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Abstract: Today, there are a variety of technologies for wind-generating systems, characterized by
component complexity and control. Controllers are essential for the sustainability of the output
voltage and the optimal speed of the generator. To overcome the problems, the system must use
controllers that determine the controllers’ ability relative to each other and ultimately the controller
that behaves better. This paper investigates the simulation of a PMSG wind turbine with PI, PID,
neutral-point-clamped (NPC) and fuzzy controllers to study performance at different wind speeds
as input. The wind energy is converted by the wind turbine and given to the PMSG generator. The
PMSG output power is transferred to the power network; in this case, we have modeled the power
network with a three-phase load. In order to confirm the performance of the proposed method,
a PMSG wind turbine is simulated using MATLAB R2017. The simulation results show that the
controllers can adjust the DC link voltage, the active power produced by the wind system.

Keywords: PMSG wind turbine; sustainability; PI; PID; NPC; fuzzy; on-grid operating modes

1. Introduction

The issue of wind turbine energy has been the subject of renewable energy for decades.
Because the maximum operation can be achieved at any speed in wind energy converter
systems and this system needs its parameters to calculate the optimal speed of the turbine,
for this reason, sustainable and efficient use of wind energy and the subsequent study of
wind energy converter systems have been studied as important issues. Although variable
speed wind turbines are usually based on DFIGs [1–5], PMSGs have received attention in
recent years [6–23], which we describe:

In Ref. [6], a slip mode control strategy is suggested to improve the power of PMSG.
The dynamic performance of the PMSG wind turbine is investigated in the rotor-side con-
verter (RSC) and the grid-side converter (GSC). Fractional order calculations are considered
for the controller design. In Ref. [7], the stability of the wind farms’ small signal is investi-
gated based on direct-drive (PMSG). In Ref. [8], the MPPT of a PMSG-based variable speed
wind turbine is proposed and a nonlinear sliding mode controller is designed. In Ref. [9], it
introduces a new adaptive control scheme based on PI, based on a new adaptive filtering
algorithm for the PMSG wind turbine. The power of the LMSRE-PI and LMS-PI controllers
is tested under actual wind speed data and severe fault conditions. In Ref. [10], processes
for minimizing starting torque in the PMSG and the magnetic deflection technique are
one of them. In Ref. [11], the effect of DC bus voltage dynamics on power fluctuations in
PMSG-based wind farms is investigated. The small-signal model and the system impedance
model are considered developed methods. Then, different effects on system stability are
theoretically analysed by two modulation algorithms.
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In WT technology [12], these important studies help the reader to understand the ad-
vanced and emerging technologies based on PMSG. In Ref. [13], SMC is used as a nonlinear
control method. Battery and super capacitor performance is improved by installing a filter
in the SMC and PI. In Ref. [14], the four-switch buck-boost (FSBB) converter can convert
voltage over a wide range that is suitable for PMSG. In Ref. [15], a simple direct control
is proposed for optimal power tracking of PMSG. Superior features are well set in very
fast and accurate tracking functions with asymptotic convergence and stator currents. In
ref [16], it offers a control approach PMSG under a wide range of wind speeds. In Ref. [17],
based on the fuzzy algorithm, it is used to adjust the generator speed to the optimal value.
In Ref. [18], PMSG with Diode Bridge is frequently used in small wind energy. In Ref. [19], a
strong control strategy for the PMSG wind power system is proposed. In Ref. [20], complete
modeling and simulation of PMSG is investigated. In Ref. [21], the typical performance and
control techniques for PMSG wind turbines are investigated under different wind speeds,
when using a direct-current vector control structure. In Ref. [22], a robust adaptive sliding
mode control is designed for WECS-PMSG. In Ref. [23], the structure of a hybrid microgrid
is presented through back-to-back converters connected to the network. According to
the various control modes, it can be seen that power and voltage, as well as back-to-back
converters, ensure system performance stability. In Ref. [24], a review of advanced methods
of wind turbine estimation, electricity generation, and nonlinear modeling has been done,
so that the wind turbine can produce the energy it needs with goals such as the greatest
efficiency. In Ref. [25], new stabilization criteria for PMSG wind turbines with information
of sampled data, subject to change in uncertainty and controller gain, are investigated. In
this regard, the nonlinearity in the wind turbine is granted by fuzzy systems. In Ref. [26],
an adaptive nonlinear control strategy is designed and implemented for a 1.5 MW PMSG
in order to produce good quality and usable power. It uses the Lyapunov stability theory
to guarantee the stability of PMSG. In Ref. [27], this strategy is designed for machine-side
inverters and grid-side multilevel modular matrix converters. The low-frequency transmis-
sion wind turbine can meet the grid connection requirements. In Ref. [28], inclusion of a
super capacitor energy storage system in DFIG wind turbines and full conversion of PMSG
for inertial simulation are studied. Among other control methods that can be mentioned,
achieving the optimal TSR for a specific wind turbine is fixed. Regardless of the wind
speed, if the TSR is kept at an optimal level, it guarantees maximum power extraction [29].
Therefore, the method seeks to force the energy conversion system to work at this point.
It does this by comparing it with the actual value and feeding the control with it, which
causes the generator to change speed to reduce this error. Considering the above, choose a
generator that can have high reliability and better performance during wind speed changes.
The advantages of the PMSG generator include simple rotor structure, very low rotor losses,
higher efficiency and no need for a gearbox.

In this study, we investigated the PMSG wind turbine for proper rotor speed and
DC link with PI, PID, NPC and fuzzy controllers, and boost converter. There are many
different strategies for controlling these converters, so controlling and implementing a
suitable method for these wind turbines is important. On the other hand, due to the variable
wind speed, the control parameters must be adjusted based on these changes and force the
system to operate at the optimum point. The general research mechanism is summarized
below:

• Optimal control of PMSG wind turbines using direct control of qo vector currents.
• The behavior of PMSG wind turbines in different conditions, including maximum

wind generation power transmission to the network, and DC link voltage control.
• Comparison of results with PI, PID, NPC and fuzzy control methods.

The continuation of the article is as follows: Section 2 studies PMSG. In Section 3, we
discuss the mathematical model of PMSG. In Sections 4 and 5, simulation and results are
discussed. Section 6 will conclude this work.
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2. Converter System Configuration

The diagram related to the generator and wind turbine system is shown in Figure 1.
The wind energy is harnessed by the wind turbine and fed to the PMSG generator. To
control the power, the rotation speed of the PMSG rotor is controlled by PWM.
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The output power of the wind turbine Pw and its torque Tw are obtained from the
following relations.

Pw = 0.5Cp(λ, β)ρπR2V3
w (1)

Tw = 0.5Cp(λ, β)ρπR3V2
w/λ ; λ = WwR/Vw (2)

where Ww is the wind speed, ρ is the air density, R is the radius of the turbine blades, and
Cp is the wind coefficient.

Turbine power, λ, is the ratio of the turbine tip speed (actually, the ratio of the linear
speed of the turbine blade tips to the wind speed), Ww is the rotational speed of the turbine
rotor, and β is the angle of twist of the turbine. For turbine blades, the turbine power factor
is defined as follows:

Cp = 0.22
(

116
L

− 0.4β − 5
)

exp
(
−12.5

L

)
(3)

L =
1

1
λ+0.08β − 0.035

β3+1

(4)

Use an AC–DC–AC conversion system [30]. It is clearly stated that, for any given wind
speed, there is a rotational speed associated with the generator at which the wind turbine
delivers the most power to the generator. Therefore, this converter is used to synchronize
the network, and then power is injected into the network. In this system, the generator-side
converter is a rectifier, and the network-side converter is an inverter.

3. Mathematical Model of PMSG

These types of generators are preferred in small designs due to their higher efficiency.
Although large-scale designs have been considered, the price of permanent magnetic
materials has limited their use. Current wind energy converter systems with PMSG
(Figure 2) generally use an AC–DC–AC conversion system [30]. It is clearly stated that, for



Energies 2023, 16, 4108 4 of 18

any given wind speed, there is a rotational speed associated with the generator at which
the wind turbine delivers the most power to the generator. Therefore, this converter is used
to synchronize the network, and then power is injected into the network. In this system,
the generator-side converter is a rectifier, and the network-side converter is an inverter.
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The PMSG dynamic model is achieved based on the two-phase synchronous refer-
ence model in which the q-axis is 90 degrees ahead of the d-axis due to the direction of
rotation [31]. Synchronization is done with the two-phase d-q reference model and the
three-phase abc model using the phase lock loop [31]. Figure 3 shows the d-q reference
model used in the prominent pole synchronous machine (which is similar to the model
used in the PMSG). In Figure 3, θ is the mechanical angle, the angle between the d-axis
of the rotor and the axis of the stator. Usually, the mechanical model of PMSG is used
to analyze the power system and converter based on the following hypotheses [32]: The
stator windings are twisted at an air distance in the direction of mutual induction with
the rotor. The effects of magnetic saturation and hysteresis can be ignored. The stator
winding is symmetrical. The windings are not considered to be scattered, and their capacity
is negligible as well, their resistance is considered constant (power losses are considered
constant).
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The mathematical model of PMSG is as follows [33]:

did
dt

=
1

Lds + Lls

(
−Raid + ωe

(
Lqs + Lls

)
iq + ud

)
(5)

diq
dt

=
1

Lqs + Lls

(
−Raiq + ωe

[
(Lds + Lls)iq + K

]
+ uq

)
(6)

Above, the d and q indices represent the physical parameters transmitted on a d-q basis.
Ra is the stator resistor, Ld and Lq are the inductances of the generator on the d and q axes,
respectively. K is also a permanent magnetic flux (wb). The electrical rotation speed of
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the generator ωe is also in units (rad/s). The electric speed is obtained from the following
equation, where p is the number of poles of the generator.

ωe = pωg (7)

To complete the mathematical model of PMSG, we need its mechanical model, which
is determined by electromagnetic torque relationship as follows [34]:

Tg = 1.5p
(
(Lds − Lls)idiq + iqK

)
(8)

To control the speed of PMSG, it is necessary to control the voltage or currents on
its terminals. PWM converters are used for this purpose as well as for synchronizing the
frequency and phase of the control current and the PMSG current. In these converters,
using PMSG feedback signals, a pulse train is generated to activate the PWM converter [20].
Figure 4 shows an example of this type of synchronous machine speed control system. After
comparing with the desired speed, the rotational speed of the machine enters a PI controller
as a tracking error and the DC voltage associated with the desired speed is generated. This
voltage is converted to a three-phase signal by a PWM converter fed by pulses generated
based on feedback signals from the PMSG and finally applied to the machine terminals.

Energies 2023, 16, x FOR PEER REVIEW 5 of 20 
 

 

𝑑𝑖𝑑𝑡 = 1𝐿 + 𝐿 −𝑅 𝑖 + 𝜔 (𝐿 + 𝐿 )𝑖 + 𝐾 + 𝑢  (6) 

Above, the d and q indices represent the physical parameters transmitted on a d-q 
basis. Ra is the stator resistor, 𝐿  and 𝐿  are the inductances of the generator on the d 
and q axes, respectively. K is also a permanent magnetic flux (wb). The electrical rotation 
speed of the generator 𝜔  is also in units (rad/s). The electric speed is obtained from the 
following equation, where p is the number of poles of the generator. 𝜔 = 𝑝𝜔   (7) 

To complete the mathematical model of PMSG, we need its mechanical model, 
which is determined by electromagnetic torque relationship as follows [34]: 𝑇 = 1.5𝑝 (𝐿 − 𝐿 )𝑖 𝑖 + 𝑖 𝐾  (8) 

To control the speed of PMSG, it is necessary to control the voltage or currents on its 
terminals. PWM converters are used for this purpose as well as for synchronizing the 
frequency and phase of the control current and the PMSG current. In these converters, 
using PMSG feedback signals, a pulse train is generated to activate the PWM converter 
[20]. Figure 4 shows an example of this type of synchronous machine speed control sys-
tem. After comparing with the desired speed, the rotational speed of the machine enters a 
PI controller as a tracking error and the DC voltage associated with the desired speed is 
generated. This voltage is converted to a three-phase signal by a PWM converter fed by 
pulses generated based on feedback signals from the PMSG and finally applied to the 
machine terminals. 

 
Figure 4. PMSG speed control system with ref voltage. 

Another way to control the speed of a synchronous machine is to generate a ref 
current on a d-q basis using a PI controller. After the base change using the park trans-
formation, the optimum current is given from PMSG to a PWM inverter along with a 
feedback current, in which the appropriate voltage and currents are generated synchro-
nously on the PMSG terminals to track the desired speed. 

Figure 5 shows an overview of the power converter system. In this model, the con-
trol block itself consists of several parts, which can be seen in the figure below. 

 
Figure 5. Speed control system in PMSG receives maximum power. 

In the Control Block, the error signal is obtained from the difference between the 
rotational speed of the generator ωg and the desired speed ω (g, ref).The optimal speed 
is the speed at which the generator receives maximum power from the turbine for a given 

Figure 4. PMSG speed control system with ref voltage.

Another way to control the speed of a synchronous machine is to generate a ref current
on a d-q basis using a PI controller. After the base change using the park transformation,
the optimum current is given from PMSG to a PWM inverter along with a feedback
current, in which the appropriate voltage and currents are generated synchronously on the
PMSG terminals to track the desired speed.

Figure 5 shows an overview of the power converter system. In this model, the control
block itself consists of several parts, which can be seen in the figure below.
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Figure 5. Speed control system in PMSG receives maximum power.

In the Control Block, the error signal is obtained from the difference between the
rotational speed of the generator ωg and the desired speed ω (g, ref).The optimal speed is
the speed at which the generator receives maximum power from the turbine for a given
wind speed [18]. The error signal is input to a PI block, and a ref signal is generated for the
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q-axis, i.e., i (q, ref). This reference signal provides a current ref signal in the three-phase
domain by passing through a dq 2 abc converter in which the park transformation takes
place [31]. The above relations are also true for currents. The angular velocityωt is the same
as the electric rotational angle of the rotor. The electric velocity is obtained by multiplying
the number of poles by the mechanical rotational speed. The ref signal obtained in the
three-phase domain (i.e., Iabc, ref), along with the feedback Iabc signal, is given from PMSG
to PWM inverter, which adjusts the voltages va and vb on the PMSG terminals so that
the difference between Iabc, ref and Iabc is zero. In this way, the rotational speed of the
generator is set to the desired speed and the power received from the wind turbine will
be maximized. However, in order to function properly, like other control methods, this
control system requires sufficient accuracy in the parameters used in it. If the system model
is not executed correctly, the control purpose will not be met. Comparative methods are
usually used to deal with parametric uncertainty [35,36]. Sometimes parameter recognition
mechanisms are used to compensate for the deviation between the parameters used in the
control system and their actual value. In the following, we will deal with the subject of
design and simulation. The equations and simulation data are used and modified from the
reference [37].

4. Case Study and Simulation

In Figure 6, the PMSG model is simulated using MATLAB with the proposed method,
and the control subsystems are shown in Figure 7. In this model, NPC and a boost converter
and grid are used, in addition to wind turbines and controllers. Low- to medium-voltage
electrical energy is compared to similar controllers. In this model, the boost operation is
relatively simple. A boost switching converter is one that increases the input-to-output
voltage level while decreasing the current level. The boost converter is a class of switching
power supplies. Figure 7 shows the model structures including SMC_Boost, system model,
and NPC.
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Figure 7. Pseudo code of MC-Boost, System Model, and NPC equations and data.

5. Simulation Results

Now, we will review the presented model. We obtained the wind potential located in
Turklan village (East Azerbaijan—Iran) using HOMER software (Figures 8 and 9).
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Figure 9. Wind speed in different months, Turklan village (East Azerbaijan—Iran).

The grid voltage is shown in Figure 10. To better see the sine wave, the grid voltage
wave in the time range of 0 ≤ t ≤ 0.1 is shown in Figure 11. The controller parameters are
used to improve the dynamic response based on minimizing the controller performance
criterion, which are based on the accuracy of the output in tracking the desired value.
Table 1 presents the components of this controller and its advantages. Table 2 shows the
value of the controller parameters. Figures 12–15 show the speed control system in the
PMSG. Tables 3 and 4 show the fuzzy rules. The input and output membership degrees are
shown in Figures 16 and 17. Grid flow changes are shown in Figure 18 without a controller,
in Figure 19 with a PI controller, with a PID controller in Figure 20, and in Figure 21 with a
fuzzy controller. The sine wave of the grid current is better shown in Figures 22 and 23 in
the time range of 4 ≤ t ≤ 4.5 and again 4 ≤ t ≤ 4.05.
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Table 1. Controller parameters [38,39].

Controller Value Too Large Too Small

P Increased response speed Decreased stability Large deviation (permanent error)

I Reduced unstable error Decreased stability Slower return to set point

D Increased stability (decreased oscillation range) Increased stability of reinforcing
perturbations Lack of full access to benefits

Table 2. The value of controller parameters.

The Type of Controller P I D

PI 0.061 0.00093 -

PID 0.061 0.00093 −0.016
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Table 3. Fuzzy variable language [40].

PB PM PS ZE NS NM NB
Language of

Fuzzy
Variables

Big positive Medium positive Small positive Zero Small negative Average negative Big negative

Table 4. Rule base for fuzzy controller [40].

Number of Rule
1 2 3 4 5 6 7

NB NM NS ZE PS PM PB

1 NB ZE ZE ZE NB NB NB NB

2 NM ZE ZE ZE NM NM NM NM

3 NS NS ZE ZE NS NS NS NS

4 ZE NM NS ZE ZE ZE PS PM

5 PS PM PS PS PS PS ZE PS

6 PM PM PM PM PM PM ZE ZE

7 PB PB PB PB PB PB ZE ZE
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Figure 21. Grid flow with fuzzy controller.
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Figure 22. Grid current wave in the time range of 4 ≤ t ≤ 4.5.
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When wind speed changes, a small change will be observed in the dc link voltage.
The controller adjusts it very quickly. One of the important goals of the controller is
the stability of the wind turbine. Studies show that controlling the switches in order
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to achieve the desired set voltage at the output is absolutely important and must be
done properly. In Figure 24, it is clear that the voltage of the dc link without controller
has changed significantly from 400 volts when the wind speed increases or decreases.
At different times, the voltage reaches 408 and 397 V. In Figure 25, the voltage values
are improved using controllers, and these values are between 400.6 and 399.8 with our
PI control, 400.4 and 399.88 with PID control and 400.2 and 399.94 with fuzzy control.
However, it has been observed that the DC link voltage variation always improves.
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Figure 24. DC link voltage changes without controllers.
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Figure 25. DC link voltage changes with PI and PID controllers.

Conventional control theory uses an explicit mathematical (analytical) model of a
controlled process and desired closed-loop behavior characteristics to design a controller.
This approach will suffer if the model is difficult or (part of it) unknown or highly nonlinear.
In these controllers, fuzzy sets are used to define the concept of qualitative values of inputs
and outputs of the controller.
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Fuzzy logic can capture the continuous nature of human decision-making processes
and, as such, is a definite improvement over methods based on binary logic (which are
widely used in industrial controllers).

With the DC voltage link controller, changes can also be observed in DC current and
DC power. Without the controller, the current and power curves are square, and at times
when there are changes in wind speed, the values of current and power are also shown
using PID, PI and fuzzy control (Figures 26 and 27). In conventional power systems, it
can be seen that there is a more stable state than the previous state with PI, PID and fuzzy
controllers, but the stabilization time in this controller is longer. It also shows that the
system with the controller has less deviation and is more stable than the system without
the controller.
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Figure 27. DC power changes.

Changes in turbine rotor speed can also be seen in Figure 28. The speed of the turbine
rotor is given feedback and the ref speed is reduced, and the difference between them is
given to the controllers to get the desired speed of the turbine rotor.
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Figure 28. Turbine rotor speed changes.

6. Conclusions

In this research, the purpose of this article is to describe and compare the functions of
different controllers in a permanent magnet synchronous wind turbine generator. Control
methods were used in PMSG wind turbines connected to the grid. To control the DC voltage
link and turbine rotor speed at high wind speeds, PI, PID and fuzzy-based controllers with a
neutral-point-clamped and boost converter were proposed. As can be seen from the results,
DC link voltage changes without controllers are beyond normal, which must be adjusted
by a controller. It was also shown that the system with the controller has less deviation and
is more stable than the system without the controller. Voltage values are improved using
controllers. The DC link voltage increased from 408 V, which reached 400.6 with PI control,
400.4 with PID and 400.2 with fuzzy control. Along with these controllers, we used the
neutral-point-clamp method at the same time. According to the results obtained from the
simulation and comparison, it can be said that the use of a fuzzy controller in the structure
of the speed control system has a better performance than other control.

A Look at Future Works

Use of neural network to improve results
Using uncertainty in the presented model
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