manager, but it is difficult to generate or mod-
ify rule sets because the software was implemented with pre-
defined checking functions and a native data format (J. Zhang &
El-Gohary, 2017). To overcome the limitation of the “black box”
implementation, several approaches to enhancing the trans-
parency and functionality of computerized building codes and
regulations have been proposed.

Most of the rule interpretation approaches are based on logic
rules defined by domain experts. To eliminate vagueness and
clarify the semantics of natural languages, logical rules were de-
fined with domain knowledge about code checking and general
linguistics. The first-order logic, conceptual graph, and deontic
logic were used for interpretation (Ismail et al., 2017) and the in-
terpreted information was represented through domain-specific
languages or open-standard data schemas. A recent review
and analysis of language-driven rule-checking systems (Soli-
hin, Dimyadi, & Lee, 2019) reported an assessment of language-
based methods. The use of open-standard data schemas with
RuleML or LegalRuleML has also been increasing (Ghannad, Lee,
Dimyadi, & Solihin, 2019). Recently, Nora El-Gohary suggested
using NLP and machine learning techniques based on the logic-
based rule interpretation approach (Pauwels & Zhang, 2015;
Ruichuan & El-Gohary, 2019).

KBimLogic is a logic rule-based mechanism that was de-
veloped to translate Korean Building Act sentences into a
computer-readable script language (Lee, Lee, Park, & Kim, 2016;
Kim, Lee, Shin, & Choi, 2019). KBimLogic is composed of
three logical elements: (i) building objects and properties (noun
phrases), (ii) methods for checking (predicates), and (iii) log-
ical relationships between sentences. KBimLogic enables ar-
chitects and rule-checking experts who are not familiar with
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programming to translate natural language-based legislations
into a computer-readable format, named KBimCode. Further-
more, KBimCode is managed with a meta-database that accu-
mulates the translated script code data for each logical element.
However, KBimCode database is limited in the specific corpus
derived from the target sentences. The corpus data should be
expanded manually like other logic rule-based approaches. Ma-
chine learning techniques can contribute to alleviating the time
and cost for expanding the scope of KBimLogic.

Information extraction is a research topic in the NLP discipline
and aims to transform unstructured data into structured infor-
mation (Pollock, Waller, & Politt, 2010). Information extraction is
focused on identifying the instance of a class of events or the
relationship between entities (Cowie & Wilks, 1996). To achieve
this goal, information extraction has several sub-tasks, such as
named entity recognition (NER), semantic role labeling (SRL),
and relations extraction. These techniques were adopted for
understanding news and messages about general events or ter-
rorist events. Transforming the information into a structured
format, information extraction techniques could be used to con-
struct and manage the information within the database. The
output of information extraction can be used for other NLP tasks
such as machine translation, question understanding, and an-
swering with a computer-readable data format.

Extracting structured information from a natural language
sentence comprises several sub-tasks. NER is regarded as the
first step in information extraction. A named entity refers to
a specific noun word that can be classified into specific cate-
gories, such as a person’s name, a country, an organization, or
a numeric expression. Extracting and classifying entities from
sentences can help to identify the exact information associated
with a specific entity mentioned in a sentence. SRL is more fo-
cused on the semantic relationship between entities and is re-
garded as a shallow semantic processing task. SRL extracts the
semantic role of each entity based on the meaning of the pred-
icates. The output of the SRL is a PAS that represents the rela-
tionship and semantic role of each argument.

In the early period of machine learning-based approaches,
the input features of languages were manually constructed
with language-specific knowledge. Although the hand-crafted
features could automate NER tasks, the development of new
resources and features for other languages and new do-
mains remained challenging (Lample, Ballesteros, Subrama-
nian, Kawakami, & Dyer, 2016). To address the problem with
extracting features, Collobert et al. (2011) proposed a neural
network model using unsupervised features instead of hand-
crafted features. Advancements in unsupervised learning of
word embedding (Mikolov, Sutskever, Chen, Corrado & Dean,
2013) enabled the development of neural network-based archi-
tectures. However, this model uses a simple feed-forward neural
network and depends solely on word embedding, which is un-
able to process various sentence lengths and exploit explicit fea-
tures (Chiu & Nichols, 2016). The recurrent neural network (RNN)
and the long short-term memory (LSTM) model can process vari-
able lengths of sentences and use long-term memory. Leverag-
ing these features, RNN, LSTM, and bidirectional LSTM (Bi-LSTM)
have recently been used for sequence labeling tasks (including
NER tasks) and have demonstrated outstanding performance
(Huang, Xu, & Yu, 2015; Gridach, 2017). Machine learning-based
NER techniques also have been applied to specific domains, es-

pecially for biomedical research (Gridach, 2017). In this study, we
propose using a Bi-LSTM model to extract required regulatory
information from Korean Building Act sentences.

To develop a more intelligent rule-making process, this paper
proposes an NLP-based information extraction technique for
rule interpretation and translation. The purpose of rule inter-
pretation and translation in a BIM-enabled rule-checking system
is to precisely generate computer-readable rules based on given
design requirements, which are based on the explicit and struc-
tured data of building objects and their properties. Accordingly,
the information expressed in the given sentence should be ex-
tracted seamlessly and represented in a structured format. The
words representing the building objects and their properties can
be captured by a lexical analysis comparing the input words and
the defined words in a database. However, structuring the rela-
tionship between the words requires a semantic understanding
of languages.

Information extraction in the NLP discipline can be used as
an intermediate process to translate natural language-based de-
sign requirement sentences into computer-executable code. The
goal of information extraction is to capture information with
pre-defined templates composed of frame-like structures rep-
resenting specific events such as actors, times, and locations
(Surdeanu, Harabagiu, Williams, & Aarseth, 2003). When ap-
plying information extraction to a specific domain, appropri-
ate templates must be defined because the classification of data
and the relationship of entities imply domain knowledge. The
biomedical discipline is one of the most active areas for employ-
ing information extraction techniques (Gaizauskas, Demetriou,
Artymiuk, & Willett, 2003) to extract domain-specific informa-
tion such as the relationships of protein and disease, where
the templates for expressing the relationship are defined. In the
same context, we need to identify the required information and
more specific classifications for adopting information extrac-
tion for automated design rule checking. This paper applies the
predicate-argument extraction from the sub-task of information
extraction to extract the logic rule components in sentences as
shown in Fig. 1.

When generating computer-readable codes from building design
rule sentences, the relationship between the target object and
their properties must be clarified based on the checking meth-
ods. Checking methods can be derived from the semantic mean-
ing of predicate parts in sentences and require mandatory argu-
ments based on the semantic meaning. From the given building
design rule sentences, specific constituents are translated into
input arguments of checking methods reflecting their semantic
roles. To enable the computer to understand the semantic role
of each constituent and their relationships, the classification of
semantic roles must be defined. We adopt the concept of PAS
from the linguistic field to represent the semantic relationship
between the objects, properties, and other parameters required
to compose computer-readable rules.
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Figure 1: Overview of NLP-based regulatory information extraction for a building design rule-checking system.

Table 1: Semantic role classification for design rule checking.
Type Semantic role

Core arguments Object
Checking properties
Required value
Relational object

Modifiers Secondary predication
Reference

Transition

Negation

Condition

Methods

The classification of the semantic roles in this paper was de-
rived from the general PASs of natural language sentences. We
required domain-specific information extraction suitable for the
rule-making process; accordingly, the classification was modi-
fied reflecting the context of generating computer-readable de-
sign rules. PropBank, FrameNet, and other similar corpora for
general SRL have annotations for semantic roles of each argu-
ment used for analyzing the semantic structure of sentences
(Kingsbury & Palmer, 2003). The arguments are classified into
core arguments (numbered arguments) and modifiers to con-
struct the semantic structure. PropBank has five numbered ar-
guments (agent, patient, instrument, starting point, and ending
point) and several other modifiers. Based on the concept of Prop-
Bank annotations, we derived the semantic role classification for
design rule checking as presented in Table 1.

This research is focused on BIM-enabled design rule check-
ing; thus, the primary target is building objects and their proper-
ties. Building design rule sentences, especially in Korean Build-
ing Act sentences, are typically written as imperative sentences
with no subjects for actions. Furthermore, even if the subjects
are mentioned in a sentence, the information is unnecessary for
checking the design of building objects. Therefore, the subject

Definition

Target object of checking rules

Specific properties of building objects

A specific value prescribed in a building design rule
Additional objects that have relationships with target objects

Additional verb or adjective used to modify the objects
Referred rules (acts, guidelines) in a building design rule
Objects placed between the subject and relational objects
A phrase for negating the predicate

Logical condition for checking the design rules
Additional parameters for counts or calculations

(agent) is excluded from numbered arguments in the proposed
classification.

A PAS is a representation of the semantic relationship between
constituents of a sentence. A PAS can express semantic relation-
ships expressed in various forms of sentences in a unified form.
Predicates require syntactic or semantic arguments to construct
a complete natural language sentence. To generate computer-
readable codes, the meanings of predicates are translated into
checking functions that require a set of arguments for execu-
tion. We identified the six PAS types by analyzing the syntactic
constituent of building design rule sentences and their semantic
meaning (Fig. 2; Table 2):

(i) PAS Type 1is a structure that only requires the target ob-
jects (Argument 0). Building design rule sentences that ex-
clusively verify the existence of objects are classified in
this type. Using natural language, these types of sentences
are expressed with an S + V + O structure or as imper-
ative sentences, such as “architects have to install some-
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Data type for checking
Boolean (True or False) Numeric or String data
Type 1. Type 2. Type 3.
P P P
One Arg0 Arg0 Arg0
Arg2 Arg1
Arg2
Number
of input
objects Type 4. Type 5. Type 6.
More P P P
than Arg0 Arg0 Arg0
two Arg3 Arg2 Argl
Arg3 Arg2
Arg3

Figure 2: Conceptual graphical representation and classification of PAS.

Table 2: PAS-type classification and their properties for building design rule checking.

Required
PAS type Argument Checking property type Return data type value
1 Arg0 (Target objects) Object instance Boolean X
2 Arg0 (Target objects) Object instance (count), String or (0]
Arg2 (Required values) General property numeric
3 Arg0 (Target objects) General property, String or (0]
Argl (Properties) Geometry property numeric
Arg? (Required values)
4 Arg0 (Target objects) Relational property Boolean X
Arg3 (Relational objects)
5 Arg0 (Target objects) Relational property Numeric (¢}
Arg? (Required values) (distance)
Arg3 (Relational objects)
6 Arg0 (Target objects) Relational property Numeric (0]
Argl (Properties) (distance)
Arg? (Required values)
Arg3 (Relational objects)

(i)

thing” or “install walls.” This structure is a translated struc-
ture for checking the installation or existence of building
objects.

PAS Type 2 is a structure composed of target objects (Argu-
ment 0) and the required values (Argument 2). In this case,
a sentence has a syntactic structure composed of a comple-
ment and a subject. The building design rule sentences that
regulate the number of objects or specify the general prop-
erties such as material and functional usage are translated
into Type 2. The specific checking property is not mentioned
in this type of sentence, but can be inferred by the semantic
meaning of the required values.

PAS Type 3 has specific checking properties (Argument 1)
with a target object (Argument 0) and its required value (Ar-
gument 2). Similar to Type 2, Type 3 is also translated from
the sentence that regulates the specific value of the prop-
erties. Some required values for general properties imply
which properties are related to the values. However, geo-
metric properties must be specified in sentences because

quantitative values for geometric properties can be used
without any distinction. The geometric property is used to
determine how to implement the low-level algorithm that
calculates the required properties. Target objects and their
properties are usually expressed in the possessive form in
Korean sentences, such as “interior finishing of wall” and
“width of door.” These phrases must be separated to objects
and their properties to clarify the purpose of sentence.
PAS Type 4 is a structure for checking the relationship be-
tween different objects, which requires a pair of building
objects to process the checking (Argument 0 and Argument
3). This paper focused on the physical relationships such as
inclusion, connection, and adjacency. The results of check-
ing relationships are Boolean (true or false) values, thus not
needing the required value for checking.

Both Type 5 and Type 6 PASs appear in sentences that re-
view the distance between objects. The difference between
Type 5 and Type 6 is the different grammatical shapes of
sentences. Sentences translated into Type 5 do not clarify
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Connection: defining subset of building objects

« Dependent rules

EX) Rule 1: “The roof height of the building must be 15 meters or less”
Rule 2: “The structure of main structural parts are the unreinforced masonry

Label Phrase

Main structure part

- Arguments Legend
P: Predicates

structure.

V, Be less v is
Arg0; | building Arg0,
Arg1; | Roof height
Arg2, | 15meters Arg2,

unreinforced
masonry structure

Arg1: property
Arg2: Required value

*  Arg0: target object

« Connection: Specifying the properties of objects
EX) Rule1: “The roof height of buildings where the main structural parts are the

unreinforced masonry structure shall be 15 meters or less.”

Label Phrase

Label Phrase

- Arguments Legend
P: Predicates

*  ArgO: target object
* Argl: property
*  Arg2: Required value

Figure 3: The concept of PAS connection for object modifications.

the measurements between two objects, such as “A and B
should be more than 3 meters apart.” In contrast, Type 6
specifies how to measure the distance between objects with
a noun phrase, such as “The vertical distance from A to B
shall not be less than 1 meter.” In a former example “verti-
cal distance” is a specific property (Argument 1) for check-
ing the distance between the target object (Argument 0) and
relational object (Argument 3).

Figure 3 illustrates the concept of connections between PASs.
A PAS is generated based on the predicate, and if a given sen-
tence has multiple predicates, they are extracted as a depen-
dent PAS. In the connections between PASs, one PAS modifies
the numbered arguments in the other PAS. In some building
design rule sentences, certain modifying phrases declare the
specific constraints of objects. General-purpose PAS extraction
models deal with the modifying phrases as independent label-
ing results and are not concerned with the relationship between
them. However, the modifying information is critical for the de-
sign rule-checking process because the target objects are differ-
ent whether or not they have a specific condition. The objects
without any modifying phrases are translated into an entire set
of object instances in a given BIM model, while the objects with
one or more modifiers are translated into a subset of the object
class. Consequently, the proposed PAS expresses the modifica-
tion of relationships with the connection. Only the numbered
arguments representing the objects, Argument 0 and Argument
3, can have the connection. Other modifying phrases such as
adverbs are treated as modifying arguments, as presented in
Table 1.

V, Be less V, are
ArgO0;, building Arg0, | Main structure part
Arg1, Roof height unreinforced
Arg2, 15 meters g2, masonry structure
Argm-pre, | are

Argm-pre: Secondary predicates

We apply a deep learning model that makes advances in se-
quence labeling tasks. The proposed PAS extraction process
aims to broaden the range of rule-making from the limited build-
ing code sentences to various sources such as design guidelines,
RFPs, and even web documents. Our primary goal is to extract
the design rule checking-related information from a variety of
sentences. The proposed method was developed with a assump-
tion that input sentences are entered by human users and it
does not guarantee that the given sentence is related to building
design. Accordingly, the proposed process must be able to clas-
sify whether the given sentence is architecture related first and
recognize the semantic role of each word. The PAS extraction
and sentence classification are required semantic information
of given sentences. There are several NLP techniques to enable
computer to process and understand the semantic meaning of
languages. Recently, neural network and deep learning are used
to train computer to learn the semantics of languages.

As illustrated in Fig. 4, the quantity of data and methods to
implement training models differentiate classical NLP models
from deep learning-based NLP models. As the performance of
hardware and data collection techniques such as web crawling
have improved, machine learning studies have focused on deep
learning methods. Machine learning-based NLP approaches en-
able computers to learn how to solve given NLP problems, which
can address the limitation of the rule-based methods. One of the
bottlenecks in machine learning-based methods is how to rep-
resent input text data. Machine learning models consume nu-
meric vector data for training; therefore, natural language data

2z0z 1snBny | | uo Jesn qr aun BueAueH Aq G8E9E8S/E9G/G/L/P10IME/EPII/W00"dNO"dlWapED.//:SANY WOy PAPEOjUMOQ



' d Machine learning-based NLP model » Deep learning-based NLP model

(relatively) small data (relatively) small data 7 7 Big data
Preprocessing PY Preprocessing Py Preprocessing
I [ ] I [ ]
Feature Feature Feature Feature g
Extraction engineering Extraction engineering .
1 Feature extraction
oot Training model |----- Deept\eural
ol ule, algorithm
Training Model definition S ] network model
- aliow neural - - - - - - -
l Training Model network model
Outputs l
Outputs Outputs

Figure 4: Comparison between classical NLP model and deep learning-based NLP model.

cannot be used directly for machine learning model. The feature
need to be encoded into numeric vectors and it was based on
hand-crafted features by domain experts. Using a count-based
representation or grammatical features, training data were en-
coded with very high-dimensional and sparsely featured vec-
tors. This type of feature representation requires significant time
and computing resources to process the model. Furthermore,
the context and semantic features of natural language are diffi-
cult to encode with defined rules; therefore, the training results
also experienced difficulty reflecting the semantic elements.
Deep learning-based NLP models marked a breakthrough with
neural network-based vector representation (word-embedding
techniques) and RNN models (Young, Hazarika, Poria, & Cam-
bria, 2018).

Neural network-based vector representation enables com-
puter to learn the semantic meaning of each word by analyz-
ing the concurrent word’s information. It also enables to infer
how to translate the compound words or words from out of cor-
pus. Through these features, neural network-based representa-
tion algorithms automate a feature extraction and reduce the di-
mension of vector representation. This eliminates the need for
manual feature engineering and enhances the computation ef-
ficiency.

The proposed PAS extraction needs semantic analysis of each
word and it has to cover the unused words in the Building
Act sentences. By using the large dataset of architectural doc-
uments, we can also train the neural network model to encode
words for architecture objects and their associated properties
into vector format. The translated vector representation can be
used as a input of deep learning model that classifies the seman-
tic role of input words. It helps to extend the scope of logic rule
for translating building requirements into computer-readable
format with minimal human intervention.

The proposed PAS extraction model has three steps: (i) pre-
processing, (ii) extracting the PAS, and (iii) printing the extrac-
tion results. Pre-processing includes syntax analysis and sen-
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data
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Figure 5: Deep learning and NLP-based building design PAS extraction process.

tence classification before PAS extraction. The goal of the pro-
posed model is to extract the PAS for generating computer-
readable design rules from various natural language sentences.
Pre-processing is used to filter the non-target sentences and
transform the input sentences into the proper form. After pre-
processing, the deep learning-based PAS extraction model con-
sumes the input data and prints the extraction result. The de-
tailed process is illustrated in Fig. 5 and the details are described
in the following sections.

Pre-processing involves basic grammatical analysis for input
sentences and topic classification modules. The pre-processing
step aims to enhance the accuracy of subsequent procedures by
decomposing phrases into atomic units and eliminating unnec-
essary words. Morpheme analysis and part-of-speech (POS) tag-
ging enable recognition of the grammatical use of each word. In
the Korean language, there are post-position particles that are
attached behind other words and represent their semantic roles.
By separating post-position particles with morpheme analysis,
exact nouns or verb words are extracted and used for training.
POS tagging identifies the grammatical role of each word (e.g.
noun, verb, and punctuation). After POS tagging, we excluded
stop words such as punctuations and Chinese characters, which
are not used for the subsequent step. For the simplicity of input
sentences, we also excluded the phrases that are described in
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parentheses. In Korean Building Act sentences, some additional
explanation about specific words or conditions is described in
parentheses. These phrases help to understand more detailed
contents of design requirements. However, parentheses phrases
were inserted inside the words or phrases, for example, “A. Stair
room is partitioned from other parts of the building except for
windows, entrance and other openings (hereafter referred to as
“window etc.”) with a wall of fire-proof structure.” These in-
serted phrases make it hard to figure out the context of sequence
of sentence. The pre-processing module is implemented with a
Korean morpheme analysis library called KoNLPy.

The features used for extracting KBimCode elements and re-
lationships must have numerical forms because the input of the
training model is based on the calculation of numeric tensors.
Word embedding becomes a common method for representing
text data in numeric form. Although many methods can repre-
sent text in a numeric format, most are limited to represent-
ing the semantics of each word. Distributed representation is a
breakthrough because it groups similar words and encodes the
features into vector format (Mikolov et al., 2013). The concept
of distributed representation has been recently implemented
with variable neural network-based models, which enable the
analysis of large amounts of text data. In this research, we ob-
tained word-embedding vectors with a word-embedding model
named fastText that was created by Facebook’s Al Research lab
(Bojanowski, Grave, Joulin, & Mikolov, 2017). The fastText model
uses sub-word information to obtain word vectors, which en-
ables a model to represent the words that do not appear in the
training dataset.

We trained the word-embedding model with 24 313 sen-
tences from building codes and RFPs. Building code sentences
were collected from the KBimLogic database, which is based on
data from the National Law Information Center (law.go.kr). Fur-
thermore, 20 RFPs were collected from Nara-jang-teo, the South
Korean online e-procurement system, for building projects from
2016 to 2018. The accuracy value of POS tagging is measured at
92.3% and the accuracy of sentence classification is measured at
88.21% with collected architectural sentence corpus.

Extracting the PAS of a given sentence requires the analysis of
the semantic role of each phrase in the sentence. SRL aims to
recognize and classify the semantic role of constituents for given
predicates. In the proposed process, sentences that satisfy the
preceding conditions—the topic is related to architecture and
has one or many predicates—are inputs of the SRL model; the
outputs are PASs of the input sentences.

The PAS extraction model used a Bi-LSTM with a condi-
tional random field (Bi-LSTM CRF) model to label the sequence
data (Huang et al., 2015). Bi-LSTM is a variation of RNN, which
uses the state of previous data while processing the sequen-
tial data. LSTM was proposed to address the vanishing gradient
problem—the signals of the sequence state vanish as the input
sentences grow (Hochreiter & Schmidhuber, 1997). Bi-LSTM uses
a pair of LSTM models to process the sequence data in forward
and backward directions; by using bidirectional context data, it
has contributed to improving the performance of various NLP
tasks. CRF is a probabilistic model to tag sequence data focus-
ing on sentence-level information rather than individual con-
stituents of the sequence (Lafferty, McCallum, & Pereira, 2001).
CRF considers the conditional probability and predicts the entire
sequence of tagging jointly. In a Bi-LSTM CRF model, CRF con-
sumes the output of the Bi-LSTM layer and makes predictions of
the sequence label.

The structure of implemented Bi-LSTM CRF model is illus-
trated in Fig. 6. The input of the model is a sequence of mor-
phemes generated by the pre-processing module; several se-
mantic roles or entities are expressed with a series of mor-
phemes. To capture the series of words as a single entity, the
computer must recognize which words are at the beginning of
the entity and whether the given words are part of an entity.
Inside-outside-beginning (IOB) labeling is designed to clarify the
position of each word within the entities. We label the training
data using the IOB method, classified into 13 labels that com-
bine the IOB label and semantic role classification. The Bi-LSTM
CRF model consumes feature vectors as inputs and predicts a
label for each input word. The input feature vector is composed
of four features: embedding vector of an input word, predicate
of sentence, POS tagging, and relational position from predicate
phrases. The dimension of each LSTM layer is set to 300, using
600 dimension for bidirectional LSTM. We stacked two Bi-LSTM
layers to improve the performance of training model.

The input sentences that do not have rule checking-related
predicates cannot generate a PAS even though the sentence
topic is related to architecture. Therefore, sentences that do not
have rule checking-related predicates are sent to the objects and
properties recognition model. The objects and properties recog-
nition model is borrowed from NER in general NLP tasks.

NER is a task to recognize and classify entities from noun
words. Based on the scope of the NER task, objects and property-
related elements represented in noun phrases must be clas-
sified by their semantic meanings. Table 3 presents the clas-
sification of elements related to objects and their properties,
represented with noun words. In building code sentences, build-
ing objects and their associated properties are expressed with
noun words or phrases. The required value for specific proper-
ties is also included in the classification to capture the noun
words or numbers such as specific quantitative or categorical
values. Comparison operators referring to “more or less than”
are also represented in a single noun word in Korean. The titles
of law names or article numbers are also the target of extrac-
tion although it is not a building object or its associated prop-
erties, which are fundamental components for formalizing reg-
ulatory information. Extracting objects and properties also pro-
ceeds with the same deep learning model used for extracting
the PAS, but the input feature includes only a word-embedding
vector, and the annotation is labeled with object and property
data.

The SRL training dataset was established with 350 Korean build-
ing regulation sentences. From various Korean building regula-
tion sentences, the target sentences were manually selected to
collect the appropriate sentences for training. The training was
conducted after pre-processing and feature extraction. Of the
350 sentences, 35 (10%) were used to test data, and the remain-
ing sentences were divided using an 80:20 ratio for training and
validation. The test data were used to validate the performance
of the trained model, while the validation data were used during
the training iterations. The number of epochs for the training
was set to 50 because the model exhibits overfitting problems

2z0z 1snBny | | uo Jesn qr aun BueAueH Aq G8E9E8S/E9G/G/L/P10IME/EPII/W00"dNO"dlWapED.//:SANY WOy PAPEOjUMOQ



Entity Entity Entity Entity
Output layer label, label, label, label,
CRF layer CRF
Backward
LSTM
Bidirectional
LSTM layer e
LSTM
Input feature layer ‘ X4 | em\é\’ecgging ‘ X, ‘
! Predicate
“. vector
‘\ Pos
\ | Tagging
\. Position

Sequence of words

Word;

Pre-processing ]

i

Input Sentence ‘

Input Sentence |

Figure 6: Deep learning-based semantic role labeling process.

Table 3: Classification of objects and property data represented with noun words.

Elements class Definition

Object (OBJ)

Property (PRO)

Required value (RVA)
Relational operator (OPE)
Reference rule (REF)

A word that represents building objects

A specific required value of properties

beyond 50 epochs. The measure of validation accuracy with 50
epochs was 77.4%.

We also measured the F1 score to validate the performance
of the proposed model. The F1 score is used to validate the
performance of the machine learning model, especially for a
model with an imbalanced dataset. Datasets used for SRL or
NER models are naturally imbalanced because semantic roles
and named entities are expressed with few words in a sen-
tence, with all other words outside of the target labeled with
“0.” The accuracy of the training model can increase by pre-
dicting all words as “O,” but this causes the training model to
fail to extract the precise semantic role and named entity infor-
mation. The F1 score is the harmonic average of precision and
recall values, which are the ratios of true/positive responses to
the total predicted positive observation (precision) or all obser-
vations in the class (recall). We validated the proposed model
with 10-fold cross-validation. The summary of the results un-
der 10-fold cross-validation is shown in Table 4. The F1 scores
for each semantic role classes are shown in Table 5 with a test
set #10.

The NER training was established using the same dataset as
SRL training. The validation accuracy of the NER training model
was 0.8336 and the average F1 score was 0.41 (Table 6). The pre-
cision value of the object class was much lower than the other
classes, suggesting that the model predicts other classes to the
object class. This can caused since words representing the build-

A word that represents the name of the property

A word that describes the quantitative relationship
Referred rules (acts and guidelines) in a requirement

Example words

‘Wall, Stair, Door

Height, Width, Material

10 meters, Non-combustible material
More, Less, Within

Article 3. No 5,

Table 4: 10-fold cross-validation results of SRL training model.

Test set Precision Recall F1 score
1 0.42 0.59 0.44
2 0.46 0.55 0.43
3 0.49 0.56 0.45
4 0.39 0.46 0.36
5 0.35 0.38 0.29
6 0.38 0.49 0.38
7 0.38 0.52 0.37
8 0.35 0.49 0.37
9 0.36 0.43 0.36
10 0.49 0.65 0.49
Average 0.407 0.512 0.394

ing objects are used more frequently than other entities in build-
ing design rule sentences.

The validation accuracy and F1 score values of the SRL task
were lower than the general-purpose model because we con-
ducted training with minimal training data. The existing train-
ing dataset for general SRL includes thousands of sentences in
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Table 5: Precision, recall, and F1 score measures of each type of se-
mantic role from test set #10.

Class? Precision Recall F1 score Count
Arg0 0.01 0.77 0.02 30
Argl 0.82 0.78 0.80 18
Arg2 0.67 0.69 0.68 26
Arg3 0.50 0.60 0.55 5
REF 1.00 1.00 1.00 3
TRA 0.00 0.00 0.00 1
NEG 0.00 0.00 0.00 2
CON 0.00 0.00 0.00 10
MOD 0.33 0.50 0.40 2
A% 0.81 0.87 0.84 30
Average 0.49 0.65 0.49 144

2Class labels: Arg0 = subjects, Argl = properties, Arg2 = required values, Arg3 = rela-
tional objects, REF = reference rules, TRA = transition, ALT = alternatives, NEG = nega-
tion, CON = condition, MOD = method, V = verb.

Table 6: Precision, recall, and F1 score measures of each type of entity.

Class? Precision Recall F1 score Count
OBJ 0.02 0.61 0.04 76
PRO 0.64 0.68 0.66 31
RVA 0.60 0.71 0.65 42
OPE 0.87 0.87 0.87 23
REF 0.33 0.50 0.40 2

0.39 0.68 0.41 174
Average/total

2Class labels: OBJ = objects, PRO = properties, RVA = required values, OPE = operands,
REF = reference rules.

both English and Korean (Carreras & Marquez, 2005; Palmer, Ryu,
Choi, Yoon, & Jeon, 2006). The performance of the deep learn-
ing model is affected by the quantity and quality of training
data. While we developed the deep learning-based PAS extrac-
tion model, we also started to collect and process the training
data because there is no existing natural language dataset for
the architectural domain in Korea. Collecting the proper training
data is essential, and could be the bottleneck, for establishing a
domain-specific training model.

We measured the validation metrics while collecting the
training dataset and verified the change in model performance
based on the quantity of training data. As illustrated in the
charts in Fig. 7, the performance of the model was enhanced
with an increase in training sentences. When we used 50 sen-
tences for training, the accuracy and F1 score were 0.6207
and 0.19, which increased to 0.8013 and 0.49 with 350 train-
ing sentences. The largest increase in learning performance
was between datasets 1 and 2. There was no significant en-
hancement in performance beyond 100 sentences. The mea-
sured value was relatively lower than for general-purpose mod-
els, but we can expect the enhancement of training models
by increasing the number of training datasets. Furthermore,
the deep learning model and input feature used in this paper
were implemented using a basic concept of deep learning model
and word embeddings. Other more developed models use addi-
tional functions such as attention layers, highway connections
in a Bi-LSTM model, or deep learning-based contextual word-
embedding models such as BERT or ELMo for enhancing the per-
formance of SRL tasks. The proposed model can be improved by

properly adopting additional techniques in deep learning and
NLP.

Furthermore, we compared the training results from variable
parameter settings, as shown in Table 7. Dimension of word em-
bedding was changed from 50 to 200, and we also compared the
results of effects of predicate embedding features. The results
show that performance with 100 and 200 embedding dimen-
sion is slightly enhanced than 50 dimension embedding vector.
There was no significant difference in performance between 100
and 200 dimensions. Predicate embedding vector shows perfor-
mance enhancement in all embedding 50,100, and 200.

The detailed approach for the proposed method is illustrated in
Fig. 8, based on the overview concept (Fig. 1). The information ex-
traction model extracts the required information following the
proposed process. The PAS proposed in this paper is part of in-
formation extraction, which focuses on word-level information
and the semantic relationship between the predicate and ar-
guments. Generating executable code in rule-checking software
requires a higher level of semantic analysis in sentence units
or even article units to clarify the logical relationship between
each rule. The semantic information including the additional
semantic information could be represented in an explicit data
format such as XML. We can use the data format to generate
the computer-executable code of rule-checking software. As a
part of development of the entire process, PAS extraction model
was implemented with a graphical user interface (GUI) applica-
tion prototype as a sub-module for interpreting and translating
building design rule sentences into computer-readable form.

As illustrated in Fig. 9, the user can input their own design
rule sentences and extract the PAS information. A GUI interface
provides the textual and graphical visualization of the PAS for
intuitive understanding. The example in Fig. 9 depicts PAS used
to describe the design requirements for effective width of stairs
with a structure of PAS Type 3 in Table 2. Visualization with color
labeling depicts the entire phrase of modified objects, and the
graphical visualization in the upper panel depicts each PAS for
modifying phrases. The interface for extracting object and prop-
erty information is included as an additional tab, and the user
can view the corresponding results.

Table 8 is one of the test results with GUI application. The
input sentence in Table 8 is from Rule of Evacuation and Fire-
proof structure criteria article 9 (2) 2, which regulates the effec-
tive width of evacuation stairs installed at the outside of build-
ings. The intent of the regulation is to check the geometric shape
of the target object (stair) to ensure the sentence is categorized
as PAS Type 3. The target object, properties for checking, and re-
quired values are “stair,” “effective width,” and “0.9 meters,” re-
spectively. This example is a general structure of building design
rule sentences; the trained model demonstrates it can recognize
the semantic role of each word correctly.

This paper proposed an application of deep learning and NLP-
based information extraction techniques for translating build-
ing design rule sentences into a computer-executable format.
With the deep learning-based method, the computer can learn
how to interpret the semantic meaning of natural languages
and translate the information into an explicit data format. Au-
tomated design rule interpretation can alleviate wasted labor
and time for manual interpretation. We developed a PAS for
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Table 7: The effect of parameter settings of word-embedding dimensions and additional parameter.
Word embedding Additional parameter Total dimension Precision Recall F1
50 None 50 21 29 21
Predicate embedding 100 29 33 28
100 None 100 34 40 30
Predicate embedding 150 32 43 33
200 None 200 27 44 29
Predicate embedding 250 33 39 32
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2The translation sentence and labeling results for English sentences are manually written by the author based on the meaning of the original Korean sentence.

building design rule sentences and classified the structure by the
checking property type and required argument types. The deep
learning model was trained to extract the PAS from the build-
ing design rule sentences, and the trained models can be used
in the rule interpretation process. The extracted PAS was in the
form of computer-readable data that implied shallow semantics
of design rule sentences. The extracted data support to gener-
ate computer-executable design rules reflecting the meanings
of building design rule sentences.

As an early phase of research, this paper focused on a
method of capturing the semantic relationship between each
word in a design rule sentence. The extracted PAS data can
be translated for specific script languages with data parsing
tools and mapping algorithms. To develop a fully automated
rule-making process, there are challenges beyond PAS extrac-
tion and several limitations to be addressed in future research.
The predicate and arguments in PAS are classified by their se-
mantic roles but written using natural language words. Map-

ping these intermediate data to a BIM data format is an-
other process that must be developed. Capturing the logical
relationship between PAS units or sentences and structuring
the logical order of checking are other remaining steps for
translation.

The application of deep learning models can enhance the ef-
ficiency of labor-intensive work, but applying these methods re-
quires consideration for real-world use. Deep learning models
require a significant quantity of training data to guarantee the
appropriate level of performance. Datasets for general Al mod-
els have been established for several years and used to develop
the training model. However, datasets for domain-specific prob-
lems have not typically been established, which requires addi-
tional data collection and labeling to develop the training model.
Domain adaptation techniques from the pre-trained model—
such as semi-supervised learning and transfer learning—could
be considered to develop the performance of the deep learning
model.
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Concerning design rule checking, especially for code compli-
ance checking, the accuracy of rule translation is critical for the
checking result to avoid errors in rule translation. A deep learn-
ing model, even for humans, cannot guarantee 100% accuracy of
translation; consequently, an auxiliary process should be con-
sidered to integrate the rule-making process. To address these
problems, user interfaces to review the automated information
extraction and translation will be implemented as part of the
rule-making interfaces.
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