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Abstract: The advent of renewable energy sources (RESs) in the power industry has revolutionized
the management of these systems due to the necessity of controlling their stochastic nature. Deploying
RESs in the microgrid (MG) as a subset of the utility grid is a beneficial way to achieve their countless
merits in addition to controlling their random nature. Since a MG contains elements with different
characteristics, its management requires multiple applications, such as demand response (DR),
outage management, energy management, etc. The MG management can be optimized using
machine learning (ML) techniques applied to the applications. This objective first calls for the
microgrid management system (MGMS)’s required application recognition and then the optimization
of interactions among the applications. Hence, this paper highlights significant research on applying
ML techniques in the MGMS according to optimization function requirements. The relevant studies
have been classified based on their objectives, methods, and implementation tools to find the best
optimization and accurate methodologies. We mainly focus on the deep reinforcement learning
(DRL) methods of ML since they satisfy the high-dimensional characteristics of MGs. Therefore, we
investigated challenges and new trends in the utilization of DRL in a MGMS, especially as part of the
active power distribution network (ADN).

Keywords: active power distribution network; energy management system; microgrid management
system; machine learning; deep reinforcement learning; sparse reward

1. Introduction

With the advent of RESs, the power industry could access infinite independent gener-
ators in feasibly electrified remote places [1]. RESs were initially integrated into MGs to
supply rural and remote areas and were later deployed to campus and urban locations. A
MG is capable of working independently in island mode and interacting with the utility
grid in a grid-connected style. The main problem of utilizing RESs in MGs involves their
intermittence characteristics, controlled by employing technologies, such as energy storage
systems (ESSs), smart inverters, and responsive loads (RLs). Other challenges of MGMSs
include the output prediction and load behavior of RES uncertainty. Therefore, it is neces-
sary to coordinate the performances of all elements of MGs together, practiced by energy
management systems (EMSs) [2]. EMSs are responsible for the generation and consumer
elements of MG coordination by determining each generation unit portion in consumer
supply, aside from preserving the stability of the system, such as voltage and frequency
regulation [3]. It makes it necessary to provide a multi-objective optimization algorithm
for EMSs.

As the main objective of a MGMS is to control energy consumption, prediction,
and generation, ML can be used to control and predict in this system, dealing with the com-
plex decision-making process. In the same line of thought, several studies have considered
the application of ML in the optimization of MGMS [4–27]. Researchers in these studies
considered MGMS implementation by investigating elements, forecasting tools, data and
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demand management, standards, and different sights of view in control levels, including
communication, energy, and power electronics. The main focus points of these studies on
MGMS optimization were on classical mathematics programming, heuristic optimization
algorithms, and artificial intelligence (AI) methods, such as fuzzy logic, artificial neural
networks (ANN), and game theory. Mosavi et al. in [16] proposed an overview of the ML
application in the energy system, mainly focusing on RESs and their output predictions.
The authors concluded that the hybridization of ML techniques leads to a better solution
for modeling RESs. Han et al. [11], without the definition of the EMS role in the MG,
divided MG control levels to primary, secondary, and tertiary levels, and introduced some
optimization methods, such as linear programming, genetic algorithm (GA), and particle
swarm optimization (PSO) for power management in MG. The authors in [9], after the
classification of MGs based on control methodologies, operation modes, and applications,
provided a review of the different strategies for EMSs in MGs, including dynamic program-
ming, meta-heuristic approaches, fuzzy logic, and ANN, and showed the limitations of
each procedure. The authors of [8] considered EMSs in the operation fashions of MGs,
i.e., stand-alone and grid-connected modes. Fuzzy logic and linear programming (LP) were
methods introduced to the implementation of EMSs in that study.

Reinforcement learning (RL) and its derivative methods with the combination of deep
learning can defeat randomness in the element characteristic MGs; in recent years, trends
have risen, with deep reinforcement learning (DRL) being applied in the MGMS. Multi-
agent system (MAS) arrangements of power systems, energy management, distribution
networks, economic dispatches, cyber security, MGs, demand side management (DSM),
DR, and electricity markets are various power system applications that can be optimized by
DRL [18,20,21,28]. The robustness of RL in stochastic behavior management of optimization
problem elements also drives the use of RL in building energy management systems
(BEMSs). Wang et al. [19] and Yu et al. [29] investigated DRL applications in BEMSs. Both
studies in the same line of thought arranged the Markov decision process (MDP) of the
BEMS issue and classified relevant research based on the DRL hired method, objectives,
and implementation environments. Arwa et al. [30] investigated the formationg of a MDP
for an integrated MG to the utility grid. After presenting a brief introduction of the RL
methods, such as Q-learning, batch RL, actor–critic, and DRL, the authors summarized and
classified related studies based on their applied techniques and scheduling MG objectives.
The authors developed their study in a further attempt [31] to recognize RL method
drawbacks and benefits. Another outcome of this paper involved the efficiency of applying
MAS methods in the performance optimizations of MGs, in particular, multi-MGs.

Since the general approach of RES integration to the utility grid is through MGs,
in a novel approach, in this paper, we will develop on previous studies regarding the
application of ML for MG scheduling, mainly focusing on DRL techniques and their pros
and cons. Moreover, we clarify which learning algorithms meet the right requirements
of each application in MGMS. Since our primary hypothesis focuses an enhanced MG
as a service provider of the utility grid, we investigate the neglected constraints of MGs
in deploying RL techniques after the classification of existing research. A significant
outcome of this study, shown in Table 1, involves the investigation of a recent approach to
solving MG EMS problems with a combination of DRL and model-based approaches to
overcome its shortcomings, including sparse rewards, implicit rewards, lack of scalability,
low convergence speed, and privacy concerns. Therefore, the contributions of this paper are:

• We investigate the MG structure and clarify the role of the EMS in the MGMS.
• We determine EMS requirements, strategies, and tools.
• We explore DRL techniques applied in the literature for the EMS.
• We classify DRL techniques to meet EMS requirements.
• We investigate a new approach in deploying a model-based method to solve weak

DRL points in a MGMS arrangement.

The outline of the paper is as follows. Section 2 clarifies the MGMS control levels to
recognize its requirements in depth. Additionally, Section 2 classifies MGMS application



Energies 2022, 15, 8739 3 of 24

requirements. Section 3 determines ML techniques and their applications in an EMS
through the literature investigation and classification. After digging into future trends in
the MGMS, in Section 4, we specify the roles of RL and DRL techniques in these future
trends. Moreover, in Section 4, we classify and reveal the merits and demerits of existing
works based on RL and DRL as well as technical gaps in MG contributions to ADN.
Ultimately, this paper concludes in Section 5.

Table 1. Related work objectives—a comparison.

Reference Year Main Objective

[4] 2014 CCHP based MG modeling, planning and EMS
[5] 2015 Classification of studies on EMS of MG considering cost function
[6] 2016 Control objectives of hierarchical control level of MG
[7] 2016 Categorizing MG EMS optimization algorithms and hired software tools
[8] 2016 Study on Fuzzy logic and linear programming approach in EMS implementation
[9] 2018 Comparative investigation on EMS strategies and communication requirements

[10] 2018 Energy storage system role in EMS

[11] 2018 Focus on different level control of MG optimization with MAS approach in power
electronic viewpoint

[12] 2018 Weather prediction methods for EMS
[13] 2019 MG control strategies from power electronic sight of view
[14] 2019 Comparative study on EMS solutions and tools
[15] 2019 Specifying MG generation units cost functions with more concentrating on storage
[16] 2019 RES output prediction
[17] 2020 An extensive classification of trends in EMS research works
[30] 2020 MDP arrangement for EMS problem
[31] 2020 Pros and cons of RL methods
[18] 2020 Application of DRL in power system optimization
[19] 2020 Application of RL in BEMS
[20] 2020 DRL application in power system
[21] 2020 DRL and Multi-agent DRL application in power system
[22] 2021 ESS and MG control strategies
[23] 2021 Key applications in EMS
[24] 2021 EMS in Islanded MG
[32] 2021 DSM role in EMS
[25] 2021 EMS of DC MG
[26] 2021 Protection aspects of MG performance optimization
[27] 2021 EMS of campus MG
[29] 2021 DRL application in BEMS
[33] 2021 EMS in shipboard MG
[34] 2022 Classification of EMS optimization techniques
[35] 2022 bibliometric analysis on EMS studies
[28] 2022 DRL application in power system

Present work 2022 Study on recent trends in DRL techniques combination with model-based method to solve its
dedicated drawbacks in Solving EMS

2. Microgrid Management System
2.1. Microgrid Structure and Control Methodology

A MG involves a collection of loads and generators that should handle supplying con-
sumers in grid-connected or islanded modes. MG suppliers include RESs and conventional
generators, in which the latter are applied to dominate the intermittency and stochastic
characteristics of the former [36]. The ESS is the other element of a MG; it is widely used
to make RESs dispatchable, in other words, the ESS supports the grid in the unavailabil-
ity situation of the RES. Controlling the active power generation and, consequently, the
frequency deviation of the MG, facilitates these accessories. An ESS can be a hybrid ESS,
e.g., batteries to support the steady power demand or an ultra-capacitor to support the
transient power demand [37]. The electric vehicle (EV) is another form of an ESS in a
MG [38]. According to the 2003 version of the IEEE 1547 standard, the MG should work in a
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grid-connected mode and supply its domain consumers by the utility grid. Then, in case of
any failure situation in the utility grid, the MG should disconnect from the grid and supply
a whole or a part of the loads autonomously by the ESS. In this scenario, the RES during
the grid-connected mode charges ESS [39]. The IEEE 1547 standard, modified in 2018, is
used to consider the MG as a member of an ADN, and transacts energy with the utility grid
where the RES is equipped with voltage and frequency ride-through capabilities to control
abnormal situations in a grid-connected mode [40]. If we consider MG elements, as depicted
in Figure 1, they generally include conventional generators, e.g., RESs, ESSs, EVs, and loads.
There are two groups for loads in the MG, including emergency loads and responsive loads.
While emergency load-serving has priority in both grid-connected and islanded modes of a
MG, responsive loads are sheddable and help the grid remain stable [41].
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Figure 1. MG structure and elements.

The stability performances of MGs require each element to receive setpoints from the
supervisory level to adjust their actions. There are three levels of control for MGs, including
primary, secondary, and tertiary levels [42]. The primary level control of a MG is related
to the adjustment of output-level resources. The interfaces of the resources and ESSs in
the MG involve smart inverters. Smart inverters can follow grid forming, grid feeding,
and grid-supporting strategies, as addressed in [43] extensively. Current source inverters
(CSIs) connect to RESs with high impedance in parallel to implementing the grid-following
strategy. This strategy tracks the maximum power point of a RES. The grid-forming involves
a voltage source control inverter (VSI), which connects with a low impedance to the ESS in a
“series” arrangement. CSIs and VSIs can control the voltages and currents of RESs through
the inner loops and receive references from the primary control levels. The grid-supporting
strategy is a droop control that is used in the primary level control and is provided by
VSI to utilize dispatchable generators and ESSs in the MGs if grid-forming inverters in
the islanded mode cannot maintain the frequency and voltage of the grid. Droop control
methods make primary-level control communications "less", and are reliable by mimicking
synchronous generator behaviors; however, due to distances between RESs, this method is
not always feasible. Active power-sharing is another method used at the primary control
level, which is communication-based. Since primary control specifications require fast
responses, communication infrastructure requirement costs would be challenging [44]. The
idea of ESS installation near to RESs has been researched because taking source installation
space locations has altered the utilization of distributed ESSs [45]. The secondary control
level is applied to restore voltage and frequency deviations of MGs to zero. This level of
control, which is the MGMS, will determine the power-sharing of resources and ESSs for
protecting the stability of the MG. The secondary control level, also known as the energy
management system (EMS), interconnects with a supervisory level of the utility grid in
the point of common coupling (PCC), which is a distribution management system (DMS).
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Secondary control is centralized or decentralized. The centralized controller approach
follows the controlling and supervision of resources and ESSs, grid-connected and islanded
mode determination, load management, contributions to the market, and forecasting the
output power of sources centrally. Because of the multitude of information, decision-maker
algorithms are complicated; fast, reliable, and high bandwidth communications in this trend
are necessary [42]. Instead of a central control, MG actors in the decentralized method have
a local controller. This scenario meets the MAS style requirements. In the MAS, each MG
element is an agent, has a decision-maker algorithm in its local controller, and interacts with
the neighbor and supervisory agents. Although both methods track hierarchical schemes
and require MGMS to communicate with DMS, a centralized controller is commonly used
to control distributed generators (DGs) inside MG. Additionally, the decentralized type is
used in the grid with a broad horizon, including numbers of MGs incorporating the utility
grid [46]. The tertiary control level is a DMS, which coordinates the performance of MG by
assigning setpoints to the MGMS.

2.2. Microgrid Management System Requirements and Applications

According to the IEEE 1547 standard, a MG has several stakeholders, including
aggregators, maintainers, operators, and distribution system operators (DSO). The MGMS,
as a supervisory level of the MG, should be scheduled in a way that satisfies all stakeholders’
requirements, as shown in Figure 2. Moreover, Figure 3 reveals the related application
of each stakeholder. In this paper, we mainly consider the MG role as an ADN member.
This hypothesis is an opportunity to bring merits to whole stakeholders of MGs in several
criteria. It facilitates the integration of RESs into the utility grid. MGs aid the role of
prosumers for RES owners. Moreover, the power grid receives financial profits by getting
rid of the development and refurbishment of transmission lines. MGs aid grid stability
by providing services for the grid in the case of a failure in the system, such as frequency
stability, voltage regulation, and the black start aid [47]. These characteristics would not
be viable without a robust management system and applications coordinating the MG’s
elemental performances and interactions with the utility grid. The following is a brief of
the most notable applications.

DSO

Market 

Regulator

MG 

Aggregator

MG

Maintainer

MG 

Operator

Figure 2. EMS optimization function dependencies.
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2.2.1. Demand Response

Utilities deploy DR to control energy consumption during peak hours and contin-
gencies through the dynamic contributions of consumers. DR has been applied in MGs
to assist EMSs during contingencies in the islanded mode. DR also responds to the utility
grid requirements when the MG behaves as an active element of the power system. DR is
implemented by offering incentive regulations or time-dependent programs. Consumers
decide to cooperate in peak shaving with utilities based on dynamic prices and schedules,
such as time of use (TOU), critical peak pricing (CPP), and real-time pricing (RTP) [48].

2.2.2. EMS

The traditional power systems under the control of the generation company (GENCO),
TSO, and DSO operated hierarchically. Centralized generation units supply passive loads
through transmission and distribution networks in this arrangement. With the addition
of smart grid technology and distributed generation, the power system transitioned from
a hierarchical to a unidirectional distributed style. DGs are power generation units lo-
cated at consumer sites and provide dynamic loads. DR programs will strengthen the
new role of loads. The distribution system as an adjacent section of the power system
to active consumers becomes more flexible, active, and complicated. The dynamic loads
are controllable under the supervision of MGs. Both ADNs and MGs can collaborate to
satisfy the control and protection requirements. In the ADN concept, one of the responsive
elements of the system is the MG. The AS provided by MG EMS includes participation in
the remedial action schema of the power system, such as the black start aid, network recon-
figuration, frequency, voltage control, power loss reduction, and congestion management.
These characteristics require EMS to be able to coordinate the performances of all MG
elements. Energy consumption or production of RES, responsive or non-responsive loads,
conventional generators (CGs), and ESSs should be determined. This can be done locally
or by the ESS unit of the MGMS. Each entity may estimate its situation by its controller
independently and send its information to the EMS, or the EMS calculates the portion
of entities in the power generation and consumption and issues related commands. The
EMS should coordinate its performance with supervisory-level control of the utility grid,
which is the DMS [42]. The required input data and output scheduling that the EMS should
provide are represented in Figure 4.
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Figure 4. A MG EMS unit under the concept of ADN.

2.2.3. RES Output Prediction

This application is applied in a MG to reveal the amount of available energy from
the RESs. They are the main suppliers of the MG and their performances depend on
natural sources, such as solar irradiation and wind availability. Hence, forecasting their
output assists EMSs in scheduling the MG contribution in market and storage charging
and discharging [49].

2.2.4. Preventive Maintenance (PM)

Due to the huge number of elements in the power system, PM aids the grid in con-
trolling risks and reducing the costs of outages and equipment breakdowns. Therefore, it
improves the reliability indices of the grid. PM for the power grid in a smart environment
is classified as passive and active. The passive class is concerned with the market, while
the active class schedules PM without paying attention to the market or prices [50].

2.2.5. Distribution system Operation

The DSO implements the DMS by utilizing different applications, such as online
power flow (OPF), fault location isolation–service restoration (FLISR), volt–var optimization
(VVO), and smart connection arrangement (SCA). All of these applications help the DSO
analyze the status of the power grid and predict its action requirements. The MG under
our hypothesis can be an element that supports these applications.

2.2.6. Market regulator

Any violation in the power system stability due to the difference between the sched-
uled power generation and consumption is known as an area control error (ACE). The elec-
tricity market regulator’s traditional task involves the ACE compensation with adjustable
generation and consumption units in a market-based manner and determination of the
electricity price for end users. The ADN is viable by providing AS services from the MG
side. Therefore, in an enhanced power system, the electricity market regulator facilitates
the MG participation in the ACE correction as a member of the ADN. The MGs can address
the ACE by justifying the amount of generation and consumption according to the signal
received from a market-based regulator.
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3. Machine Learning Applications in MGMS
3.1. Machine Learning Techniques

The main challenge of obtaining access to the benefits of RESs and the high penetration
of MGs is in providing a comprehensive MGMS, which is dependent on the embodiment
of the EMS unit as a robust decision center through intelligent ML techniques. ML mimics
how humans learn by deploying data and algorithms and improves the solution’s accuracy
over time, typically in an iterative manner. ML algorithms, with the help of historical data,
called data sets, train computers to output values that fall within a predetermined range. A
MGMS, with the help of ML techniques, attempts to make the right decision for the control
and management of the MG based on existing information and experiences. ML can detect
all information patterns inside a MG and predict the behaviors of heterogeneous devices
gathered under the supervisory of the MGMS [51]. ML has several sub-models, including
supervised learning, unsupervised learning, semi-supervised learning, and RL, as shown
in Figure 5.
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Figure 5. Different types of machine learning.
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3.1.1. Supervised Learning

Supervised methods predict output based on existing experiences. This model predicts
the output by finding a relationship and dependencies of available input and output data
sets. In supervised learning, experts preprocess data sets by labeling input and output
data to use them for training and testing the model. The model will classify and forecast
previously unknown data sets. Classification and regression algorithms are solutions
employed in this method. Classification algorithms can predict discrete output models of
new data after feature extraction and label provision for previous data. Support vector
machines (SVMs), discriminant analysis, K-nearest neighborhood, naïve Bayes, and logistic
regression are a few examples of this algorithm, as shown in Figure 5. The regression
algorithms based on the feature and correspondent outputs of previous data predict a
continuous output model of new data. Linear and polynomial regression, artificial neural
networks (ANNs), random forest, and decision trees are their examples, as can be seen in
Figure 5.

3.1.2. Unsupervised Learning

This s a self-organized decision-making method that attempts to find hidden patterns
in the system. Despite supervision in the unsupervised approach, there is no access to
labels and outputs, and the learning algorithm should predict the model by deriving the
feature of input data. Clustering and association rules are methods used to implement
unsupervised learning. While clustering extracts features by making different groups for
inputs, association rules attempt to do the same task by finding relationships and data set
patterns. For clustering, K-means, Gaussian mixtures, and principal component analysis
(PCA) and in the case of association rules, Apriori, and FP growth are popular algorithms,
as shown in Figure 5.

3.1.3. Semi-Supervised Learning

Semi-supervised learning is a combination of the previous two methods. This tech-
nique is efficient when there are a significant amount of inputs and limited access to outputs
and a need to expend much on the acquisition of labeling data. Classification and clustering
algorithms are used in this method. According to Figure 5, while generative adversarial
networks (GAN) is a subset of clustering techniques, low-density separation is an example
of classification.

3.1.4. Reinforcement Learning

RL is originally a subset of semi-supervised learning. It works based on four elements,
namely agent, environment, reward, and action. Agents take action according to learning
from the environment. The environment evaluates each agent’s action by positive or
negative feedback, which is called reward. The first step in solving a problem with RL
is the MDP arrangement. MDP is a set of four members, {S , A, P , and R}, where
S is a state space, A is an action space, R is a reward, and P is the state transition
probability. The state space consists of the data that assist the agent, which controls the
actions accurately. The state space is categorized as fully observed and partially observed.
In a fully observed state space, the agent is able to monitor the entire environment. In
some cases, the agent can be aware of the environment to some extent. The action space,
based on the characteristics of the issue and optimization resolution, can be continuous or
discrete. Nonetheless, the continuous action space can be discretized with an acceptable
level of resolution to find the trade-off between accuracy and simplicity. The Markovian
approach to solving problems specifies a policy to determine the next states according to
the current state without requiring knowledge about the previous states of the environment.
This policy describes how an agent acts in its current state. The policy can be deterministic
or stochastic. In a deterministic style, the same states always lead to the same next states,
while with stochastic behavior, there are a set of next states for similar states. Using the
Bellman equation, the agent can implement the non-historical dependent policy in choosing
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actions for deterministic and stochastic environments, according to (1) and (2), respectively,
as follows:

Vst = max
at

(R(st, at) + γV(st+1)), (1)

Vst = max
at

(R(st, at) + γ ∑
st+1

P(st, at, st+1)V(st+1)), (2)

where Vst and Vst+1 determine the values of the present and next states, respectively. R(st, at)
is the immediate reward for taking action a in the state s. The agent will choose action a
with the maximum reward among the possible actions. γ is the discount factor in the range
of (0,1) to consider the effect of the current action on the expected reward in the future. In a
stochastic manner, the Bellman equation applies the probability of taking action a with
using P(st, at, st+1).

RL, concerning knowledge of the agent (regarding the environment) has two categories,
namely model-based and model-free. In model-based RL, agents attempt to find a model
for the environment and capture the transition function by learning. In contrast, the agent
attempts to learn the optimal policy to conduct the best action in each state. Since the MG
is a collection of elements with stochastic behaviors, model-free RL meets its requirements.
There are three model-free RL methods—value-based, policy-based, and actor–critic. Value-
based techniques attempt to exploit high-value actions by exploring the environment
and finding the policy, which leads the agent to the best action. Unlike value-based
methods, policy-based methods directly search for an optimum policy without a value
function assistant. Policy-based approaches have better convergence performances for
high-dimensional, continuous, and stochastic problems compared to value-based ones.
The drawbacks of policy-based methods include converging to local optima rather than
global, and inefficient estimation of policies. The third model-free RL category, i.e., actor–
critic, is a trade-off between the two previous methods. In the actor–critic model, the critic
in each state, according to the value of each action, assigns a reward to the actor. Recently,
deep neural network (DNN) was widely applied in RL and offered deep RL (DRL). DRL
is a solution used to estimate a model for model-free RL algorithms; it evokes benefits,
including dealing with high-dimensional issues in value-based practices and improving
variants in policy estimations of policy-based methods. While Q-learning and its promoted
derivatives, such as the deep Q-network (DQN) and double DQN (DDQN) are examples of
value-based RL, policy gradient and REINFORCE are policy-based ones; utilizing policy
and deep learning, actor–critic can be classified to a deterministic gradient policy (DGP)
and stochastic gradient policy (SGP). The deep deterministic policy gradient (DDPG),
distributed distributional deep deterministic policy gradient (D4PG), twin delayed deep
deterministic (TD3), and multi-agent DDPG (MADDPG) are examples of DGP methods.
Additionally, the synchronous advantage actor–critic (A3C) algorithm and soft actor–critic
(SAC) are SGP ones.

3.2. Classification of Machine Learning Applications for the MGMS

Application requirements of each stakeholder should be satisfied by the MGMS.
Easy access to ML modules in different language programming, such as Python-based
scikit-Learn [52], MATLAB ML Toolbox [53], and R.Package caret [54], make it popular in
optimization, prediction, and training issues in the MGMS. The ML application in the MG
can be as follows.

3.2.1. Demand Response

The cooperation of the electricity market, DSO, and consumers leads to DR imple-
mentation. Several ML techniques have been applied to propose highly accurate demand
prediction. Researchers deployed ML in DR to maximize aggregator profit and predict
loads, which can be residential, commercial, and industrial, and assess DR effectiveness.
The authors of reference [55], after classifying energy systems to cooling and heating sys-
tems, appliances, EVs, DGs, and storage, deployed RL as a solution to the recognition of
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consumer demand patterns. This paper also realized the power system able to provide
peak shaving by applying RL in the MAS arrangement. The authors of reference [56],
using customer incentive price policy and deploying the genetic algorithm as a heuristic
procedure, attempted to shift the peak load. In this paper, GA inputs were the consumers’
load data and the forecasted day-ahead prices from the utility. The authors developed
their model from 5555 customers and 208,000 loads, categorizing into schedulable and non-
schedulable, and the K-nearest neighbor was applied for the classification and Gaussian
process regressions for learning. They evaluated two models, i.e., (1) the determination ef-
fects of schedulable loads on aggregator profit (by selecting them accidentally); (2) the other
modeled the effects of daily ahead price effects on the aggregator profit. Their attempts
showed—by the classification of schedulable loads—aggregator gain maximum profit. The
authors of reference [57] attempted to apply ML in load forecasting of commercial buildings
for DR. In this paper, heating and cooling systems participated in DR provision. ANN
and SVM with polynomial kernel functions are ML techniques employed to predict the
demand of a commercial building at a Dublin university campus in DR and non-DR states.
An advanced metering interface (AMI) is one of the applications that provides two-way
communication between the end-user and a supervisory system. The leading device in
AMI is a smart meter, which should gather information from smart appliances. Many
sensors assist smart meters in this case, and ML analyzes this information and uses it for
load prediction [58]. Nakabi et al. in [59] reviewed a home energy management system
(HEMS), considering that the smart home appliances and home temperatures of ANN
and the long short-term memory (LSTM) method could predict an individual end-user‘s
load profile and evaluate his/her proposed method with a mean absolute percentage error
(MAPE) and root-mean-square error (RMSE).

3.2.2. RES Output Prediction

The output predictions of RESs are necessary to schedule EMSs of MGs. The predic-
tions can be for ultra-short-term, short-term, medium-term, and long-term forecasts [60].
Research in this area (regarding the application of ML) includes the output prediction of
solar power, wind turbines, and geothermal resources [61]. The commonly used method in
prediction problems is the statistical method, which is easy to implement and has a high
accuracy in short-term prediction. Auto-regressive (AR) and auto-regressive moving aver-
age (ARMA) are examples of statistical techniques. ANN is the other method deployed in
the field of RES output prediction. ANN is also suitable for short-term prediction. The dif-
ference between statistical models and ANN is that the statistical approach determines
the model of the element by comparing the predicted results and actual results; ANN will
find a relationship between the output and input to create the model [62]. DDPG was
deployed in an isolated MG to predict photovoltaic (PV) and wind turbine (WT) output
in [63]. Evaluation tools, such as absolute error σ, mean absolute error (MAE), mean
square error (MSE), mean absolute percentage error (MAPE), RMSE and the coefficient
of determination R2 are used to compare forecasting results of DDPG with a traditional
multiple linear regression (MLR), auto-regressive-integrated moving average (ARIMA),
LSTM, and recurrent deterministic policy gradient (RDPG).

ML techniques can be used for hourly forecasting and are mainly applied in solar
prediction [64]. Yangli et al. [65] investigated 68 different ML techniques for short- and
long-term irradiation forecasting. They provided a data set involving seven stations from
five different climate zones. They found various methods that worked differently in each
situation. For instance, tree-based techniques are better in the long term; MLP and support
vector regression (SVR) are good in clear sky conditions. Eseye et al. in [66] applied
the Wavelet-PSO-SVM model on the actual output of PV and weather prediction data
to forecast the output power of PV in four different seasons of the year. After evalu-
ating their method with MAPE and normalizing mean absolute error (NMAE) metrics,
the authors benchmarked their approach with back-propagation neural network (BPNN),
hybrid GA-SVM (HGNN), hybrid PSO-neural network (HPNN), SVM, hybrid GA-SVM
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(HGS), hybrid PSO-SVM (HPS), and (hybrid Hilbert–Huang transform (HHT)-PSO-SVM
(HHPS). Martin et al. [67] predicted solar irradiation by autoregressive, ANN, and fuzzy
logic models, and evaluated their results by the root mean squared deviation (rRMSD).
Among LSTM, SARIMAX, and their combination, more accurate results based on RMSE,
MAPE, and the mean-squared logarithmic error (MSLE) evaluation methods were used to
predict the hourly wind turbine output power and load consumption in MG [68]. These
predicted values were used to solve the mixed-integer non-linear programming (MINLP)
arrangement of the hourly MG economic dispatch. Q-learning improved the accuracy of
the LSTM, deep belief network (DBN), and gated recurrent unit (GRU) network weights,
employed as wind speed short-term predictors in [69]. This study determined the reward
function based on the mean square error (MSE). Q-learning performed better than the
meta-heuristic and model-based RL optimization models.

3.2.3. Preventive Maintenance

MG elements during are endangered and subjected to grid unbalance voltages, fre-
quencies, and other parameters during their lifetimes. Therefore, MG elements require
maintenance, and ML is one of the tools used in predicting the time of this requirement.
This prediction requires a high level of accuracy. Applying ML to analyze historical data
helps the power system predict which condition or equipment will disrupt the performance.
It also assists the grid in maintenance scheduling. According to Table 2, ML tools promote
PM in two criteria—improving reliability and failure prediction. Wu et al. [70] introduced
an online ML-based system to prove the efficiency of ML in PM scheduling. Reference [71]
focused on the real-time fault diagnosis of a PV system based on gathering information
from sensors, such as voltage, current, temperature, and solar irradiance. In this paper,
ANN is a ML technique applied to help the MG in pattern recognition to determine faults
in the entities, including the battery, PV arrays, loads, and maximum power point tracking
(MPPT) system. The authors of [72] optimized the management and maintenance process
of RES and controllable generators by combining ANN and Q-learning. The MG joined the
power system protection schema in [73] by deploying DDPG and SAC to provide AS in
contingencies for the ADN.

Table 2. Related work objective comparisons.

MGMS Application Problem Statements References Methods Evaluation Tools

DR

Aggregator profit [56] KNN, Gaussian regression RMSE, NRMSE MATLAB

Load forecasting [57–59,74]
Binary GA, ANN, CNN,

Gaussian regression, SVR,
LSTM

MAPE, RMSE, CV-RMSE,
CV-MAPE MATLAB

Assess the effectiveness
of DR strategies [75,76] Rule-based control algorithm,

SARSA, DDQN, PPO, A3C MAE, RMSE, MBE MATLAB

RES Output Prediction

wind power and speed
forecasting [69,77,78] ARMA, ARIMA, Wavelet

transform, CNN, Q-learning
MAE, RMSE, MAPE,

Average coverage error MATLAB

solar power and
irradiation forecasting [65–67]

DBN, FL
SVM,KNN

Random forest regression,
ARIMA, Hybrid
WT-PSO-SVM

MAE, RMSE, BIAS,
nRMSE, nMBE, rRMSE,

MBE

MATLAB
R-language

Output prediction of
different RES with

combination of loads

[68,79]
ANN, LSTM
SARIMAX

KNN,
K-means

RMSE, MAPE
MSLE GAMS
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Table 2. Cont.

MGMS Application Problem Statements Reference Methods Evaluation Tools

EMS

BMS [80–83] DQN
RL(fitted Q-iteration) - -

EMS based on MG mode [84,85] LP, SVM
ANN, DQN - MATLAB

EMS with EV presence [86,87] DDQN, DDPG MSE, steady deviation

EMS in multi-agent MG [88–90] NN-GRU, DDQN MAPE, RMSE
NRMSE

MATLAB
Python

PM

Failure prediction [71,91]
Gaussian process regression,

Time aggregation, expert
system, ANN

- -

Improving reliability [72,73] GA, Q-learning SAC, DDPG NRMSE

Contingency
analysis
program,
MATLAB

3.2.4. Energy Management System

MG in a stand-alone mode should respond to the energy demands of consumers inside
a MG, independently. On the other hand, a high MG penetration arises interacting with
the utility grid in a bidirectional electricity path to participate in the electricity market
and provide profit for the MG stakeholders. The principal challenge in both situations is
how the MG can manage EMS. The MGMS should control RES uncertainty characteristics
through ESSs and provide coordination between energy consumption and generation in the
MG. This coordination depends on the ESS performance, and ML is a tool to implement this
scenario. EMSs have diverse aspects, such as building energy management systems (BEMS),
EMSs of MGs in grid-connected modes or stand-alone modes, EMSs with the presence of
EVs, and EMSs for multi-agent MGs. There are different approaches to the optimization
of EMSs in MGs: model-based and model-free. The data in MGs are enormous; thus, the
system’s complexity–model-free approach will result in more effective results. Q-learning
overcomes the lack of availability to the MG’s explicit model issue when taking into account
its model-free properties.

This model learns from real-time data independent from future rewards or state
situations of the system’s awareness. Q-learning applied in a BEMS represented the MG
in [80,86]. Battery scheduling in [80] was provided based on uncertainty in wind turbine
power generation as a power source with the primary purpose of less electricity purchases
from the main grid. The authors in this paper declined randomness of load and electricity
market prices and considered scheduling for 2 h a day ahead. In this study, MG does not
export energy to the utility grid. Conversely, Kim et al. [86] scheduled a real-time smart
building storage EMS as a prosumer while the main objective was to reduce the energy cost.
Q-learning has been successful in EMS optimization; however, exploiting the capabilities of
all MG elements and tackling their uncertainties are high-dimensional tasks. The curse of
dimensionality is the hindrance of applying Q-learning to high-dimensional environments.
Deep Q-Network (DQN) [92] combines DNN and reinforcement learning, which offer
scalability in solving the EMS of a MG. DQN supports high-dimensional problems since it
uses ANN for state value approximation rather than a Q-learning tabular representation.
Using the same approach, references [81,82] simulated MG as an independent grid without
any energy transactions with the utility grid by applying a convolutional neural network
(CNN) in DQN. The loads, RESs, and market price uncertainties were considered in [84]
when DQN was applied to provide EMS in the MG. This paper evaluates the efficiencies of
their method using data gathered from California independent system operators. Despite
DQN performing better than Q-learning in a stochastic environment, it still struggles with
stability in the training network due to the correlation between the estimated and target
values. The double DQN (DDQN) solves this problem by offering separate ANNs for
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selecting actions and evaluating them [93]. V. Bui et al. [88] applied DDQN to optimize the
battery EMS’s community performance of the MG to overcome the overestimation problem
of the DQN. The learning process scheduled the ESS to minimize power production
costs in the grid-connected mode and serve the critical load in the island mode. This
paper examined electricity market prices, loads, and RESs as uncertain elements of the
environment and demonstrated that the method presented works well in the multi-MG
systems. In contrast to online reinforcement learning, batch reinforcement learning can
converge faster in a battery energy management (BMS) in MG, according to the study
in [83].

Q-learning, DQN, and DDQN are value-based learning methods. They are adequate
for discrete actions, though their slow rates of policy changes make them vulnerable to over-
estimation. The policy gradient is another subset of RL that uses deep learning. Stochas-
tic and deterministic approaches are two classes of the policy gradient-based method.
Stochastic policy gradient (SPG) performs better in addressing the convergence speed
and high-dimension action environment issues than the value-based method. However,
the possibility of convergence to a local maximum exists. SGP techniques can meet EMS
objectives since the environment in the MG is unpredictable. The other subset of RL in-
volves actor–critic methods, which is a compromise between value-based and policy-based
methods. In the actor0critic, the actor specifies the action based on the policy while the
critic assesses the value of each action.

To construct an EMS that reduces the peak demand and energy costs, Mocanu et al. [87]
compared the SPG to DQN. The authors neglected the importance of the ESS as a core
component of the EMS in designing the EMS in this system. The MG EMS involved the DR
function through peak time-shifting and arbitrage in [75], where loads were divided into
price-based and temperature-based categories. In this study, the WT and ESS, in addition
to the aforementioned flexible loads, can sell surplus energy generation to the utility
grid. The authors offered a proper examination of various DRL algorithms in this study,
including state–action–reward–state–action (SARSA), DDQN, actor–critic, proximal policy
optimization (PPO), and A3C, in order to address the EMS of the MG problem. They
discovered that the learning system convergence would improve when PPO and A3C
adopted a semi-deterministic approach through action selection from the replay experience
buffer in the exploration. Table 2 summarizes the above-mentioned ML applications in the
MGMS and the related research.

4. Future Trends in DRL applications in a Microgrid Management System

Since the EMS is an application in the MGMS, which controls all element perfor-
mances, other above-mentioned applications are under the supervision of this function of
the MGMS. Hence, as a future trend in the MG, we mainly focus on the EMS. MG optimiza-
tion with traditional ML techniques and initial reinforcement learning techniques require
comprehensive knowledge on MG environments and element behaviors or predicting
behaviors by forecasting tools. On the other hand, MG high penetration calls for more
interaction with the utility grid. In this scenario, the MG acts as a prosumer and requires
scheduling in a fully stochastic environment. As it is model-free, we mainly focused on
model-free enhanced RL and DRL methods in this section to match the MG environment.
Following this idea, we divided the MG, deploying (as a member of an ADN) the challenges
into three scopes—the MG interaction with the utility grid, the MDP for the MG, and RL
technique candidates.

4.1. Microgrid and The Utility Grid Interaction

As discussed before, there are two trends in the scheduling the EMS of the MG. First,
the MG works independently and supplies remote places and rural areas. In the second
approach, the MG bides to the utility grid. However, the second approach should support
the first situation in the islanded mode. The main difference will be in the cost functions,
where the persistence in supplying energy is more important than the cost of energy
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production in an independent approach. Scholars considered three styles for the grid-
connected method—the MG is just a consumer for the utility grid, the MG is a prosumer,
and the MG acts in a multi-agent environment. The MG participates in the electricity
market or provides ancillary services for the utility grid in the MG’s prosumer fashion. This
participation in the electricity market can be directly controlled by the DMS or through
time-based prices. Time-based prices are CPP, TOU, or RTP. Researchers considered price
as a stochastic parameter in scheduling the MG by deploying TOU and RTP techniques.
However, analyzing the direct control of the MG by the DMS and adopting a strategy
for deploying this direct control was ignored throughout literature. The main issue in
providing cooperation between the MG and the utility grid is the uncertainty of the RES
generation impressing on the MG stability and power quality. The new version of IEEE
1547 facilitates the MG integration to the utility grid by a compelling arid via characteristics
for inverters to provide the desired levels of the voltage and frequency of the utility grid.
RL has been applied to this area [72]. Another area that ML assists the MGMS with is in
providing ancillary services of the utility grid [94]. The advent of the MG and shortening
the distance of the generation side and end-user’s hierarchical power grid structure were
altered to a new concept called multi-agent. In this structure, all grid elements are equipped
with bidirectional smart grid applications. Hence in the MAS, grid elements based on their
capacities participate in electricity generation or consumption while coordinating with
their neighbor agents. Each agent has its management system and utilizes RL to optimize
and predict its status for the MGMS [94].

4.2. Markov Decision Process of MG

To optimize the EMS performance, first, it is required to investigate formation of the
MDP of the MG. As discussed in Section 3.1.4, the state, action, transition function, and re-
ward function, in the form of a four-tuple {S ,A,P ,R}, define MDP. The state includes the
present conditions of each element, which are further based on the action change to the next
state. Figure 6 shows the amount of stored energy in the ESS and EV, the energy consump-
tion of the load, market price, and output power of each generation unit define the state in
the MDP model. The traditional methods predict and model the dynamic characteristics of
the states. On the contrary, RL (utilizing the previous state’s information) determines the
system element variables sequentially. The real information databases are usually applied
to prove the accuracy of the deployed RL method results. The transition functions in
model-free methods are unknown, which we discussed previously in Section 3.1.4. Given
the contribution of the MG elements in energy provision, actions are defined. Charging,
discharging, and remaining idle are ESS actions, which usually determine how the MG
bides the utility grid (as a consumer or generator). The objective function of the MG is the
principal factor of the reward. The reward function (to minimize the cost of the system or
load shedding directly) applies to the action. One of the challenging elements of the MG is
when the load takes part in the MG scheduling through load shedding. The elasticity of the
responsive loads in providing a better MG operation, especially in contingencies, was less
analyzed and addressed in the literature.
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Figure 6. Future trends and requirements of MG scheduling as the utility grid service provider.

4.3. Appropriate Reinforcement Learning Technique

As stated before, value-based RL has some limitations, such as weak convergence for
high-dimensional problems. These methods were improved in recent years, such as DQN,
which is used to overcome this problem. Rather than creating a table for estimating value
functions, the DQN uses a DNN to estimate these values and provides it with i.i.d input
through a buffer called replay memory (and containing estimated Q-values). Two separate
DNNs are used for Q-value estimations, one working online and the other updating the
target network after a predefined time interval. Indeed, value-based methods perform well
when dealing with discrete actions; however, the slow pace of policy change makes them
vulnerable to overestimation. Efforts to balance value-based and policy-based methods, are
achieved through the actor–critic method. Applying deep learning and taking advantage
of the aforementioned solutions, the actor–critic method shows better results. Studies
show stochastic algorithms follow a semi-deterministic approach in the exploration and
exploitation of the environment and perform better. However, there is no comprehensive
study that compares the performances of the methods in real situations.

Several challenges are associated with deploying RL as an EMS solution, including pri-
vacy concerns, low convergence rates, scalability issues, and the implicit reward definition.
Table 3 reveals DRL challenges and research works that propose solutions for these issues.
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Table 3. DRL challenges.

Ref Technique Main Objective Advantages to traditional RL Tools

[95] Actor-critic
DRL + FL

Privacy of users in load
scheduling (DR)

Updating NN parameters into a
semidefinite programs to deal
with non-convex power flow

constraints

MATLAB/CVX with
MOSEK solver and

PYTORCH library in
PYTHON

[96] DDQN+FL
Light weight DRL agents
for resource-constrained
edge nodes in cluster MG

Improved stability and
adaptability to dynamic

environments
TensorFlow

[97] SOCP+ Model based
DRL(MuZero)

Residential microgrid
EMS

Reduce dimension of action
space and consequently

convergence time
Python with PyTorch

[98] MINLP + DDQN DG and battery
scheduling of MG

Reduce dimension of action
space space and the complexity

of constraints

Python and the
PYPOWER 5.1.4 package

[99] MINLP+
Q-learning

daily and emission costs
minimization of a

campus MG

Reduce dimension of MINLP
arrangement of MG EMS to

subproblems with help of RL
DICOPT solver of GAMS

[100] ADMM+DRL optimal power flow Fast convergence Matpower

4.3.1. Privacy

A MG as an ADN element contributes to the electricity market and offers services
to adjacent utility grids. This schema requiring MGs share information with the higher
supervisory levels of the power system, such as the DSO/transmission system operator
(TSO). Additionally, the consumers and different generation units within the MG require
keeping privacy in their interactions with the EMS unit. Researchers follow solutions,
such as multi-agent RL and distributed RL with the contribution to the cloud and edge
computing arrangements of cost functions to solve this problem. The most recent trend
in RL privacy provision involves federated learning RL (FRL), which shows superiority
over distributed RL in providing the privacy since, in the multi-agent DRL, the main
agent requires collecting data from different agents. FRL distracts the data set into several
parties to find a model for each party with a minimum difference from the expected model
known as performance loss [101]. FL is solely deployed to implement edge computing in a
cluster of MGs and solve load forecasting problems [102]. The FL and SAC combination
provides scalability and security in the charging and discharging schedules of EVs [103].
FL also simplifies the non-convex arrangement of load flow constraints in the power
system [95]. Therefore, in addition to privacy, the distribution structure of FL resilience
respects restrictions in the MG environment, and attention surrounds deploying FRL in
solving the EMS. Recently, FRL was hired to optimize the edge computing costs of clustered
MGs [96].

4.3.2. Low Convergence Rate

Extreme constraints and high dimensions of action spaces result in inefficient DRL in
training the agent and low-speed convergence or even divergence of the learning process.
Complex power flow constraints, the non-linear model of BESS, and the equivalency in
generation and consumption are examples of evidence that make the learning process
unable to converge. The complexity of cost functions and operational constraints can be
seen in [97], while the main EMS solver is a model-based DRL. MINLP solves the power
flow and applies battery constraints to the MG before deploying DQN to schedule the
battery and DG in a MG located in IEEE 10-bus and 69-bus systems [98].
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4.3.3. Lack of Scalability

The scalability problem can be looked at from two different views. The first issue is
related to the high-dimensional problems, which can already be satisfied by attaching a
neural network and providing DRL. The other aspect of the scalability problem is associated
with the supporting alteration in the environmental elements and constraints. Since the
reward function in DRL is an intricate task and almost impossible to deploy explicit
reward, any system variation will result in a lot of effort to justify the reward function.
A mathematical model-based algorithm to calculate the reward function can improve
RL scalability.

4.3.4. Hindrance of Implicit Reward Definition and Sparse Reward

In DRL, the agent will not learn the best action directly with the policy. It is a reward
that guides the agent to the best action. The difficulties related to the implicit reward in
DRL, which result in a lack of scalability, are discussed in Section 4.3.3. However, there is
another issue related to the reward, which is known as a sparse reward. It is common to
implement MG optimization problem constraints using very negative rewards to avoid
agents falling into these pitfalls. This approach in the reward definition is also known as
a sparse reward and usually results in episode termination before the agent explores and
learns valuable states since it stops the agent from exploring the environment accurately.
Transfer learning is one of the solutions combined with RL and provides subtasks for the
agent to learn constraints and cost functions in different steps. In [99], DRL is associated
with alternating the direction method of multipliers (ADMM) to address the sparse reward
difficulty of a load flow problem. It is also possible to provide high-density rewards instead
of sparse rewards by applying the normalized flow method (NF) [104,105].

5. Conclusions

Regarding power systems, RES penetration development is an egressed strategy for
the energy crisis, such as energy resource shortages, environmental pollution, and climate
change. Since MG facilitates control and manages the nature-based characteristics of
RESs, it is a novel way of utilizing RESs in the grid. ML techniques are tools used for
implementing MGMSs considered in this paper, based on MGMS application requirements.
A performance optimization study was conducted on a MG to make it an ADN component.
After the classification of related research, results showed that the applications of RL
and DRL in MG scheduling optimization have risen as they satisfy the MG’s stochastic
environment. Moreover, our study revealed that the use of a MG as a member of an ADN
requires more research in some aspects, including the arrangement of the MG interaction
with the utility grid, the establishment of the MDP for the MG environment, and the
utilization of deserved RL techniques. Additionally, the use of DRL for MGMSs presents
challenges, such as privacy concerns, low convergence rates, scalability issues, and implicit
reward definitions. We addressed these hindrances in our study by combining DRL with
model-based methods, TL, FL, and NF.

The modeling of MG components and their cost functions will be part of our future
efforts regarding the MG role in the ADN. Additionally, we will use the MDP of the MG
based on this arrangement to solve EMS issues, highlight the DRL weak points, and use
the remedies discussed in this paper.
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Abbreviations
The following abbreviations are used in this manuscript:

ADMM alternating direction method of multiplier(s)
ADN active power distribution network
AI artificial intelligence
AMI advanced metering interface
ANN artificial neural network
AR autoregressive
ARMA autoregressive moving average
AS ancillary services
BEMS building energy management system(s)
BPNN back propagation neural network
BMS battery management system
CSI current source inverter(s)
CCP critical peak pricing
CNN convolutional neural network
DBNN deep belief neural network
D4PG distributional deep deterministic policy gradient(s)
DDPG deep deterministic policy gradient
DDQN double DQN
DG Distributed Generators
DGP deterministic gradient policy
DMS distribution management system
DNN deep neural network
DQN deep Q-network
DR demand response
DRL deep reinforcement learning
DSO distribution system operator
EMS energy management system
ESS energy storage system
EV electric vehicle
FLISR fault location isolation and service restoration
GA genetic algorithm
GRU gated recurrent units
HPNN hybrid particle swarm optimization-NN
HEMS home energy management system
HGNN hybrid GA-NN
LSTM long short-term memory
MADDPG multi-agent DDPG
MAE mean absolute error
MAPE mean absolute percentage error
MAS multi-agent system
MDP Markov decision process
MG microgrid
MGMS microgrid management system
MINLP mixed integer non-linear programming
ML machine learning
MLR multiple linear regression
MPPT maximum power point tracking
MSE mean square error
OPF online power flow
PCC point of common coupling
PM preventive maintenance
PPO proximal policy optimization
PV photovoltaic(s)
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RDPG recurrent deterministic policy gradient
RES renewable energy resource
RL reinforcement learning
rRMSD root mean squared deviation
RTP real-time pricing
SAC soft actor–critic
SARIMAX seasonal auto-regressive integrated moving average
SARSA state–action—reward–state–action
SCA smart connection arrangement
SGP stochastic gradient policy
SPG stochastic policy gradient
SVM support vector machine
TD3 twin delayed deep deterministic
TOU time-of-use
TSO transmission system operator
VSI voltage source control inverter
VVO volt–var optimization
WT wind turbine
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