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A B S T R A C T   

Stormwater runoff is one critical urban issue that exemplifies the complexity in coupling human and natural 
systems. Innumerable studies have described and assessed the hydrological responses that result from land-use 
changes through a ‘post land use change’ hydrological analysis. Complex systems theory, however, suggests 
that the urban and ecological systems operate as an intertwined whole. This means that typical one-directional 
analysis can miss critical components of a bi-directional sociohydrological process. In addition, there is a dif-
ference in physical scales between hydrological analysis and policymaking that is often left unresolved. Typical 
hydrological models are limited to a watershed and are not easily applied to policymaking that is generally 
demarcated by a political boundary. These types of models also lack the spatial explicitness needed for physical 
design responses. To address these issues, we develop an integrated, finely scaled, spatially explicit socio-
hydrological modeling system. The coupled land use/stormwater model projects and assesses bi-directional 
sociohydrological impacts to changing land uses. We apply and test the system in McHenry County, Illinois, 
by modeling three scenarios to the year 2045. The results show that residential and commercial developments 
exhibit different responses to hydrological variables, resulting in varying patterns of land use locational choices. 
We also find that there is a conflict between developmental preferences that prefer to be located near water 
(housing) and those that prefer to be located away from runoff-prone water areas (commercial land uses). Our bi- 
directional modeling system simulates cell-to-cell interactions to produce quantifiable and practically useful 
outputs. The output for McHenry County, Illinois, includes specific, locational information on how to optimize 
developmental regulations in response to the contradictory developmental preferences and, more importantly, 
how to live with runoff in the context of resilience. This research supports the need for cell-based forward- 
looking modeling to better understand complex urban systems and strategically establish a resilient built 
environment.   

1. Introduction 

One of the major challenges in plan-making for urban resilience is 
dealing with the deep uncertainty inherent in urban systems (Alberti, 
2017; Comfort et al., 2001). While growth plans are intended to manage 
or abate a wide array of negative impacts on the built environment, such 
as loss of biodiversity, air pollution, or social inequity, once imple-
mented, they many times fail to achieve their intended goals due to an 
inability to assess the complex interactions in urban systems. These 
complex interactions evolve as cities grow over both time and space with 
dynamic forces that contribute to an uncertain future and a slew of 
unintended consequences that challenge the resilience of both 

ecological and human systems. In order to achieve some semblance of 
resilience (defined as “the capacity of a system to absorb disturbance 
and reorganize while undergoing change” by Walker et al., 2004), it is 
critical that these system uncertainties be addressed. One approach is to 
encourage multi-scalar and multi-disciplinary decision-making that can 
help promote a broader dialogue and engage a broader understanding of 
resilient (sustainable) urban management (Deal et al., 2017). Such ef-
forts need support from by novel analytical methods that can assess and 
evaluate the dynamic interactions between human and natural func-
tions. These complex approaches however, must also be accessible to 
stakeholders and practitioners (Alberti, 2017; Deal et al., 2017; Kwak 
et al., 2021). This study attempts to link the complex interactions in 
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urban and ecological systems to planning and policymaking in order to 
affect more resilient outcomes. 

Stormwater runoff is one critical urban issue that exemplifies the 
complexity of human and natural systems coupling. Intensive urbani-
zation across the globe has had great impacts on our watershed envi-
ronments. The land-use changes (LUC) inherent in this urbanization 
have significantly altered hydrological processes, such as infiltration 
and evapotranspiration. The literature on the impacts of LUC on hy-
drological processes suggests that it plays an important role in assessing 
and projecting the consequences of anthropogenic activities (Kalantari 
et al., 2019; Li et al., 2018). Innumerable studies have conducted 
simulated hydrological responses to urban LUC due to economic activity 
or societal interactions (Islam et al., 2018; Stefanova et al., 2019). For 
example, Sunde et al. (2016) forecast streamflow responses for three 
urban development scenarios in the Hinkson Creek watershed in Mis-
souri, U.S. They first project future urbanization patterns using the 
Imperviousness Change Analysis Tool (I-CAT) and estimate hydrological 
responses of the scenarios by using the Soil Water Assessment Tool 
(SWAT). Similarly, Akhter et al. (2016) investigate the hydrological 
responses in the Myponga watershed, Australia, as results of LUC sce-
narios by running Personal Computer Stormwater Management Model 
(PCSWMM). Kalantari et al. (2019) develop an integrated model that 
accounts for socioeconomic changes (e.g., population and employment 
growth) and hydrological responses for the Tyresån watershed in 
Stockholm, Sweden. They claim the importance of model integration to 
reveal the impacts of urbanization on hydrological conditions and the 
importance of feedback processes in modeling to support decision 
making. Similarly, Islam et al. (2018) emphasize testing multiple so-
cioeconomic scenarios to simulate hydrological impacts and assess 
future risks. Most of these sociohydrology studies however, focus on 
one-directional impacts – the effects of changing land use on hydro-
logical systems, and many of them conduct simulations and explore the 
impacts at a watershed scale. 

We contend that one-directional sociohydrological analysis can miss 
critical components of the interrelations between LUC and hydrology. 
Complex systems theory suggests that these urban/eco - systems are 
interconnected and operate as an intertwined whole (Alberti, 2017; 
Batty, 2007). Especially in the context of resilience, understanding their 
dynamics is critical to a sensible and adaptive response (Deal et al., 
2017). Paradoxically, a proximity to water is generally appreciated by 
households (Doss and Taff, 1996; Orford, 2002), even though this 
proximity may have negative effects during times of high volume runoff 
(especially along streams and rivers). It is, therefore, likely to expect that 
runoff will not only be affected by LUC, but that the spatial patterns of 
LUC will also be affected by runoff. To date, there is little evidence of 
these ‘bi-directional’ impacts in the literature. We suggest that under-
standing the bidirectionality of sociohydrology both spatially and 
temporally can support resilient water resource management planning 
and policy. 

Another issue in policymaking stems from the difference in physical 
scales between modeling and decision-making. While most hydrological 
simulations are conducted at a watershed scale, development policies 
are demarcated by political boundaries – which very rarely follow 
watershed divisions. Simulations limited to an urban area therefore, 
cannot be easily applied to watershed scales and likewise, simulations of 
watershed scales are difficult to transpose to real-world collaborative, 
political decision-making practices. In addition, if the outputs lack 
spatial explicitness and produce only non-spatial data (hydrographs for 
example), turning the findings into physical design applications may 
become a challenging task; the identification of specific locations to 
intervene for example. The scale dichotomy can also cause difficulty in 
correctly applying the resulting information to planning and policy-
making (Boongaling et al., 2018). Ward (2009) notes that such difficulty 
weakens policymakers’ confidence in watershed-scaled assessments. 
Margerum and Whitall (2004) raise concerns about potential dilemmas 
in water management decision-making between different interests and 

different scales of analysis. They note that local stakeholder groups may 
not consider watershed-wide effects but look only at the fine scales 
within their community boundary. This gap between modeling and 
real-world applications suggests scalable, spatially explicit analytical 
approaches may be needed to demonstrate the dynamic interactions in 
sociohydrological systems and at the same time, produce information 
useful and applicable across multiple scales. 

In this paper, we examine the bi-directional impacts of land devel-
opment location-choices and changes in surface runoff. We analyze 
multiple scenario simulations that can be used for comparisons and 
explore their physical applications for policymaking. To do this, an in-
tegrated, spatially explicit sociohydrological modeling system that 
couples the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) 
and the Land-use Evaluation and impact Assessment Model (LEAM) is 
applied to McHenry County, Illinois. The aim of this integration is not 
accurate predictions of urban environmental changes nor the testing of 
model performance but is focused on illustrating the missed opportu-
nities for (re)development when sociohydrological resilience is taken 
into account. 

The results of our integrated modeling system are simulation out-
comes in cell-based raster maps at a 30m × 30m scale and demarcated 
by a political boundary (McHenry County). We use this region as our 
case study area to examine the following questions: Q1) What are the bi- 
directional impacts of runoff and LUC? And what are some of the 
complex and nonlinear interrelations for forecasting potential futures 
using this bi-directional approach? Q2) What are the novel findings 
produced by the approach? Q3) How can spatially explicit outcomes be 
utilized to practically optimize design or developmental regulations for 
resilient outcomes? 

To address these questions, this paper is organized as follows. First, 
we review the existing literature to discuss the relations between runoff 
and urban growth. We use this review to introduce the models. We then 
outline our methods for developing a coupled modeling system and its 
application to three scenarios. We examine their bi-directional interre-
lationship with a focus on location-choices of land development in 
McHenry County. In this process, model validation and calibration ap-
proaches are also discussed. We present hydrological simulation and 
LUC projection results under the different scenarios and compare the 
outcomes. We discuss the implications of the modeling outcomes in 
terms of growth and runoff management and the benefits of spatially 
explicit outcomes for physical design and policy applications. The lim-
itations of this study are also presented. Finally, we conclude this paper 
by summarizing its contributions to the sociohydrology literature. 

2. Literature review and model selection 

2.1. Relationships between urban growth and runoff quantity 

Current projections show that unfavorable consequences from urban 
growth are being exacerbated by an incremental increase in urban 
population (United Nations, 2018). These increasing population trends 
have accelerated the intensive conversion of natural land to built-up, 
urbanized lands that have exponentially more mass and less pervious-
ness (Kwak et al., 2020; Xu, 2010). Stormwater runoff is influenced by a 
number of interconnected biophysical factors (e.g., precipitation trends 
and land-use change) that are hard to predict due to their uncertainty, 
complexity, and dynamic nature (Abdulkareem et al., 2019). In urban 
areas where growth trends continue to accelerate the increase in surface 
roughness, decrease in surface imperviousness, and removal of vegeta-
tion with nonlinear patterning, there is a great need to generate 
adequate information on long-term runoff dynamics for sustainable 
management (Abdul-Aziz and Al-Amin, 2016). 

The key advantages of technological advances in modeling have led 
to a broad discussion of the dynamic relationships between LUC and 
stormwater runoff. Many studies have examined the impact of urbani-
zation on stormwater runoff by using various models and found 
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important implications (Kalantari et al., 2019; Paule-Mercado et al., 
2017; Saleh et al., 2019). Abdul-Aziz and Al-Amin (2016) conduct 
sensitivity analyses of potential hydrological responses in the Miami 
River Basin of Florida by using SWMM (Storm Water Management 
Model). Their findings show that surface imperviousness and roughness 
have a more dominant influence on runoff than slope and that LUC from 
open lands to commercial land-uses have the largest change in runoff 
volume, followed by LUC to industrials and to residentials. Zhang et al. 
(2015) examine the spatiotemporal correlations between surface run-off 
coefficient and LUC in the process of urbanization by utilizing the 
L-THIA (Long-term Hydrologic Impact Assessment) model. They 
compare runoff across 32 towns in Dongguan, China and find that runoff 
severity can be varied by different socioeconomic contexts. Li et al. 
(2018) similarly use the curve number method to assess the impact of 
urbanization on runoff in the Shenyang urban area, China. They further 
investigate the (auto)correlations by applying the Moran’s I method and 
demonstrate that flooding hazards (high-high clusters) were concen-
trated in the urban center. 

Many studies have stressed the significance of the impacts of urban 
growth (LUC) on hydrological systems by employing various simulation 
models and methods (Choi and Deal, 2008; Sharif et al., 2017; Suribabu 
and Bhaskar, 2015; Zhang et al., 2015). These one-directional impacts 
have been well documented in the sociohydrology literature (Kalantari 
et al., 2019; Li et al., 2018; Stefanova et al., 2019). The general focus of 
these studies are speedy recovery, damage prevention, and system 
control, targeting a runoff-controlled state as optimal (Liao, 2012). 
Communities that are dependent on such approaches cannot be resilient 
to runoff but resistant to it (Liao, 2012). When systems are suppressed to 
promote stability, they lose resilience (Holling and Meffe, 1996). Runoff 
is a dynamic process, especially when considered in dynamically 
changing urban areas so that the target state for stormwater manage-
ment is likely to change over time. Therefore, building resilience in 
urban runoff systems should essentially be a process of adaptation for 
“living with” changes rather than controlling or fighting to maintain the 
status quo (Folke, 2006; Liao, 2012). To our knowledge, few studies 
have examined the spatiotemporal bi-directional impacts concerning 
“how we live with” changes in development and hydrology. This study 
argues the necessity for exploring the opposite directional impacts 
(hydrological impact on LUC) and the bi-directional impacts (between 
runoff and LUC) for resilient growth management. 

2.2. Cell-based scalable models 

The Gridded Surface Subsurface Hydrologic Analysis (GSSHA). A 
number of hydrological models have been developed for different pur-
poses and scales and have been widely applied to various urban and 
natural contexts (Akhter et al., 2016; Boongaling et al., 2018; Marsik 
and Waylen, 2006; Sharif et al., 2017). The important ability in hydro-
logical modeling is to assess the full range of potential runoff responses 
to a number of scenarios for extended periods (Frakes and Yu, 1999; 
Mohamed et al., 2020). The models available for this ability can be 
broadly classified into two categories: 1) lumped models and 2) 
distributed models. Lumped models produce hydrological average var-
iations within an individual (sub)watershed as a single unit, whereas 
distributed models subdivide a (sub)watershed into particular spatial 
grids (cells). While currently lumped models are more widely used 
because of their simpler setting and low computational cost, fully 
distributed models, such as GSSHA, are gaining much attention with the 
growing availability and accessibility of data (Moore et al., 2017; Sharif 
et al., 2017). Distributed models have the ability not to be spatially 
limited in gauged watersheds but to spatially predict runoff variability 
responding to spatiotemporal dynamics (Chintalapudi et al., 2017; Ocio 
et al., 2019; Smith et al., 2004). 

The selection of an appropriate model among the numerous existing 
ones should be made carefully. GSSHA, which is capable of illustrating 
hydrological impacts spatially at multiple scales (Downer and Ogden, 

2006), is chosen for this study because we explore the spatiotemporal 
dynamics of LUC and runoff conditions and produce scalable 
spatially-explicit outputs. GSSHA is known for the highest performance 
in accuracy (Borah and Weist, 2008), and its comprehensive abilities 
make it applicable to long-term simulations taking account into urban 
growth (Downer and Ogden, 2004; Moore et al., 2017). Also, since the 
physical attributes of land-use, topography, and soil are greatly deter-
minant factors in hydrological responses, GSSHA, which allows input of 
spatial datasets at a fine-scale, better performs than lumped models 
especially when it comes to urban hydrology that contains greater 
spatial variability (Downer and Ogden, 2006; Sharif et al., 2017). 

The Land-use Evolution and Impact Assessment Model (LEAM). 
LEAM is a dynamic spatial model that projects LUC based on dynamic 
relationships between various socioeconomic and biophysical factors, 
such as population, landforms, and transportation networks. In the 
model, development probabilities are computed by travel time-based 
accessibility to attractors (e.g., population centers) that determine the 
location-choice of the development in a gravity-type function in which 
the attraction power decays by distances. LEAM generates sequential 
land-use maps at a fine scale (30m × 30m), answering scenario-based 
‘what-if’ and ‘so-what’ questions. Detailed modeling descriptions are 
noted in our previous LEAM work (see (Chen et al., 2021; Deal, 2001; 
Pan et al., 2019a)) and also introduced in the Methods section. 

LEAM has been utilized to test various policy scenarios for different 
cities and regions to improve its practicality and has been coupled with 
various models to improve its scalability and functionality as an inte-
grative Planning Support Systems (PSS) tool. REIM (Regional Input- 
output Model) is one of the representatives synthesized with LEAM for 
investigating sophisticated interactions between LUC and socioeco-
nomic projections and assessing their impacts (Chen et al., 2021; Pan 
et al., 2019b). There also have been several attempts to integrate hy-
drological models with LEAM to predict hydrological consequences in 
response to growth scenarios. For example, Choi and Deal (2008) use a 
semi-distributed model (HSPF; Hydrological Simulation Pro-
gram—Fortran) for the Kishwaukee River basin in Illinois. 

Cell-based model coupling. Mainly because of high computational 
time and demand and model complexity, a few fully distributed hy-
drological models have been utilized (Marsik and Waylen, 2006; Ocio 
et al., 2019) and integrated with spatial land-use projection models. We 
claim that integrating cell-based spatial models that are free from the 
physical scale issues can play an important role in making complex 
simulations, which are often considered “rocket-science,” useful and 
accessible to practitioners. Both GSSHA and LEAM are spatially explicit 
models that allow for spatiotemporal assessment of dynamic in-
terrelations in sociohydrological systems and are able to generate 
graphically understandable visual maps with high flexibility of their 
uses (Furl et al., 2018; Kwak et al., 2021; Pan et al., 2018; Sharif et al., 
2010). 

3. Methods 

3.1. Study area 

Situated in Chicago Metropolitan Area and located 30 km west of 
Lake Michigan, McHenry County is home to around 300 thousand 
people with a total area of 1,582km2. It has experienced the pressure of 
(sub)urbanization, especially on the southern and eastern portions of the 
county (Fig. 1). The 2016 NLCD (National Land-Cover Dataset) indicates 
that row crops –agricultural use, is the predominant land-use covering 
48.3% of the total area, followed by residentials (18.7%) and forestry 
(10.9%). Along the Kishwaukee River and the North Fox River that flows 
through the county and around Crystal Lake, flooding has been the most 
severe weather event affecting the region. Projections of an increase in 
precipitation signify that the risk of flooding is expected to increase, 
causing significant disruption with residents and damages to in-
frastructures. The increasing risk can negatively affect the quality of life 

Y. Kwak and B. Deal                                                                                                                                                                                                                           



Journal of Environmental Management 300 (2021) 113742

4

and the spatial patterns of growth. 

3.2. Overview of the model integration process 

The coupled modeling system is illustrated in Fig. 2. The system has 
been developed under an assumption that the patterns of runoff affect 
the location-choices of land development and has been processed in the 
following interactive steps. First, hydrological simulations for the two 
subwatersheds are conducted by GSSHA with the initial-run year land- 
use dataset. Second, two simulation raster outputs are merged and 
converted into a LEAM input variable. LEAM uses attraction values on a 
finely scaled (30m × 30m) lattice as input variables that measure the 
accessibility to amenities of interest. The LEAM attraction is described in 
a later section in details. Third, LUC are forecasted within the political 
boundary of McHenry County for the second-run year by LEAM based on 
the Chicago region’s population and employment projections (Chicago 
Metropolitan Agency for Planning, 2018). The LUC projection in which 
hydrological conditions are taken into consideration depicts the impact 
of runoff on the location-choices of land development. Fourth, in turn, 
the projection result is fed back to GSSHA as a land-use dataset of the 
second-run year in order to simulate the impact of LUC on the regional 
hydrology. Fifth, this feedback process is iterated until the GSSHA-LEAM 

model running reaches the target (final-run) year. 
As a dynamic process, the proposed framework enables an analysis of 

a wide range of scenario-based futures by changing model settings or 
changing the interval of model runs. For example, changing the pre-
cipitation inputs in GSSHA allows testing climate change scenarios, and 
changing socioeconomic projection inputs or setting different “no- 
growth” zones in LEAM allows comparing LUC outcomes under different 
growth scenarios. Also, testing multiple intervals of model runs can help 
policymakers capture an optimal interval to update a growth policy to 
adaptively respond to runoff issues. 

Three counterfactual simulation scenarios are established in this 
study. The first one is a business-as-usual (BAU) that simulates one- 
directional impacts in a typical way. This scenario assumes that poli-
cymakers generate a 30-year long-term growth plan based on the cur-
rent developmental patterns and trends and keep the plan with no 
modification from 2016 to 2045. The effects of runoff on future devel-
opment are not considered, but proximity to water (Supplementary 
Materials) is instead included as an environmental factor in projecting 
future growth. The second scenario is runoff management without 
monitoring (RXM). This scenario is basically under the same assumption 
as the BAU scenario (no modification to 2045). Yet, the interrelations 
between runoff and LUC are taken into consideration, which means that 

Fig. 1. 2016 land-use in McHenry County and subwatersheds crossing the region.  

Fig. 2. A Framework of Model Integration. Blue lines 
represent the process of GSSHA, and orange lines 
represent the process of LEAM. An output from each 
model is fed back to the other. The final land-use 
projection output from LEAM can be used to estab-
lish alternative growth scenarios. In the LEAM 
modeling linkage, corresponding equation numbers 
are given and represented in section 3.4. (For inter-
pretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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a spatial runoff result from GSSHA is included in projecting future 
development. The last scenario is runoff management with monitoring 
(RWM), where policymakers keep monitoring runoff distributions over 
the region and update the development plan accordingly every 10 years. 
This scenario assumes that flooding is continuously one of the most 
concerning issues in McHenry County affecting the spatial patterning of 
land development, and policymakers, therefore, try to deal with the is-
sues by adaptively deploying new developments. An overview of the 
modeling process for the three scenarios is displayed in Fig. 3 and 
Table 1. 

BAU scenario consists of a general set of land-use variables (socio-
economic and environmental variables) while RXM and RWM scenarios 
include an alternative runoff variable, resulted from GSSHA. f()trefers to 
the logistic-based function of projecting land-use P at time step t. Note 
that the base year is 2016 (t = 1). g() is the function for the GSSHA- 
LEAM model iteration, described in Fig. 3. 

3.3. GSSHA model set-up 

The GGSHA model set up follows the flowchart displayed in Fig. 4. 
Two subwatersheds flowing through McHenry County (the Kishwaukee 
River subwatershed and the North Fox River subwatershed, shown in 
Fig. 1) are first delineated based on the 1/3 arc second (approximately, 
10m) DEM dataset retrieved from the U.S. Geology Survey. In the model, 
we use cleaned NLCD land-use data for 2016 and the soil type data, 
obtained from the U.S. Department of Agriculture, to generate index 
maps (grid datasets with parameters). The model is set up for each 
watershed on a 30m grid cell to match with the spatial unit of LEAM, and 
each watershed simulation is conducted separately. The stream channels 
in each watershed are smoothed manually to control some of the adverse 
(negative) channel slope resulting from errors in the DEM. A uniform 
trapezoidal channel profile is adopted for defining stream cross sections. 
The Alternative Direction Explicit (ADE) method, which is known for the 
most robust one (Downer and Ogden, 2006), is selected for overland 
flow routing, and the Green and Ampt with Redistribution (GAR) is 
selected to simulate the infiltration. The descriptions of ADE and GAR 
are not repeated here (see (Chintalapudi et al., 2017; Sharif et al., 
2017)). 

It should be noted that we use two different precipitation settings for 
the main simulations and the model calibration/validation, respectively. 
We apply a uniform precipitation (a historical record in Northern Illi-
nois, obtained from the National Weather Service: https://www.weath 
er.go) for the main runs. It is because predicting precipitation patterns 
spatiotemporally over 30 years is a subject outside of this study and this 
study does not seek to calculate runoff depths in high accuracy for 
particular storm events. We simulate maximum surface runoff depths to 

illustrate the relative intensity of runoff occurrence over the region. 
However, it does not mean that the model parameters do not need to be 
calibrated and validated. The model should perform reasonable accu-
racy in terms of its outcomes –spatial distributions of runoff depth. For 
the calibration and validation, the initial parameters were taken from 
the GSSHA manual (Downer and Ogden, 2006), and calibrated by 
comparing the resulting hydrographs with observed data at USGA 
gauging station 05440000 (Fig. 1) for a storm event on April 28th to May 
7th in 2020. The observed rainfall data, measured at the five rain sta-
tions, were obtained from the Midwestern Regional Climate Center, and 
interpolated by using the Inverse Distance Weighted method. Then two 
additional storm events, including August 10th to 13th, 2020 and 
November 10th to 14th, 2020 were used to validate the model. Detailed 
descriptions of the calibration and validation processes (e.g., 
Nash-Sutcliff efficiency and RMSE) are documented in Supplementary 
Materials. The parameters applied in the GSSHA simulations are pre-
sented in Table 2. 

3.4. LEAM model set-up 

LEAM computes the probability of land development considering a 
set of socioeconomic and biophysical drivers and allocates new resi-
dential or commercial land-uses on 30m cells that exhibit higher prob-
abilities. The locations of future development are influenced by the 
spatial relations between the drivers, and the extent of development is 
determined by the official growth projections. The model drivers 
influencing the location choices of future development are defined as 
“attractors.” Attractors are comprised of cell-based attraction values that 
account for the accessibility from each cell to locations-of-influences, 
such as population centers, road networks, and runoff-prone areas, 
based on the shortest travel time (e.g., to population centers) or the 
shortest Euclidean distance (e.g., to runoff-prone areas). Putting it 
simply, the attraction values spatially and quantitatively illustrate 
people’s preferences in their location choices (e.g., people may prefer to 
live near urban centers with shorter travel time while they may not want 
to locate new development adjacent to runoff-prone areas) are measured 
by a gravity-like model as follows: 

Fig. 3. Modeling processes for each scenario. The final simulation outputs for the year 2045 are highlighted in red. . (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Scenario equations.  

Scenarios Descriptions 

BAU (business-as-usual) P = f(a1, a2, a3, awater )t  

RXM (runoff management without monitoring) P = f(a1, a2, a3, aGSSHA )t  

RWM (runoff management with monitoring) P =
∑n

t=1
g(f(a1, a2, a3, aGSSHA )t)
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aik =
∑

j∈Si

pj

djk
Eq. (1)  

where aik refers to the attraction value for the attractors type i on land- 
use cell k, Si refers to set of attractors type i, pj is the level of attractions 
(e.g., number of employment) on cell k, and dik is the travel time be-
tween jth attractor in Si and cell k. 

The socioeconomic attractors used as the LEAM drivers for this study 
are shown in Fig. 5. 

The socioeconomic attractors illustrate how certain locations-of- 
influence attract new developments with the shortest travel time on 

the road networks. However, whether new developments are repelled 
from (or attracted to) runoff-prone spots should be measured by a 
different way since runoff events occur along streams not roads, and the 
way people perceive flooding events is likely pertaining to proximity 
(how physically close) rather than accessibility (how accessible). In this 
regard, we define “runoff inverse-attractor” that illustrates how storm-
water runoff repels future developments by distances. From Equation 
(1), pj refers to the depth of runoff on cell k, and djk refers to the 
Euclidean distance from jth depth cell to stream cell k. It should be noted 
that this process allows for conversion of 0 runoff depth values on 
streams or rivers, surrounded by high runoff depths, to high repellent 

Fig. 4. A simplified modeling flowchart of GSSHA. Adapted from (Sharif et al., 2017).  

Table 2 
Calibrated GSSHA Parameters for Soil Types and Land-uses (corresponding land-use codes are noted).  

Soil Texture/Major Land-use (code) Manning’s Roughness Hydraulic Conductivity (cm/h) Capillary Head (cm) Porosity Pore Distribution Index 

Loam – 1.32 8.89 0.463 0.252 
Silty Clay Loam – 0.2 27.3 0.471 0.177 
Muck – 0.06 31.63 0.475 0.165 
Silt Loam – 0.68 16.68 0.501 0.234 
Residential (21) 0.011 – – – – 
Commercial (23) 0.012 – – – – 
Forest (42) 0.150 – – – – 
Agriculture (82) 0.035 – – – –  

Fig. 5. Attractor maps for McHenry County based on the 2016 dataset. Warmer colors refer to higher attraction values, and greener ones indicate lower values. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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values because of the shortest distance. The maximum depths of surface 
runoff for 2016 are simulated by GSSAH for the two subwatersheds and 
converted to a “runoff inverse-attractor” within the political boundary of 
McHenry County by applying Equation (1), as shown in Fig. 6. 

The model calculates the development probabilities at time step t 
applying modified logistic regression presented in Equations (2) and (3), 
and the model allocates new land-uses following Equation (4). 

Z = β0 + β1a(1,k) + β2a(2,k) + β3a(3,k) + β4a(4,k,t) Eq. (2)  

P(k,t) =
exp(Z)

1 + exp(Z)
× θ(k, t) × Nk Eq. (3)  

where P(k,t) refers to the development probability on land use cell k at 
time step t; a(n,k) is attraction value of population attractor a1, employ-
ment attractor a2, and transportation attractor a3 on cell k, respectively; 
a(4,j,t) is a repellant value of runoff inverse-attractor at time step t, 
calculated by GSSHA and Eq (1), or is a Euclidean distance to water 
bodies for the BAU scenario; θ(k, t) refers to stochastic perturbation 
representing unconsidered factors (White and Engelen, 1993) on cell k; 
Nk is a binary value of whether cell k is located inside (0), or outside (1) 
of “no-growth” zones such as Illinois protected areas. 

D(k, t) =

{
1 P′

t ≤ P(k,t)

0 P′

t > P(k,t)
Eq. (4)  

where D(k,t) represents whether cell k at time step t change to projected 
residential or commercial land-uses (1 for develop and 0 for not 
develop), P′

t is the minimum development probability value when 
selecting the number of cells in order which indicates the total growth 
demand specified by the official document at time step t, P(k,t) is a 
probability value on cell k. 

4. Results 

The relationship between potential development and accessibility to 
amenities is many times in a non-linear, dynamic form (Zhang et al., 
2021). We run regressions to examine the dynamic relationships 

between the probabilities of future development and socioeconomic and 
hydrological attractors. We then simulate spatial patterns of LUC and 
runoff by the coupled GSSAH-LEAM model under three scenarios from 
2016 to 2045. Different results between the scenarios are shown to 
prove the growth mechanisms associated with both socioeconomic and 
hydrological systems. Lastly, we spatially compare the results for a small 
city in the study region across the scenario to explore the impacts at a 
fine scale. We evaluate detailed spatial characteristics needed for 
physical applications that are hardly captured by regional-scale 
analyses. 

4.1. Different effects of sociohydrological drivers on land development 

Akaike Information Criterion (AIC) values are calculated to deter-
mine the relationship best describing how attractors (accessibility to 
locations of influence) drive land development in the study region. Fig. 7 
displays the relationships between socioeconomic (population attractor, 
employment attractor, and transportation attractor) and hydrological 
(runoff inverse-attractor, and proximity to water) drivers and the 
probabilities of residential or commercial developments. In this graph, 
the horizontal axis is the accessibility to the locations of influence, 
measured by travel time and normalized to 0 and 1. The vertical axis 
represents the probability of a cell being developed to residential or 
commercial land uses (from its existing use). The line represents the 
growth trend associated with each attractor. The lowest AIC value 
models can be found in Table 3. 

In general, both the probabilities of residential and commercial de-
velopments increase as the locations are closer to existing residential 
areas (higher population attraction values) and commercial areas 
(higher employment attraction values). This describes agglomeration 
effects that have been well documented in the land-use literature 
(Johansson and Quigley, 2003; Rosenthal and Strange, 2004). More 
specifically, the probability of residential development becomes expo-
nential when the population attraction values are over 0.4 and the same 
trend appears for the commercial development when the employment 
attraction values are over 0.6. One notable difference between resi-
dential and commercial development is found in the relationships to 

Fig. 6. (a) Maximum runoff depth simulated by GSSHA for the year 2016, (b) Runoff Inverse-Attractor, and (c) Zoomed-in maps to show the difference between (a) 
and (b). 
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road networks (transportation attractor). A quadratic model describes 
how the accessibility to road networks steers residential location choice 
–residential development is only attracted by reasonable access to 
highways (attraction<0.2) while it does not favor being located in too 
close proximity due to noise, safety issues, or other possible concerns. 
This corresponds to our previous findings for other regions in Illinois 
(Chen et al., 2021; Pan et al., 2019a). On the other side, commercial 
development shows a monotonic increasing trend with the accessibility 
to road networks, which is explainable given that the development is 
highly related to the ease of distribution and supply of products. 

The relationships between land developments and hydrological 
drivers show notable results. These relationships determine the differ-
ence in LUC projections between BAU, RXM, and RWM scenarios. The 

proximity to water appears highly attractive to both residential and 
commercial developments because water provides various sociocultural 
and environmental ecosystem services promoting human well-being 
(Keeler et al., 2012). For some big cities, negative relationships are 
often found, illustrating that water forcefully repels new developments 
due to higher property values in close proximity or zoning regulations 
(Pan et al., 2019a). However, people’s preference for living or working 
closer to water (Doss and Taff, 1996; Orford, 2002) is evident in our 
results. It is possibly because McHenry County is a suburban region 
where housing prices less affect the location choices than highly ur-
banized areas, such as Chicago. 

Residential development shows a complex relationship to the runoff 
inverse attractor (proximity to runoff-prone areas). As shown in the 
residential developmental trend associated with the accessibility to road 
networks, this quadratic curve demonstrates that residential location 
choices generally involve more complexity than commercial location 
choices. Considering the positive relationship with the proximity to 
water, this result suggests that attraction to water outweighs repellant 
from runoff when it reaches a certain level. In other words, people prefer 
to live near water even with runoff risk if they can have scenic water 
landscape. However, the probability of commercial development de-
creases exponentially as runoff vulnerability increases. Logically, this 
suggests that businesses are reluctant to take any risk of flood when 
deciding their locations, even with the preference for locating close to 
water. 

Our results show that runoff vulnerability has a notable effect on 
location choices of land development. Given the previous findings that 
prove the effects of LUC on hydrological systems (Akhter et al., 2016; Li 
et al., 2018), this work validates our assumption that there are 
bi-directional impacts between changes in land-use and surface runoff. It 
also shows that hydrological responses drive residential and commercial 
developments differently. 

Fig. 7. Mapping relationships between probabilities of land-use occurrence in available lands (y-axis) and accessibility to attractors (x-axis) in McHenry County.  

Table 3 
Lowest AIC values for sociohydrological attractor variables.  

Development type 
(DV) 

Attractor variable 
(IV) 

Best Model 

Residential Population y = 0.05+ 0.05x − 0.49x2  

Employment y = 0.35x  
Road Network y = 0.24+ 0.63x − 2.07x2 +

1.23x3  

Runoff y = 0.23 − 1.25x+ 2.74x2 −

1.68x3  

Water Proximity y = 0.07+ 0.31x − 0.15x2  

Commercial Population y = 0.01x+ 0.25x2  

Employment y = − 0.02+ 0.48x − 1.50x2 +

1.56x3  

Road Network y = 0.18+ 0.51x  
Runoff y = 0.08 − 0.41x+ 0.65x2 −

0.33x3  

Water Proximity y = 0.48x − 0.66x2 + 0.29x3  

All p-values are less than 0.001. 
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4.2. Land-use projections under three scenarios 

The probabilities of residential and commercial developments for 
McHenry County, estimated by applying Equation (2), are displayed in 
Fig. 8. Illustrating agglomeration effects, the development probabilities 
show that most new developments would occur near existing urban 
centers and sprawl toward fringe areas. No notable difference in 
developmental patterns is reported between projections considering 
runoff (Fig. 8a and b) and those not considering runoff (Fig. 8c and d). 
However, we find marked patterns of runoff with 0 values of the 
development probability on Fig. 8a and c, which exhibits that higher 
runoff risks repel land development. Fig. 8a displays slightly more 
sprawling patterns than Fig. 8b. This may suggest that there is more 
demand for residential development in fringe areas, causing sprawling, 
when an assessment of runoff vulnerability is incorporated in a devel-
opment policy. This is counter intuitive. However, this is understandable 
given that a runoff-considered policy protects inner-city infill develop-
ment on runoff-prone areas and diverts the growth demand further into 
outskirts. This is also explainable in that some fringe areas with a certain 
range of runoff risks along the Kishwaukee river or the Fox river attract 
residential development, likely because of reasonable proximity to 
water bodies, as shown in Fig. 7. 

Based on our probability estimations, land-use changes from 2016 to 
2045 for the three scenarios are forecasted and shown in Fig. 9. As 
described above, these projection results demonstrate that scenarios that 
mitigate urban exposure to potential runoff would result in more 
sprawling patterns of residential development. For instance, we find that 
more future residential land-uses are projected on the fringe areas of the 
city of Woodstock (the black circle in Fig. 9) under RXM scenario than 
the LUC allocations under BAU scenario. The spatiotemporal patterns of 

sprawl development over time can be seen in Fig. 9c. 

4.3. Spatial comparison at a city level for physical applications 

The city of McHenry, which is the county seat, is selected for the 
spatial comparisons of potential runoff exposure to provide information 
of detailed spatial characteristics that are hardly captured by larger- 
scale observations. Fig. 10 exhibits an overlay of projected new de-
velopments and maximum runoff depth (≥0.5 m) in 2045 under each 
scenario, respectively. Not unexpectedly, the results present that BAU 
scenario, where the hydrological effects on LUC are not considered, 
result in the highest percentage of cells exposed to runoff (10.38%), 
followed by RXM scenario (6.29%) and RWM scenario (6.24%). The 
results demonstrate a benefit of hydrological assessment applied to 
urban growth management in terms of runoff exposure. In other words, 
it is anticipated that when new developments proceed without 
consciously avoiding potential runoff-prone areas, more new de-
velopments are likely to be exposed to runoff risk in the future because 
water bodies (the Fox River and the Boone Creek, situated in the city) 
are attractive to high-value residential development possibly because of 
with their scenic landscapes. 

We also find that RWM scenario results in a better effect in growth 
management against surface runoff than RXM scenario. The difference 
in the exposure of new development to runoff risk (depth ≥0.5 m) be-
tween the two scenarios appears negligible, showing only 0.05% of the 
difference. However, we also find that property damage from runoff can 
be considerably reduced under RWM scenario. While the average runoff 
depth on the new development lands exposed to runoff risk is 1.44 m 
under RXM scenario, the depth under RWM scenario appears 1.08m. 
The most probable explanation is that RWM scenario successfully 

Fig. 8. Probability maps of residential and commercials development. (a) and (c) are the projection results where runoff configurations (GSSAH outputs) are 
considered, and (b) and (d) are the results where water proximity are considered. Warmer colors refer to higher probability of development while cooler colors refer 
to lower probability. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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captures the bi-directional impacts over time so that helps location 
choices of land development avoid the areas that are highly prone to 
runoff. 

In order to turn these findings into information for physical appli-
cations, more steps to examine how the bidirectional impacts work at 
the city (or smaller) level are required. From the results, we find 
seemingly contradictory preference in determining development loca-
tions –people prefer to live or work closer to water but farer away from 
runoff-prone areas, but those prone areas are generally around linear 

water bodies (creeks or rivers). Fig. 11 informs how this preference has 
physical and contextual implications. More specifically, this informs 
where the attraction to water and the repellent from water (runoff) 
occur and where developmental trends dramatically change by distance 
in the McHenry city. This contextual, city-level results appear quite 
different from the regional results, shown in Fig. 7. The probability of 
residential development largely increases as the cell locations move 
away from water, which is opposite to the regional results but is 
explainable given that most residential lands in the city are clustered in 

Fig. 9. Projected land use changes in McHenry County for the year 2045 under three scenarios. Yellow cells are new residential land-uses and red cells are new 
commercial cells. Orange cells represent mixed-use land-uses where new residential and commercial developments are projected to occur on the same cell locations. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Projected land-uses and runoff for the city of McHenry in 2045. Only runoff depth values over 0.5m are displayed. Note that highest values vary across the 
scenarios. The results indicate that RWM scenario show a better mitigation in terms of the number of exposed cells and the severity of runoff. 
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the city center. This suggests that scenic water landscape situated in 
outskirt of the city is not a determinant factor in location choices, 
compared with urban amenities situated in the city center. One notable 
finding is that water attracts residential development when lands are 
located between about 300m and 600m from water, which may suggest 
a preferable location range of the residents for living with water in the 
city. The relationship with distance from runoff shows complexity 
similar to the trend at the regional level but the graph delivers more 
explicit information that runoff vulnerability does not repel the devel-
opment anymore when distance reaches a certain level (approximately 
480m from runoff-prone areas). Commercial development in the city 
exhibits more drastic trends. Runoff strongly repels development, and 
the influence of water attraction appears marginal compared with that 
of runoff repellent. Most possibly due to agglomeration effect, com-
mercial development is likely to take place closer to the city center, 
away from water. 

We expect this local-scale result to significantly vary across cities and 
towns in the region. In a small town where residential lands are not 
clustered in its center, for example, scenic water landscapes may attract 
residential development like the regional results. In conjunction with 
the spatially explicit simulation outcomes (Fig. 10), our analyses help 
policymakers and practitioners specifically identify how and where 
physical interventions should be deployed at a community level. For 
example, in the city of McHenry, green infrastructure (GI) for storm-
water management, such as a rain garden, can be suggested in the areas 
located between about 290m and 630m from the Fox River, providing GI 
services to the locals. Also, a “no-growth” area can be re-delineated 
considering ‘480m’ – the distance that runoff vulnerability may start 
losing its influence to developmental location choice. 

5. Discussion 

Our results of potential changes in both land-use and surface runoff, 
projected by a coupled GSSHA-LEAM, demonstrate a substantial bi- 
directional relationship between socioeconomic and hydrological func-
tions that most studies examining one-directional impacts (i.e., the ef-
fect of LUC on runoff) might have missed. We emphasize that the bi- 
directional impacts that this study explores can provide critical insight 
into growth management for urban resilience. Implications of this study 
are discussed with the following three points. 

First, timely capturing potential surface runoff allows future de-
velopments to adaptively respond to increasing risks of runoff affected 
by LUC. The extent of development exposure to runoff can be reduced in 
part as land developments show a tendency to be repelled by high runoff 
vulnerability. This is especially important given the ecological resilience 
that is measured by the ability to adapt to potential dynamic states. 

Since we cannot accurately predict or forcibly prevent climate change or 
urban growth, building resilience in urban systems should essentially be 
a process of adaptation for “living with” changes rather than controlling 
or fighting (Folke, 2006; Liao, 2012). In this sense, this study does not 
suggest how to control the extent of urban growth or how to reduce the 
amount of surface runoff. Instead, this study allows future developments 
and runoff to occur in the way that they are supposed to do in response 
to changing demands, then seeks ways to adapt to the probable changes, 
and assesses the expected impacts. More specifically, we find that 
McHenry County is expected to face more sprawl patterns of land 
development if policymakers take into consideration the spatiotemporal 
patterns and severity of surface runoff in growth policymaking. In our 
results, the sprawling in McHenry County is neither a negative impact of 
population influx to be regulated nor a cause of stormwater runoff to be 
managed but a developmental trend that is naturally affected by the 
bi-directional responses. It is an adaptive response to “live with” runoff, 
mitigating the damage from it and meeting the developmental demand. 
Capturing the spatiotemporal configurations of potential runoff enables 
to plan new land developments timely without eroding the capacity of 
the sociohydrological system of the region. 

Second, compared with conventional techniques (floodplain devel-
opment regulations for example), our simulations of bi-directional im-
pacts propose an alternative, spatially specific approach. Development 
regulations on floodplains (i.e., conservation areas), especially along 
rivers, are one of the effective ways to manage growth and prevent flood 
disasters. Such regulations aim to keep urban systems remain at an 
optimal state (no or minimized damage). It is much true that estab-
lishing larger no-growth zones can better protect communities from 
stormwater runoff or other natural disasters. However, this arguably 
conflicts with increasing developmental demands and preferences in 
their location choices. With socioeconomic growth, more urban land- 
uses are likely to occupy areas near water in the future because prox-
imity to water attracts both residential and commercial developments. 
Yet, we find another significant implication that the location choices are 
repelled by the risk of runoff (although residential location choices show 
complexity). In short, people in McHenry County might prefer to live or 
work closer to water while keeping away from runoff-prone areas. Our 
sociohydrological simulations that account for this seemingly contra-
dictory (but natural) preference can help understand how to balance 
developmental demands and preferences with hydrological responses. 
In other words, our spatially explicit projections can help optimize 
existing conservation areas in a way that supports human services while 
adapting to environmental processes instead of configuring zones for no- 
growth in a mass along floodplains. 

Finally, the issue of scale is important in applying hydrological 
findings into planning and design projects (Boongaling et al., 2018; 

Fig. 11. Relationships between development probabilities to residential or commercial lands and distance from runoff-prone areas or water.  
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Margerum and Whitall, 2004). It is also especially important when we 
operationalize such scientific information for resilience (Kwak et al., 
2021). The lens that hydrological systems are typically viewed is 
macroscopic and cannot be readily applied to physical applications at 
the community level (Boongaling et al., 2018). Watershed-based models 
(i.e., lumped parameter models) are not compatible with land-use plans 
for a municipal boundary nor physical designs at a smaller scale. The 
ability to zoom-in with spatial explicitness across multiple scales is 
useful in identifying particular locations for intervention. 

Still, several limitations should be addressed for possible improve-
ment of this research. Although we emphasize the importance of 
accessibility of complex modeling systems in collaborative plan-making 
among stakeholders, scientists, and practitioners, GSSHA (or most 
existing fully distributed hydrological models) is too complex for easy 
use and has a high computational demand. This means that in order for 
the proposed coupled modeling system to be used practically in the real- 
world settings, expert interventions for model set-up and running are 
still required (LEAM has been developed as a user-driven Planning 
Support System (PSS) tool (http://leam.illinois.edu/)). Also, this study 
does not account for the hydrological effects of climate change. We 
instead simulate a maximum runoff depth by applying the historical 
precipitation record to the model to deal with potential effects. Addi-
tional scenarios with varying precipitation inputs will make this 
research more valuable and useful. Lastly, for physical applications, 
much finer visual outputs and contextual factors would be needed. For 
example, suitable sizes and types of green infrastructure to deal with 
social issues, such as ecosystem service inequality, or any possible 
negative impact on vulnerable groups cannot be determined with the 
information generated from this study, perhaps requiring additional 
contextual information. 

6. Conclusions 

This paper substantiates the argument that it is necessary to develop 
an integrated, cell-based dynamic model that is capable of assessing 
both anthropogenic and hydrological impacts in a spatially explicit way. 
Our results show that location choices of land development are affected 
by not only typical socioeconomic variables (e.g., population and 
employment) but also hydrological variables, and that those relation-
ships appear to be nonlinear. The coupled GSSHA-LEAM system enables 
the exploration of bi-directional effects between LUC and runoff by 
iteratively coupling modeling inputs and outputs at a similar spatial 
scale (30m × 30m). Our projection results under the three scenarios 
represent that damages from runoff can be mitigated by taking into 
account and adjusting growth management policies in a timely manner 
(Q1). We also find that different land developments respond to hydro-
logical changes differently, and that there is a conflict in developmental 
demand between being located near water and being located away from 
water. This provides an important insight that cannot be effectively 
captured by conventional ‘one-directional’ modeling processes (Q2). In 
terms of the utilization of this complex modeling system in policy-
making, planning, and design, (Q3), we show that spatially explicit 
outcomes contain locational information needed for physical design and 
planning applications. 

To date, fully distributed hydrological models such as GSSHA, have 
rarely been used due to high computational time and cost. However, this 
research attempts to underscore the advantages of using such models, 
especially given the optimization of physical applications at the policy 
level. And as computational efficiencies continue to increase these costs 
are likely to come down. 

The GSSHA-LEAM system simulates fine-scaled cell-to-cell in-
teractions produces spatial and quantifiable outputs with very specific, 
locational information. This can support questions of where to develop, 
where to avoid, and how those areas might change over time. Our 
finding can be used to spatially optimize existing development zoning 
regulations (e.g., no-growth zones on floodplains) in a way that 

corresponds to increasing developmental demands and adapts to 
changing hydrological systems. 

This research will contribute to efforts to move toward more robust 
and resilient regional planning and design applications that take into 
account changing environmental and social conditions. In terms of 
methodologies, this paper examines bi-directional mechanisms in soci-
ohydrological systems by constructing a cell-based and temporal dy-
namic model. In terms of applications, this paper converts complex 
modeling results into spatially explicit information that is useful to non- 
expert policymakers and practitioners. This research supports the need 
for cell-based forward-looking dynamic modeling to better understand 
potential sociohydrological interactions and strategically establish a 
resilient built environment. 
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