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Abstract: Given that evolving urban systems require ever more sophisticated and creative solutions
to deal with uncertainty, designing for resilience in contemporary landscape architecture represents a
cross-disciplinary endeavor. While there is a breadth of research on landscape resilience within the
academy, the findings of this research are seldom making their way into physical practice. There are
existent gaps between the objective, scientific method of scientists and the more intuitive qualitative
language of designers and practitioners. The purpose of this paper is to help bridge these gaps and
ultimately support an endemic process for more resilient landscape design creation. This paper
proposes a framework that integrates analytic research (i.e., modeling and examination) and design
creation (i.e., place-making) using processes that incorporate feedback to help adaptively achieve
resilient design solutions. Concepts of Geodesign and Planning Support Systems (PSSs) are adapted
as part of the framework to emphasize the importance of modeling, assessment, and quantification
as part of processes for generating information useful to designers. This paper tests the suggested
framework by conducting a pilot study using a coupled sociohydrological model. The relationships
between runoff and associated design factors are examined. Questions on how analytic outcomes can
be translated into information for landscape design are addressed along with some ideas on how key
variables in the model can be translated into useful design information. The framework and pilot
study support the notion that the creation of resilient communities would be greatly enhanced by
having a navigable bridge between science and practice.

Keywords: landscape architecture; urban resilience; Geodesign; Planning Support Systems (PSSs);
evidence-based design; design application

1. Introduction

Some of the current literature in resilient systems has been introduced in an attempt
to define, examine, assess, and even forecast the issue under various and changing con-
ditions [1–3]. Much of this work has been conducted under a fundamental assumption
that nature is continuously evolving and uncertainly changing (although the discussions
have broadened over the years). The ecologist C.S. Holling [4], for example, established
a seminal definition of resilience as a measure of the capacity of an ecological system to
tolerate disturbance, while many more recent scholars are focused on disaster response and
scenario processes as a basis for understanding the ideas [1,2,5,6]. In general, operationaliz-
ing the concept has been challenging [7], especially in the planning and design disciplines
that deal with large, complex urban systems [8]. One thing, however, is becoming clear:
the inherent uncertainty in urban systems requires ever more sophisticated and creative
approaches in order to achieve resilient places [5,9,10].
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The process of developing these creative ideas has revealed that evolving complex
systems cannot be comprehensively studied (or understood) while focusing on only one
particular aspect in isolation [11]. As a result, there has been an increasing call for integra-
tive approaches to urban system dynamics and coupled human–environmental systems
more broadly in the name of resilient solutions [9,12]. Some of these have included
collaboration, negotiation, and cooperation across different disciplines, such as ecology,
geography, engineering, and socioeconomics [13–15]. They suggest that the complex
interactions between human and biophysical processes are best addressed and under-
stood through cross-disciplinarity, which allows for the incorporation of dynamics and
uncertainty [9,16,17].

Similarly, the field of landscape architecture—especially in complex urban areas—
requires cross-disciplinarity in the design and application of ideas if resilience is an overar-
ching goal. Landscape architecture, the purpose of which is to deal with a wide array of
environmental issues and scales, can enhance its design impacts by understanding com-
plexity, preparing for contingency, and manifesting potential in dynamic systems [15,18].
This notion becomes more critical in the context of a changing climate. In addition, as urban
systems evolve over both time and space [12], landscape research may fall short if it does
not properly justify and assess these complexities [19]. Likewise, despite the rush to create
explicit design guidelines for resilience, landscape design may fall short if not imbued
with such knowledge. This means that designing for resilience must be a cross-disciplinary
endeavor that converts attestable, systemic knowledge into physical applications. To this
aim, ideas and design in landscape must be assessed and tested through varying lenses in
their creation.

Since McHarg [20] first introduced large-scaled scientific approaches (i.e., overlay
methods), the domain of landscape architecture has been expanded to larger landscapes,
cities, and regions facing more complex and broader issues [10]. In previous eras, landscape
architecture practices were primarily concerned with traditional design factors, such as
types of vegetation and the boundaries of gardens. These were primarily dictated by
designers (or clients). The focus of modern landscape design, however, often deals with
large-scale (and complex) factors, such as climate change, land-use, sustainability, or
resilience issues outside of typical prescriptive control. The shift in focus from a designer-
controlled process as a normative exercise to landscape design within the context of a
multitude of exigent circumstances requires designers to understand the mechanisms
underlying complex systems by accepting objective and analytic methodologies beyond
traditional landscape design approaches [15,21–23].

Despite the increasing need for empirical and evidence-based (or analysis-based)
design to cope with resilience issues, many landscape architects make design decisions
based on a body of tacit (or implicit) knowledge, such as aesthetic sense, political concerns,
or artistic inspiration [10,24]. While there is a noted desire to engage with a more methodi-
cal approach to complex landscape problems, the integration of scientific evidence (e.g.,
modeling) with design creation is still an arduous task [21,25]. Alberti [5] argues that we
need to refine existing planning and design methods with simulation models in order to
address uncertainty. Saleh et al. [26] comparably claim that there is a need to develop a
cross-disciplinary modeling framework to actively aid decision making and understand ur-
ban systems as dynamic with multiple states. Frazier et al. [27] demonstrate the importance
of the ability to adapt to unknown changes in establishing a resilient built environment.

Scholars of urban systems (urban ecology, geography, and planning) have long rec-
ognized complex dynamic interactions and feedback as important components to system
understanding. Many have agreed with the necessity for integrative approaches to co-
creating more resilient (sustainable) urban systems [14,23,28,29]. However, examples of
applications of system dynamics linking resilience science and physical practices (i.e.,
physical planning and design) are extremely limited.

One representative approach to encourage cross-disciplinarity in the design process
can be found in the Geodesign process proposed by Carl Steinitz [30]. Geodesign is a
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collaborative design and technical information integration process that features interdis-
ciplinary stakeholders negotiating through iterative steps of simulation, assessment, and
feedback. Steinitz suggests that Geodesign can be an effective instrument that creates de-
sign proposals and simulates design impacts with geospatial technologies [30]. The concept
of Geodesign has recently been expanded in the literature with noted applications to a
variety of cases [29,31–35]. Dangermond [36] notes that geodesign encompasses multiple
disciplines and professions through a common set of geospatial technologies and design
processes. Eikelboom and Janssen [33] illustrate the value of geodesign in facilitating
effective communication between disparate groups, and Gu et al. [29] note that variants of
the geodesign process can facilitate complex urban modeling problems.

Similarly, Planning Support Systems (PSSs) are noted to be a technological system
developed to support the integration of science, although the systems have typically
been aimed at the plan-making process. The PSS promotes the use of complex modeling
systems by delivering digital, analytical information with accessible interfaces aimed at
improved decision making [37,38]. Geertman and Stillwell [39] note that PSSs are geo-
information tools for various problems that incorporate a range of methods and techniques
to meet the demands of practitioners. Models and simulation techniques are typically a
major component of PSS tools. These models have proven especially useful in scenario
planning and other practical planning exercises [40]. As the scholarship that surrounds PSS
technologies becomes more mature, the ways in which these tools might be made more
useful (i.e., more accessible) and endemic to the planning (and design) process have become
more central [41–43]. In general, PSS scholars argue for the development of functional,
smart PSSs that can supply timely and useful information in support of complex planning
decisions [3,42,44]. Deal et al. [3], for example, suggest that complex urban problems
relating to resilient systems require a level of sentience in a PSS. The work also explores the
link between planning/design practices and visually accessible and interactive platforms
useful for both planning and design decision making.

Building on the theoretical foundations of both Geodesign and PSSs can be an effective
means by which landscape architecture engages complex system problems. To this aim, we
need a more inclusive framework that brings resilience science and urban dynamics into
creative physical and practical design. Previous studies have used Geodesign processes
to link science and landscape design (see Gu et al. [29], Wu [23], Opdam et al. [45], and
Campagna et al. [35]), although there are still critical gaps in the connection.

In this paper, we build on and advance previous work in both Geodesign and PSSs
by conducting an empirical study that assesses the translation of analytic information
into design languages. We explore and test the efficacy of our proposed framework for
translating the modeled results into useful information for engaging design decisions.
Testing the framework ideas in a real-world setting contributes to the novelty of this work.

This introduction is followed by an extensive review of the literature (Section 2) that
helps uncover the critical gaps between science and physical design, canvases the ideas and
theories surrounding Geodesign and PSSs, and provides the basis for our framework. In
Section 3, we describe the framework that introduces the integration of dynamic modeling
systems with evidence-based designs. In Section 4, we describe our pilot study to test the
framework using a loosely coupled land use and a hydrological model in a subwatershed
located in the Chicago metropolitan area. Section 5 focuses on the conclusions to this work,
including insights into how the knowledge generated from the framework can facilitate
the creation of resilient communities, the limitations of our study, and future research.

2. Science and Physical Design Gaps

We argue that landscape architecture stands to benefit from opening itself up to
evidence-based methods which are more suitable for dealing with the multiscale and long-
term problems presently facing designers. In this section, we identify the gaps between
science and physical design which present obstacles to integrating the latter into the former.
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Based on an extensive literature review, we identified three such gaps between science and
physical design: (1) gaps in perception, (2) gaps in scale, and (3) gaps in knowledge.

2.1. Gaps in Perception

Historically, landscape designs have largely been based on aesthetic, political, and
theoretical perceptions [5,10]. Some of the literature on landscape design reinforces this
viewpoint, asserting that aesthetic values should be more emphasized in landscape ar-
chitecture [46,47]. In this sense, a landscape is perceived as a “canvas” where designers
illustrate their ideas of problem-solving in a graphical and artistic way [48]. Howett [49],
for example, defines landscape architecture as “making a place of art”.

On the flip side, the word “landscape” has quite a different connotation to the more
science-oriented field of ecology. Turner and Gardner [50], for example, define a landscape
as “an area that is spatially heterogeneous in at least one factor of interest”. Pickett and
Cadenasso [51] interpret the term as “an abstraction representing spatial heterogeneity
at any scale”. Although there are variations in definitions, scientific fields generally use
“landscape” to refer to a spatially heterogeneous area to be investigated and examined.

This definitional gap helps create an obvious dichotomy between science and design
in approaches to problem solving. Milburn and Brown [10] note that designers may
pursue more visual and subjective approaches reflecting their backgrounds or experiences,
whereas scientists focus more on analytic bases where hypotheses are tested and validated.
In other words, for the same urban issues, the way scientists explore solutions can be
quite different from the way that designers do. For example, for urban heat island (UHI)
issues, general scientific approaches include an examination of spatiotemporal relations
among anthropogenic variables to suggest long-term UHI management strategies [52,53].
However, landscape designers may seek more direct and physical solutions, such as
green infrastructure designs, where we can expect immediate effects without time-lag.
These competing perceptions of problems and their optimal solutions form what we call
“perception gaps” between science and physical design. Such gaps pose challenges to
communicating clearly and establishing an agreed-upon strategy to achieve resilience.

2.2. Gaps in Scale

Another important difference between science and design is the scale at which they
operate. Steinitz [30] notes that most designers learn through projects executed at small and
simple scales, whereas most scientists begin with large scales when seeking to understand
long-term processes. Landscape design generally explores the scales that humans can
directly perceive, and its decisions are normally made at a local or finer level [45,54].
However, for science, an exploration of landscapes in terms of their “spatial heterogeneity”
is usually conducted beyond the relatively small scales common to design. Of course,
it must be said that urban systems do not obey neat scale boundaries but instead are
composed of highly diverse components operating at multiple scales with interactions that
have no absolute boundaries [5,45].

Therefore, in order to foster landscape design for urban resilience, it is important
for designers to move beyond focusing on a ”human scale” and open up to multiscale
approaches that can connect long-term and large-scale understanding to short/medium-
term and smaller-scale visions. Physical innovations on the ground emerge from design [45].
However, employing science is fundamental to understand, measure, and predict human–
environment systems [23,55]. There is a pressing need to cross different scales [14,30,55].
The literature seems to almost unambiguously suggest that the linkages across different
scales should be significantly taken into consideration when designing for the central goal
of resilience.

2.3. Gaps in Knowledge

It should go without saying that designers cannot embrace concepts or approaches
with no measure of familiarity. In other words, they must first understand scientific
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knowledge in order to integrate said knowledge into their individual physical designs [24].
However, given the breadth and scale of scientific knowledge, it can be difficult for design-
ers to “come to grips” with the relatively arcane practices necessary to understand complex
interactions in urban systems. These practices, which include simulation modeling, engi-
neering calculations, and statistical evaluation, are not necessarily techniques with which
designers are highly comfortable. The knowledge gaps between scientists and designers
have hampered the translation of research evidence into useful and usable materials for
design [21,30,56].

Some scholars have begun to realize the insufficient knowledge of traditional design
practices and acknowledged the necessity of marrying analytical evidence and the design
creation process (e.g., through drawing) [10,57]. To date, a wide array of practices aiming to
create more resilient designs have been attempted [15,21,25,27]. However, some designers
have had difficulties in engaging with the descriptive information or have ended up exclud-
ing quantitative steps in their design decisions [21,25]. For instance, in their collaboration
with landscape designers, Backhouse et al. [25] noted that knowledge employed by the
designers consisted of vague ideas with a lack of precise information (e.g., “Trees soak up
water”). Although several means of bridging the knowledge gaps were attempted, such as
a lower use of scientific terminology and the presentation of modeling results in a graphic
manner [21,58], the gaps themselves remained stubbornly persistent.

2.4. Connecting Geodesign and PSS Technologies

Geodesign and PSSs have much in common, especially in terms of their major aims.
Both seek to enable practitioners to make advanced decisions while forecasting possible
futures and assessing their real-time impacts [30,59]. Flaxman [60] defines Geodesign as
“a design and planning method which tightly couples the creation of a design proposal
with impact simulations”. Eikelboom et al. [33] mention that Geodesign, combining design
and analysis, leads to quantitative decision support. Comparably, Brail [37] describes the
PSS as a system that consists of computer-based simulation models and visualization tools
within geographic information systems (GIS). According to Pan and Deal [61], a good PSS
is a system where the modeling analysis is successfully infused into the decision making in
an understandable way.

Both Geodesign and PSSs aim to transparently share integrative information among
stakeholders from different disciplines [62,63], although the former focuses on a collab-
orative process, while the latter refers more to a technical system. We emphasize that
both are committed to supporting more robust decision making to solve complex urban
issues by utilizing simulation results and visualizing spatial information for users spanning
multiple disciplines.

Campagna et al. [62] note that Geodesign and PSSs can be complementary to each
other. Geodesign is a process that promotes a smooth collaboration with researchers
to produce evidence-based designs by using geospatial technologies [34,64]. PSSs are
advanced modeling systems that can add more scientific as well as communicative values
to decision making. PSSs help assess the potential impacts of multiple scenarios in a
robust way and communicate highly complex computational outcomes with non-experts
(e.g., stakeholders) [65]. Similarly, Geodesign can play an excellent complementary role in
addressing some of the shortcomings of PSSs that have been pointed out in the literature.
For example, some have questioned the uncertainty of the PSS’s effectiveness in practice [38]
and high degree of complexity for use [66]. PSSs can help make the design outcomes that
are produced through the Geodesign process more scientifically reliable. The computational
modeling equipped in the PSS, with its attendant validation, calibration procedures, and
high usability can lead designers into deliverables that are built on a set of quantifiable,
testable, and (scientifically) valid evidence.
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3. An Integrated, Iterative, and Dynamic Framework

We propose a framework for an alternative process of cross-disciplinary planning
and design. As a potential PSS, the framework aims to promote the active engagement
of designers in smart-city applications, allowing for efficient data management, high
accessibility, and modeling localization and contextualization [61,67]. As a scenario-driven
process, the framework aims to guide those in charge of design decisions to more strategic
responses to multivariate and multistate urban resilience issues. Additionally, as an
evidence-based process, it also aims at promoting the successful use of complex and
multiscale scientific understanding in design creations. In this way, our framework attempts
to bridge the three gaps that have been identified above.

The framework is composed of seven steps within circular chains where the output of
each step feeds another step in the loop (Figure 1). The seven steps help to cope with the
complexity of urban systems by spatiotemporally projecting scenario-based futures based
on a site understanding, assessing the impacts of these potential futures on a given region,
and translating the resulting outcomes into design languages. This is accomplished through
a back-and-forth feedback system that enhances the collaboration between scientists and
designers. In other words, the framework is an integrative design creation process in which
general and specific data are analyzed and understood, communally agreed scenarios are
established and applied, new ideas are acquired and tested, and designs are developed.
The framework is designed to amalgamate science (regional and quantitative modeling
analyses) and design (local/site-specific drawing creations).
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Figure 1. A framework for the creation of evidence-based designs. Quantitative outcomes from the research process are
translated into usable evidence, and design schematics are fed back to the scenario setting.

A specific process is illustrated in Figure 2. The blue box depicts scientific steps that
analyze/examine sites, project potential futures, validate the results, and generate useful
and usable information. At a regional scale, the framework starts with Site Understanding
that requires initial data collection and analysis and determines goals and issues based on
the acquired information. In this step, the actors (cross-disciplinary teams) understand a
landscape as a spatial system characterized by heterogeneous patches and investigate its
underlying, evolving states within a perspective of science.
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Once the information is synthesized and the site is better understood, the actors
proceed to the Scenario Setting, in which they, with differing viewpoints, produce a set
of alternative scenarios that invite possible futures into the process. Each proposed sce-
nario is then assessed by simulating some of the potential futures (at the Simulation step),
quantitatively analyzing them (at the Examination step), and visualizing the resulting
spatiotemporal outcomes.

This study suggests utilizing computational simulation models built in PSSs, where
multiple factors are computed simultaneously to project potential consequences under
different scenario settings and, most importantly, where the actors easily utilize the ad-
vanced geospatial technologies within an accessible platform. Simulation and Examination
are critical in the framework because they help find new ideas that might not be found
through mere data collection or mapping processes. Note that the four steps are repeated
iteratively and interactively, as described in Figure 2.

To begin with the design process (the yellow box in Figure 2) at a local or neighborhood
scale, we suggest a Schematic step to translate the resulting information at a large scale into
deliverable physical drawings. The type of schematics can vary depending on the projects,
but this step requires creating outlines of design ideas for each scenario based on the
information generated from the scientific processes (steps of Simulation and Examination).
The schematic design ideas are then tested by Impact Assessment. This step assesses the
possible impacts of the design decisions on the surrounding context and allows for feedback
to revise and compare the scenarios. Once a set of multiple schematics are assessed and
revised, design specifics are created in a traditional way where a landscape is understood
as a “canvas” for the design creation. Note that creating design specifics also requires
iterative revisions until the actors reach an agreement.

The strengths of this framework include the way it engages designers in regional
science and leads them into evidence-based designs; the way it incorporates the existing
Geodesign framework in conjunction with the PSS, which support cross-disciplinary col-
laboration; and the way it addresses the three gaps in perspectives, scales, and knowledge
between science and design. Figure 3 provides a comprehensive overview of the proposed
framework. We stress the necessity of scientific approaches, which are objective, analytic,
and testable, for designers to deal with uncertainty in complex urban systems evolving at
varying scales.



Sustainability 2021, 13, 4666 8 of 17

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 17 
 

and testable, for designers to deal with uncertainty in complex urban systems evolving at 
varying scales. 

 
Figure 3. Comprehensive coverage of the proposed framework. This represents that the framework is coined with the 
Steinitz’s Six Models Geodesign Framework (orange). This illustrates where PSS and Geodesign are joined with the pro-
cesses (blue), how the three gaps between science and design can be bridged (red), and how the framework deals with 
multiple scales in terms of application (green). 

4. Application: A Pilot Study of Sociohydrology Simulation in Chicago 
Building on the framework, we conducted a pilot empirical study. This pilot study 

spatially assessed how land-use change (LUC) affects future runoff risks in Chicago in 
terms of flood depth. It sought to deliver the useful information for design that can be 
generated through Simulation and Examination. Additionally, as an empirical study, we 
addressed the following three questions: (1) How does LUC in a lakeside city affect the 
risk of associated flooding? (2) To what extent can flooding be expected under different 
growth scenarios? (3) Which factors that are usable in design can explain the flooding 
risks? 

4.1. Pilot Study Background 
The Chicago metropolitan area is a low-lying lakeside community that is representa-

tive of the uncertainties and challenges in stormwater planning and design. Lake Michi-
gan provides pivotal services in support of the city both environmentally and socioeco-
nomically. The combination of exponential urbanization, poor infrastructure, and increas-
ing rainfall is the root of severe urban flooding, despite costly stormwater management 
and green infrastructure plans. Common rainfall events lead to flooding and sewage over-
flows, driving water-borne pollution into Lake Michigan, severely degrading its urban 
and hydrological ecosystems. This makes it crucial for city stakeholders, planners, and 
designers to understand the sociohydrological system, specifically requiring the manage-
ment of potential runoff in association with LUC. 

4.2. Model Description 
To help understand the sociohydrology of Chicago, we loosely coupled two spatially 

explicit models, the Landuse Evolution and Impact Assessment Model (LEAM) and the 
Gridded Surface/Subsurface Hydrologic Analysis mode (GSSHA). LEAM is a cloud-based 
land-use simulation model built in a PSS, available at http://www.leam.uiuc.edu (accessed 

Figure 3. Comprehensive coverage of the proposed framework. This represents that the framework is coined with the
Steinitz’s Six Models Geodesign Framework (orange). This illustrates where PSS and Geodesign are joined with the
processes (blue), how the three gaps between science and design can be bridged (red), and how the framework deals with
multiple scales in terms of application (green).

4. Application: A Pilot Study of Sociohydrology Simulation in Chicago

Building on the framework, we conducted a pilot empirical study. This pilot study
spatially assessed how land-use change (LUC) affects future runoff risks in Chicago in
terms of flood depth. It sought to deliver the useful information for design that can be
generated through Simulation and Examination. Additionally, as an empirical study, we
addressed the following three questions: (1) How does LUC in a lakeside city affect the risk
of associated flooding? (2) To what extent can flooding be expected under different growth
scenarios? (3) Which factors that are usable in design can explain the flooding risks?

4.1. Pilot Study Background

The Chicago metropolitan area is a low-lying lakeside community that is representa-
tive of the uncertainties and challenges in stormwater planning and design. Lake Michigan
provides pivotal services in support of the city both environmentally and socioeconomi-
cally. The combination of exponential urbanization, poor infrastructure, and increasing
rainfall is the root of severe urban flooding, despite costly stormwater management and
green infrastructure plans. Common rainfall events lead to flooding and sewage overflows,
driving water-borne pollution into Lake Michigan, severely degrading its urban and hy-
drological ecosystems. This makes it crucial for city stakeholders, planners, and designers
to understand the sociohydrological system, specifically requiring the management of
potential runoff in association with LUC.

4.2. Model Description

To help understand the sociohydrology of Chicago, we loosely coupled two spatially
explicit models, the Landuse Evolution and Impact Assessment Model (LEAM) and the
Gridded Surface/Subsurface Hydrologic Analysis mode (GSSHA). LEAM is a cloud-based
land-use simulation model built in a PSS, available at http://www.leam.uiuc.edu (ac-
cessed on 06 February 2021) (Figure 4). The model estimates future land development by
explicitly quantifying interactions between a wide array of biophysical (e.g., geography
and water/green space) and socioeconomic (e.g., population and employment) factors.
Based on the overriding assumption that the location of future development is deter-
mined by local attractors, LEAM generates sequential land-use change maps at a fine scale

http://www.leam.uiuc.edu
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(30 m × 30 m), answering “what-if” questions and further “so-what” questions. A detailed
technical description can be found in Deal et al. [68].
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GSSHA is a grid-based, fully distributed model. We used GSSHA, since it has the
ability to simulate hydrological features at a fine scale with reasonable accuracy [69].
GSSHA is also known for its comprehensive abilities, which make it applicable to long-term
simulation involving LUC [70,71]. Since the physical attributes of land-use, topography,
and soil are greatly determinant factors in hydrological responses, GSSHA’s ability to allow
the input of spatial data sets at a fine scale makes it a better performer than other lumped
models, especially for the urban environment [69,72].

4.3. Process of the Pilot Study

The future LUC for the Chicago region was projected by LEAM (Figure 5). This pilot
study selected a portion of the North Branch Chicago River Watershed as the study area
(263.74 km2) where LEAM projects noticeable LUC (Figure 5b). We loosely synthesized
LEAM with GSSHA. A current land-use map and a projected land-use map from LEAM,
respectively, were fed into GSSHA, and GSSHA computed two outcomes accounting for
the hydrological impacts of LUC. Figure 6 displays where surface water is accumulated
and to what extent runoff risks would be enlarged in the future.

4.4. Assessment with Design Factors

The maps produced, displayed in Figure 6, can deliver useful, spatially explicit
information, including distributions of potential runoff spots where designers need to pay
special attention to ensure appropriate long-term stormwater management. In this case, the
GSSHA model was run controlling for precipitation so that the maps displayed the impacts
of Chicago’s growth (LUC) on local hydrology. More specifically, in Figure 6, darker blues
indicate areas that are likely to be more vulnerable to runoff in 2040 due to significant land
conversions that are displayed in Figure 5.

However, not all information from the model can be appreciated through a single
graphical summary. We argue that more information can be revealed through some of the
quantitative analyses. Such underlying information should be delivered to and utilized by
designers in the form of understandable language in order to promote resilient designs.

To this end, we employed three quantitative methods in which the analytic results
can be displayed and translated graphically, and results can deliver useful information of
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“what to prioritize” and “what to expect”. For the analyses, we selected four design factors
that are physically manipulatable in practice, including surface imperviousness, slope
percentage, and types of vegetation, based on the hydrology literature and stormwater
projects [26,73,74]. Note that in selecting the design variables, we intentionally excluded
variables that much of hydrology research indicates are detrimental contributors to runoff,
such as rainfall, Leaf Area Index (LAI), and evapotranspiration [75]. These factors were not
selected because either they were impractical to design or not familiar to designers.
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4.4.1. What to Prioritize: Boosted Regression Trees

The boosted regression trees (BRT) method is a relatively new tree-based modeling
approach to capture complex nonlinear relationships. The method is known as a superior
alternative to traditional modeling [76]. BRT enumerates relative importance between
predictor variables based on the number of times that variables are selected to fit models in
an iterative process. The relative influences on runoff depth between the selected design
variables are shown in Figure 7. These measures of relative influence offer designers
information on which of the four design variables is most important to prioritize to ensure
resilience within the study area.
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The finding shows that grassland density is a primary contributor to flood depth
(44.90% of the importance), which implies that designers should prioritize increasing grass
coverage over the other design factors considered to manage the runoff in the study area.
The runoff also can also be well managed by physically reforming the lands (27.68%) and
replacing the impervious pavements with pervious ones (15.44%).

4.4.2. What to Expect: Piecewise Linear Regression

With regard to the concepts of resilience, identifying critical thresholds that cause
abrupt changes in the response variables of ecological processes is crucial. Once the
(urban) ecosystem regime crosses over a threshold, it is difficult for it to return stably to its
original state(s). Changes in the system regimes may have “breakpoints” where they start
responding differently to the disturbances. These “breakpoints” can be spotted if processes
are examined over time or with other associated variables. Piecewise linear regression
(PLR) models are effective in identifying and estimating the thresholds. PLR is suitable for
the examination of ecological systems, especially when different (non)linear relationships
are observed for a range of different explanatory variables, and either a single linear or
nonlinear model is not appropriate [77,78]. The method has been widely applied to various
ecological studies to assess the systems’ capacity and their “breakpoints”. For example,
concentrations of total phosphorus increase the risk of algae blooms neither gradually nor
smoothly over time, forming nonlinear responses [79].

Our PLR results identify thresholds of the selected design factors at which runoff
depth in the study area dramatically changes (Figure 8). The design variables were sorted,
broken into 100 equal-sized quantiles, and fed into a PLR model to calculate the expected
runoff depth of the corresponding cells for each quantile.
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This provides direct information with designers as to “what to expect” pertaining to
resilient stormwater designs. The slope percentage largely shows a positive relation with
the runoff depth, but we can expect an abrupt increase in runoff when the slope percentage
is over 27.71% in the given area. Additionally, we can find a threshold where grass coverage
has an effect on runoff control, describing the minimum coverage ratio (%) of the grass
area to abate runoff. This quantitative analysis provides practically “usable” information
that cannot be revealed on the surface of the spatial maps (Figure 6). This in-depth analytic
information can be useful in creating stormwater green infrastructure designs as well as
managing existing infrastructures in the consideration of resilience.

5. Discussion and Conclusions
5.1. Discussion

In a typical schematic design phase, designers must consider a seemingly infinite
number of competing objectives when considering a project. As a “real world” schematic
design involves responding not only to the hydrology as noted above but also (for example)
diversity, health, energy, social welfare, safety, sustainability, and accessibility. It may
not be suitable to offer a complete design based on scientific information alone. We
emphasize, however, that the results provide highly useful and usable information with
regard to “where to pay attention” (Figure 6), “what to prioritize” (Figure 7), and “what to
expect” (Figure 8). Figure 9 offers some examples of student design projects which utilize
the information provided herein to address a site in Chicago.

In addition, the results can be shared in a web-based platform in support of collabora-
tion within PSSs, and in turn, to be used for generating alternative scenarios (Figure 4) that
are useful for generating design responses. For example, areas in which the slope exceeds a
threshold could be assigned as a “no growth zone” in a new scenario to alleviate the future
runoff risk. This greatly affects potential design solutions.

In this work, we tested our framework by employing scientific methods for a larger
area, converting the results into usable design components for a smaller area, and applying
them to systemic design thinking. Our results suggest several design related ideas: (1)
complex modeling systems can effectively be utilized in design processes; (2) quantitative
analytic results can be usefully translated into a graphically understandable design lan-
guage; and, more importantly, (3) scientific evidence can lead to more resilient design ideas.

Among the strengths of our framework is its replicability and flexibility, which al-
low various quantitative methods to be applied to the framework in support of planning
and design decisions. For example, by employing a Multiple-Criteria Decision Analysis
(MCDA), the future suitability of green infrastructures or renewable energy development
(Site Understanding) under different scenarios (Scenario Setting) can be projected (Simu-
lation), analyzed, and assessed with the current data (Examination and feedbacks to Site
Understanding). Then, the statistical and spatial outcomes can be produced within a PSS in
an understandable graphic manner (Impact Assessment and sShematic) and be used for the
creation of several design alternatives at a smaller scale (design and feedbacks to Schematic).
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This framework is intended to benefit two groups. First, for planners and scientists,
especially whose research focuses on coupled human and environmental systems, the
framework invites them to observe the physical applications of their findings that move
beyond the boundaries of regional studies. Second, for designers and practitioners, it
provides opportunities to build up their ideas with objective rationales that can play the
role of a solid basis.
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While the theoretical discussion and the analytic pilot study suggest that the proposed
framework can provide a significant advance on state of the art in bridging regional
studies with practical designs, future research is needed to validate its applicability and
practicality across a wider set of possible problems. There are at least four questions
that must be answered: First, can more complex scientific methods, such as a tightly
coupled modeling system (a computational complex tool) and its calibration process, be
translated into understandable design languages? Second, what collaborative contexts or
environments are the necessary conditions for the framework to work successfully? Third,
what other regional studies (e.g., the GIS-based MCDA mentioned above) can be applied to
the framework? Fourth, focusing on the hydrological study, what other design factors that
are usable in practice should be considered with respect to the contemporary stormwater
designs? Significant work will be needed to develop perfect communication tools between
scientists and designers.

The increasing tendency of contemporary landscape architecture to mix with complex
urban systems requires more sophisticated, cross-disciplinarily solutions than ever be-
fore [10]. Although a wide array of experiments have been attempted, and a collaborative
concept of Geodesign that promotes cross-disciplinary work is on the rise, a framework
that articulates a series of procedures where empirical research is constructively infused
with design has yet to be established. Designers still encounter difficulties in leveraging
science and operationalizing evidence-based design. Landscape architecture—the field
that explores the natural and built environment in-depth while integrating nature, design,
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and science [20]—has a responsibility to embrace a variety of knowledge produced outside
of its domains, such as engineering, ecology, economics, and sociology.

5.2. Conclusions

Traditional landscape design that relies on designer creativity, subjective decisions,
experiences, and artistic sense is an important and useful method of problem solving. This
paper does not seek to replace the valuable skills garnered by designers with computational
programs. On the contrary, our work seeks to inform designers so that they can best
utilize their traditional creative processes while ensuring urban resiliency with evidence-
based strategies.

This paper argues that in order for landscape architecture to effectively engage com-
plex systems in resilient ways, it is necessary to bring science into the realm of physical and
practical design. To this aim, we propose a framework that integrates analytic research (i.e.,
modeling and examination) and design creation (i.e., place-making) with processes that
incorporate feedback to help adaptively achieve urban resilience. We base this framework
on theories supporting concepts of Geodesign and Planning Support Systems (PSSs). We
tested the suggested framework by conducting a pilot study using a coupled sociohydrolog-
ical model. Design factors were examined to discern how the modeled analytic outcomes
can be translated into useful information for landscape design. This work supports the
notion that resilient solutions would benefit from a navigable bridge between science and
landscape design.

Strategies for adapting to climate change and urban growth require a new systemic
understanding of the complex interactions in coupled human–environmental systems to
avoid unfavorable consequences that vary according to place and scales. This suggests
that the creation of site design (physical change) must be joined with systemic approaches
that are objective, reasonable, and testable to sensibly respond to the dynamic mechanisms
of complex systems. However, at the same time, it should be recognized that the optimal
approaches depend on (site-)specific conditions [16].

In this regard, we hope that this paper will encourage more scholars in the fields of
landscape architecture to integrate systemic approaches with design research and practices.
In other words, we hope that this paper will make contributions in landscape theories and
practices for achieving resilience. Based on Papadimitriou’s complexity classification [80],
the pilot study shows that the framework can be used to examine structural (land-use
changes) and functional (runoff management) landscape complexity and incorporates
qualitative values for site-specific design. This example is limited by its omission of
more qualitative variables. In reality, such variables would require attention to ensure
any solution addressed social and cultural complexity. Acquisition subjective data (for
example, through Public Participation Geographic Information Systems [81]) at the Site
Understanding stage could help in this regard.

This study suggests that designing for resilience should amalgamate problem solving
to include both the physical “canvas” and a systems approach. The framework suggests
that physical changes should be tightly incorporated with validated information of past
(calibration), present (examination), and future (simulation) conditions at multiple scales.
These methodical analyses should be presented in understandable and accessible ways for
designers and design practitioners

We believe that this framework can be leveraged to improve the efficiency of cross-
disciplinary collaboration. We further hope that the framework will flexibly evolve into a
wide array of adaptations that use multiscale empirical evidence for design studies and
projects with varying purposes.

The critical implications of this paper include the introduction of a framework that can
function operationally as a system, methodologically as science, and practically in design.
More importantly, this paper argues that taking the steps toward more objective design
processes supported by scientific information is crucial for the fields of landscape archi-
tecture and that such information should be accessible to designers. This true integration
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will help designers to more strategically and reflexively respond to uncertainty in urban
systems and to progressively aim for resiliency in the built environment.
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