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Abstract: This article presents a new method based on meta-heuristic algorithm for maximum power
point tracking (MPPT) in photovoltaic systems. In this new method, the SALP Swarm Algorithm (SSA)
is used instead of classic methods such as the Perturb and Observe (P&O) method. In this method,
the value of the duty cycle is optimally determined in an optimization problem by SSA in order to
track the maximum power. The objective function in this problem is maximizing the output power of
the photovoltaic system. The proposed method has been applied on a photovoltaic system connected
to the load, taking into account the effect of partial shade and different atmospheric conditions.
The SSA method is compared with the Particle Swarm Optimization (PSO) algorithm and P&O
methods. Additionally, we evaluated the effect of changes in temperature and radiation on solving
the problem. The results of the simulation in the MATLAB/Simulink environment show the optimal
performance of the proposed method in tracking the maximum power in different atmospheric
conditions compared to other methods. To validate the proposed algorithm, it is compared with four
important indexes: ISE, ITSE, IAE, and ITAE.

Keywords: photovoltaic system; partial shade; maximum power point tracking; SALP swarm algorithm

1. Introduction

The absence of an environmental footprint, the simplicity of maintenance, and the free
accessibility of sunlight have made photovoltaic-based power generation systems the most
popular renewable energy resource in the new era [1–3]. On the other hand, the high costs
of installing photovoltaic systems and their low efficiency during rapid changes in weather
conditions may limit their widespread use [4,5]. Therefore, it is important to take into
account MPPT while designing solar systems, especially in light of climate change [6,7].

Photovoltaic systems have low efficiency that should be investigated [8,9]. One of
the most economical ways to improve the efficiency photovoltaic systems is to guarantee
performance at the maximum power point (MPP) regardless of weather conditions [10,11].
Obtaining the MPP from photovoltaic systems has a significant role in increasing efficiency.
This can be achieved by connecting the MPP tracker controller (typically a chopper) [12] to
adjust the duty cycle to match the load. The electrical power provided by solar systems
depends on the temperature insulation and the amount of radiation. Solar cells have an
optimal operating point that is found by a tracking controller. When making a direct
connection between the load and the source, the output of the photovoltaic module is
rarely at maximum power and the operating point is not optimal. To solve this problem,
an MPPT controller with a DC/DC converter between the load and the source is used to
compensate the output voltage of the solar panel and keep the voltage constant at a value
that maximizes the output power.
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Through the development of new algorithms for MPPT, many efforts have been made
to improve the performance of photovoltaic systems. The P&O method [13] and the Hill
Climbing (H&C) method [14] have been widely used for MPPT because they are easy
to implement and require fewer sensors. Photovoltaic arrays can track the MPP of their
systems using the Incremental Conductance (IncCond) algorithm [15], which compares
incremental and instantaneous conductance. Ripple Correlation Control (RCC) [16] causes
a ripple in the control strategy with the help of MPPT control converter switching. It works
well in high sunlight, but the tracking efficiency drops in low sunlight. It is possible to
determine the current and voltage at the MPP of the solar system using short-circuit current
(SCC) [17] and open-circuit voltage (OCV) [18]. As photovoltaic sources can be integrated
into power systems [19], their design, performance analysis, and efficiency optimization
are hot topics in the power industry [20]. Various MPPT algorithms based on the use of
fuzzy or evolutionary methods are mentioned in [21]. Regarding the implementation of
these methods using FPGA chips, a comparison has been made between them in terms of
complexity, efficiency, speed, and required memory space. Fuzzy logic and Artificial Neural
Networks (ANNs) are used to maximize photovoltaic power. MPPTs based on complexity,
speed, and oscillation around the maximum power point have been implemented in these
methods [22]. The PSO algorithm is used to reach the maximum power point in [23].

However, under low-irradiance conditions, the photovoltaic profile gradient becomes
a source of instability, and gradient-based algorithms can be trapped by local points of
maximum power under non-uniform irradiation or partial shading [24]. GWO optimization
is employed instead of general MPPT in [25].

Population-based algorithms use many random parameters such as population size,
mutation rate, and combination probability in GA [26], and inertia weight and weight
coefficients in PSO algorithms [27]. These parameters are chosen randomly and their values
must be adjusted carefully so that the algorithm converges. Furthermore, any change in the
photovoltaic characteristics will affect the performance of the MPPT algorithm, and these
parameters must be readjusted to regain convergence. Moreover, the ability of stochastic
MPPTs to converge to the general MPP does not guarantee that the general MPP will be
achieved when the PV system experiences partial shading. This can be easily illustrated by
the fact that generic search algorithms are mainly used in offline optimization problems and
need to be run many times before concluding that the best answer is the generic answer.

The effect of partial shade is a major area of interest within the field of MPPT problems
of the photovoltaic system and has been investigated by many researchers. Studies have
shown that conventional methods have poor tracking performance, and most of them
fail to track the correct MPP under partial shade. A number of stochastic algorithms and
artificial intelligence methods have been developed to overcome the disadvantages of
conventional MPPT algorithms. Based on nature and biology, these MPPT algorithms
maximize the output power of photovoltaic arrays. Genetic Algorithm (GA) and PSO
are two prominent examples of these methods. Under partial shade conditions, PSO
and GA optimization methods are computationally simple and produce the global peak.
However, in partial shade conditions, the presented methods are trapped in the local
optimum, which has presented a challenge in solving the MPPT problem. We used the
novel SSA to achieve the MPP of the photovoltaic panel in this paper. We examine our
solution in various scenarios, such as standard conditions, solar radiation and temperature
variation, and partial shade patterns from different angles. Additionally, we compare
our solution with the P&O method and the PSO algorithm, particularly the efficiency
and speed of convergence. The contents of the paper are as follows: photovoltaic system
modeling, SALP Swarm Algorithm (SSA), problem-solving based on the SSA algorithm,
simulation results, simulation results in standard conditions, simulation results in variable
radiation conditions, simulation results in variable temperature conditions, simulation
results in shade pattern conditions 1, simulation results in shade pattern conditions 2,
and conclusions. After examining the uncertainty, the proposed algorithm is compared
with four important indicators: ISE, ITSE, IAE, and ITAE. According to the information
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given in the introduction, it can be concluded that the effect of changing the radiation on
the current is greater than that of changing the voltage, in such a way that reducing the
amount of radiation reduces the current more than the voltage and ultimately leads to
a decrease in power. Moreover, the decrease in temperature has a greater effect on the
voltage, so with the increase in temperature, the voltage decreases more than the current,
and this also causes a decrease in power. Under partial shade conditions, on the other hand,
the output characteristic of solar cells has several maxima. Therefore, in the exploitation
of photovoltaic cells, an algorithm should be used (we suggest the SSA algorithm) that
guarantees the maximum power point in the conditions of changes in the working point.

2. Photovoltaic System Modeling

Photovoltaic cell technology combines the behavior of voltage and current sources
based on the operating point. This behavior can be achieved by connecting a sunlight-
sensitive current source to the p–n junction of a semiconductor material sensitive to sunlight
and temperature. The equivalent circuit of this photovoltaic cell model is presented in
Figure 1.
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Figure 1. Equivalent model of series and parallel connected solar cells.

The photovoltaic I–V curve is specified with Equation (1), in which series resistance
(Rs), parallel resistance (Rsh), the number of cells connected in the series (Ns), q elec-
tric charge, k Boltzmann’s constant, and the parallel of the equivalent panel (NP) are
included [28].

I = Np
(

Ipv − Is
(

e
q(V+IRS)
αNsKT − 1

))
− V + IRS

Rsh
(1)

where coefficient α represents the ideality degree of the diode, which may be optionally
chosen in the range (1, 1.5). Photovoltaic cell current generated through light radiation (Ipv)
is linearly related to the amount of radiation and is affected by temperature as follows:

Ipv =
G

GSTC
(Ipvn + Ki(T− TSTC) (2)

where Ki is the coefficient of short-circuit current temperature, T is the temperature in
Kelvin, and TSTC is the cell reference temperature. The second term IS in Equation (1)
is the diode current, which is a function of the voltage and current coefficients given by
Equation (3).

Is =
Iscn+KI∆T

e
vocn+Kv∆T

αVt

(3)

where Vt is the thermal voltage of the photovoltaic cell and Iscn is the rated short-circuit
current or the maximum current available at the terminals of the practical device in nominal



Energies 2022, 15, 8210 4 of 17

conditions. Ipvn is the rated current generated by light in standard conditions (1 kW/m2,
25 ◦C), determined by Equation (4). It is noted that the standard test condition includes
standard radiation condition (GSTC) equal to 1 kW/m2 and standard temperature (TSTC)
equal to 25 ◦C [29]:

Ipvn =

(
Rs + Rsh

Rsh

)
Iscn (4)

According to Figure 1 and the studied equations, our target function is the output
voltage and current, whose values are applied to the MPPT controller (Figure 2a).
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Finally, the MPPT output is connected to the boost converter. The structure of this
controller is shown in Figure 2.

The controllers used in the photovoltaic system measure the maximum power point
of the voltage and current at the output of the solar panel, and then apply the power to the
input of this controller. The controller tests the output power of the photovoltaic system for
each sample and it determines the changes in the power ratio in terms of voltage ( dp

dv ). If
dp
dv is positive, it is continued in the same direction until it reaches a point where dp

dv is zero.
Otherwise, it should be continued in the opposite direction.
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3. SALP Swarm Algorithm

The SSA algorithm belongs to the Salpidae family, which has a transparent and
tubular body [30,31]. Their body texture is identical to jellyfish, and they move similarly to
them. In this way, water is pumped through the body to provide forward thrust. Figure 3
delineates the Salp shape.

Energies 2022, 15, x FOR PEER REVIEW 5 of 17 
 

 

The controllers used in the photovoltaic system measure the maximum power point 
of the voltage and current at the output of the solar panel, and then apply the power to 
the input of this controller. The controller tests the output power of the photovoltaic sys-
tem for each sample and it determines the changes in the power ratio in terms of voltage 
(ୢ୮ୢ୴). If ୢ୮ୢ୴ is positive, it is continued in the same direction until it reaches a point where ୢ୮ୢ୴ is zero. Otherwise, it should be continued in the opposite direction.  

3. SALP Swarm Algorithm 
The SSA algorithm belongs to the Salpidae family, which has a transparent and tub-

ular body [30,31]. Their body texture is identical to jellyfish, and they move similarly to 
them. In this way, water is pumped through the body to provide forward thrust. Figure 3 
delineates the Salp shape. 

 
Figure 3. Single Salp  (a); a group of Salps  (b) [31]. 

SSA models the Salp’s social and chain-like behavior for better movement by using 
coordinated rapid changes in the pursuit of food. A Salp chain is mathematically modeled 
by dividing the population into two groups: leaders and followers. The group leader is 
the Salp at the front of the chain, and other Salps are considered followers. The leader 
directs and leads the group, and the followers follow each other (and the leader directly 
or indirectly). Similar to other collective methods, the Salp’s position is defined in an n-
dimensional search space, where n is the number of variables in the problem. A two-di-
mensional matrix called x stores the positions of all Salps. Additionally, a food source 
called F is assumed to be the target of collection in the search space. The following equa-
tion is used to update the leader’s position: 

x୨ଵ = ቐF୨ + cଵ ቀ൫ub୨ − lb୨൯cଶ + lb୨ቁ      Cଷ ≥ 0F୨ − cଵ ቀ൫ub୨ − lb୨൯cଶ + lb୨ቁ   Cଷ < 0  (5)

where  x୨ଵ represents the first Salp position (leader) in the jth dimension, Fj is the food 
source location in the jth dimension, ubj represents the jth dimension’s upper limit, lbj rep-
resents the jth dimension’s lower limit, and c1, c2, and c3 are random numbers. A leader 
updates its position only relative to the food source, as shown by Equation (5). In the SSA 
algorithm, coefficient c1 is critical because it provides a trade-off between search and ex-
ploitation: 
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SSA models the Salp’s social and chain-like behavior for better movement by using
coordinated rapid changes in the pursuit of food. A Salp chain is mathematically modeled
by dividing the population into two groups: leaders and followers. The group leader is
the Salp at the front of the chain, and other Salps are considered followers. The leader
directs and leads the group, and the followers follow each other (and the leader directly
or indirectly). Similar to other collective methods, the Salp’s position is defined in an
n-dimensional search space, where n is the number of variables in the problem. A two-
dimensional matrix called x stores the positions of all Salps. Additionally, a food source
called F is assumed to be the target of collection in the search space. The following equation
is used to update the leader’s position:

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
C3 ≥ 0

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
C3 < 0

(5)

where x1
j represents the first Salp position (leader) in the jth dimension, Fj is the food source

location in the jth dimension, ubj represents the jth dimension’s upper limit, lbj represents
the jth dimension’s lower limit, and c1, c2, and c3 are random numbers. A leader updates its
position only relative to the food source, as shown by Equation (5). In the SSA algorithm,
coefficient c1 is critical because it provides a trade-off between search and exploitation:

C1 = 2e−(
4l
L )

2
(6)

where l is the current iteration and L is the total number of iterations. Random numbers c2
and c3 are generated uniformly within the interval [1, 0]. The direction of the jth dimension’s
next position movement to positive or negative infinity and step size are determined by



Energies 2022, 15, 8210 6 of 17

c2 and c3. Newton’s motion low is used to update the follower’s position according to
Equation (7).

xi
j =

1
2

at2 + v0t (7)

where i ≥ 2, xi
j is the ith follower position in the jth dimension, t denotes time, v0 is initial

velocity, and a = vfinal
v0

is established in which we have v = x−x0
t .

Since time is constant in iterations, the difference between them is 1, resulting in
Equation (7) being simplified as follows, considering v0 = 0.

xi
j =

1
2

at2 + v0t (8)

where i ≥ 2, and xi
j indicates the ith follower Salps position in the jth dimension. We simu-

late Salps chains by Equations (5) and (8). Figure 4 gives the SSA algorithm pseudocode.
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The transient response of the system is characterized by two important factors: the
speed of the response and the closeness of the output to the input reference (desired). The
error signal is expressed by the following equation:

e(t) = u(t)− y(t) (9)

In order to better represent the superior performance of the proposed strategy (SSA) to
PSO and P&O, we used the following four performance indices: (a) ISE (Integral of Squared
Error), (b) ITSE (Integral of Time-Squared Error), (c) IAE (Integral of Absolute Error), and
(d) ITAE (Integral of Time-Absolute Error) [32].

IAE =
∫ tss

0
|e(t)|d(t) (10)

ISE =
∫ tss

0

∣∣∣e2(t)
∣∣∣d(t) (11)

ITAE =
∫ tss

0
t|e(t)|d(t) (12)

ITSE =
∫ tss

0
te2d(t) (13)

where tss is the time at which the response reaches the steady state.
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4. Case Study Based on the SSA Algorithm

The MPPT system consists of an array of photovoltaic panels, a DC–DC converter,
and the load, as shown in Figure 5. The best converter should be chosen to transfer the
maximum power from the solar cell to the load. Due to the low output voltage of the
photovoltaic system, it is necessary to use a booster converter (voltage booster) at the
output of this system so that the output voltage reaches the desired value.
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The MPPT algorithm is applied after measuring photovoltaic voltage and current and
multiplying them with the help of a multiplier. Based on the SSA algorithm, the MPPT
algorithm activates the DC–DC converter after generating a duty ratio d. As part of the
proposed optimization algorithm, duty ratio d determines the position of each Salp, and
output power indicates the compatibility value of each Salp. Therefore, the proposed
algorithm identifies the optimal duty cycle for a typical work point.

In this study, KC200GT photovoltaic module data and specifications of the panel
used in this study are presented in Table 1, and the selected boost converter information
is presented in Table 2. In Figure 6, the I–V and P–V characteristics of the photovoltaic
module considered in this study are shown at different temperatures. Both characteristics
indicate that the array output is nonlinear. Under full irradiation conditions, there is only
one peak in the P–V characteristic. However, when partial shading occurs, the photovoltaic
characteristic changes, and therefore, there will be multiple peaks.

Table 1. Photovoltaic module parameters [33,34].

Parameter Value

Pmax 200 W

Voc 32.9 V

Vmax 26.3 V

Isc 8.21 Ω

Imax 7.61 A
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Table 2. Boost converter parameters [33,34].

Parameter Value

Switching frequency (fs) 50 kHz

Capacitor (C) 470 µF

Inductor (L) 1/812 mH

Load 1 Ω

Internal resistance of the inductor (rL) 0.394 Ω
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Figure 6. I–V and P–V characteristics of the photovoltaic module.

5. Simulation Results
5.1. Simulation Results in Standard Conditions

This section examines solving MPPT with SSA under Standard Conditions (STC),
G = 1000 W/m2, and T = 25. To evaluate the capability of the proposed SSA-based method,
we compared its performance to the P&O and PSO. Figure 7 shows the current, voltage,
and photovoltaic panel power curves along with the converter duty cycle. The proposed
method has less fluctuation and reaches the GMPP point faster than the other methods, as
shown in Figure 6. When the SSA method converges to the MPP, the solar panel voltage
and current are kept constant, without any fluctuations. As a result, the duty point of
the steady state of SSA is about 0.01 s, while the P&O and PSO methods reach it in about
0.016 and 0.039 s, respectively, confirming its high convergence speed. Under standard
conditions, peak power equals 200.143 W, while steady-state power equals 198.9 W for
each method.
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Figure 7. Photovoltaic panel tracking curves using the proposed method and P&O and PSO methods
in STC conditions: (a) Vpv, (b) Ipv, (c) Ppv, (d) duty cycle.

5.2. Simulation Results in Variable Radiation Conditions

We represent the effect of radiation changes on solving the MPPT problem using the
proposed method in this section. During the simulation, the temperature is considered
constant at T = 25. The radiation changes in 0.2 s so that the initial radiation is equal to
400 W/m2, reaching the value of 800 W/m2 in the period of 0.2 to 0.4 s; finally, its value
will be 1000 W/m2 in the period of 0.4 to 0.6 s. The results of solving the MPPT problem
using different methods in variable radiation conditions are shown in Figure 8.

Figure 8 reveals that the performance of the SSA method compared to other methods
in achieving the maximum power of the photovoltaic system was much higher in terms of
convergence speed and accuracy, so few transient fluctuations were observed in the SSA
method. Moreover, the results showed that the increase in radiation resulted in a decrease
in the voltage and an increase in the current, increasing the PV panel’s output power. Due
to this, the proposed method is more responsive to variable radiation conditions than P&O
and PSO.

5.3. Simulation Results in Variable Temperature Conditions

This section evaluates the effect of change in temperature on applying the proposed
method to the MPPT problem. Here, the radiation intensity is considered constant at
1000 W/m2. The temperature changes occur in steps of 0.2 s, with each step’s values being
25, 50, and 70. Figure 9 displays the outcomes of the techniques employed to resolve the
MPPT issue under changing temperature settings. This figure represents SSA performance
in comparison with other methods. The results show that the increase in temperature
lowers the panel’s voltage level and, therefore, reduces the solar panel output power. In
addition, the SSA method has fewer transient fluctuations in solving the MPPT problem
and converges at a higher speed than other methods.
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Figure 8. Photovoltaic panel tracking curves using the proposed method and P&O and PSO methods
in variable radiation conditions: (a) Vpv, (b) Ipv, (c) Ppv, (d) duty cycle.

5.4. Simulation Results in Shade Pattern Conditions 1

In this section, the performance of the proposed method in partially shaded conditions
is investigated. In this way, two photovoltaic panels are connected in series. Considering
that in standard conditions, the peak power is 400 W, and in shadow conditions, the
maximum peak power is 340 W, first, the photovoltaic panels work under STC conditions;
then, partial shading occurs in 0.2 s and the radiation of a panel is reduced from 1000 to
800 W/m2. Figure 10 shows the simulation results of a photovoltaic system using the SSA
algorithm and P&O and PSO methods. With uniform radiation and standard temperature,
the photovoltaic array produced 398.9 W in a time interval of 0 to 0.2 s. At t = 0.2, one
of the panels receives a radiation amount of 800 W/m2, which causes the photovoltaic
array to be partially shaded; in this case, the P–V characteristic of the photovoltaic has two
peaks, and the General MPPT (GMPP) is equal to 340 W. The results showed that the SSA
algorithm quickly converged to the appropriate voltage, which led to the MPP of 339.5 W
in shaded conditions, taking into account the losses of the switches. In this situation, all
the algorithms have reached the MPP, and the important difference between them is their
speed of convergence and reaching the MPP point, of which the performance of the SSA
method is better.
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Figure 9. Photovoltaic panel tracking curves using the proposed method and the P&O and PSO
methods in variable temperature conditions: (a) Vpv, (b) Ipv, (c) Ppv, (d) duty cycle.
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Figure 10. Cont.
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Figure 10. Photovoltaic panel tracking curves using P&O, PSO and SSA methods in the condition of
shade pattern 1: (a) Vpv, (b) Ipv, (c) Ppv, (d) duty cycle.

5.5. Simulation Results in Shade Pattern Conditions 2

We linked two solar panels in series to simulate the effect of partial shade conditions on
our method. To this end, one of the photovoltaic panels has a radiation of 800 W/m2 and the
other has a radiation of 1000 W/m2, and the temperature is considered stable at 25 ◦C. The
simulation results obtained from the second shading arrangement are shown in Figure 11.
As can be seen, the MPPT based on the SSA algorithm does not get caught in the local
maximum power point (LMPP) and meet the GMPP accurately. The response provided by
the SSA approach, as can be observed, has fewer power variations and achieves a steady
state more quickly. The proposed, P&O, and PSO methods converge in 0.02, 0.034, and
0.043 s, respectively. Therefore, in the condition of partial shade 2, as in other simulations,
the performance of the SSA method was better than the P&O and PSO methods, confirming
the superiority of the proposed method.

5.6. Uncertainty Results

To evaluate the performance of the proposed algorithm for Section 5.2, we consider
the load change. We changed the load value from 1 Ohm to 1.7 Ohm. As can be seen,
the proposed algorithm has a better result when keeping the radiation intensity and the
temperature constant and when changing the load (Figure 12).
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Figure 11. Photovoltaic panel tracking curves using P&O, PSO, and SSA methods in the condition of
shade pattern 2: (a) Vpv, (b) Ipv, (c) Ppv, (d) duty cycle.
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Figure 12. Load change from 1 Ohm to 1.7 Ohm, holding radiation intensity and temperature steady.
(a) Vpv, (b) Ipv, (c) Ppv, (d) duty cycle.
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As we applied the load changes for Section 5.2, we tested the uncertainty by applying
a fault to the system at 0.3 s. As shown, the proposed algorithm provides improved results
in stability at the fault time (Figure 13).
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Using the four criteria mentioned in Equations (10) to (13), a comparison was made
between the step response of these four criteria and the proposed method, which shows
the result of the SSA method (Figures 14 and 15) [35–37].
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6. Conclusions

In this article, a new approach for solving the MPPT problem in photovoltaic systems
under standard and partially shaded conditions based on the SSA algorithm is presented.
In order to evaluate the performance of the proposed method, the MPPT problem was
also performed with P&O and PSO methods, and the results were compared. The pro-
posed method had advantages such as high convergence speed and efficiency with high
convergence accuracy in low repetitions compared to the other methods.

In the first stage, the standard mode was considered. The value of peak power in
standard conditions was equal to 200.143 w, and the steady-state value of PV power was
198.9 w in each of the methods. In this case, the SSA algorithm had better results than the
other methods in terms of convergence. In the second and third stages, changes in radiation
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and temperature were considered. The SSA method had fewer transient fluctuations in
solving the MPPT problem. In the following stages, shadow conditions were applied to the
model. Two photovoltaic modules were connected in series. In standard conditions, the
peak power was 400 w, and in shadow conditions, the maximum peak power was 340 w.

The results of the proposed SSA method were compared to other methods, and the
simulation results show that the proposed algorithm has a higher convergence rate and
less error in calculations than the other methods. The results indicate the superiority of the
SSA method in achieving a higher convergence speed than other methods.
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