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a b s t r a c t

In this paper, we put forward a deep reinforcement learning (DRL) based energy management system
(EMS) solution for a typical Korean net-zero residential micro-grid (NZR-MG). We model NZR-MG EMS
to extract a profitable business model that respects whole stakeholders’ interests and meets Korean
power system regulations and specifications. We deployed the value-based DRL technique, dual deep
Q-learning (DDQN), as a solution for our EMS problem since of its simplicity, stability in the learning
process, and non-dependency on hyper-parameter selection compared to actor–critic methods. Due to
the implementation of mixed-integer nonlinear programming (MINLP) to solve the reward function in
this paper, DDQN, despite other DRL methods, provides precise, explicit, and meaningful rewards. In
addition to encouraging the agent to choose profitable actions, this approach releases the proposed
DRL-based method from the hindrance of redesigning the reward function experimentally in any future
extension of the environment elements. Moreover, attaching transfer learning (TL) to the process
of training DDQN agent defeat the MINLP imposed latency in training convergence. An extensive
benchmark is proposed to test the superiority of the proposed method versus other DRL algorithms.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decade, there has been a massive movement
orldwide to use renewable energy sources (RESs) under the
upervision of micro-grids to control their random behavior [1].
he utilization of RESs in the micro-grid is attracting consider-
ble attention to study different aspects of micro-grid network
erformances, including electrical parameters control to provide
tability and EMS optimization. Micro-grid EMS plans to address
bjectives such as reducing cost of power generation, consump-
ion, and maintenance, participating in demand response pro-
rams, etc. [2]. Despite the importance of stakeholder satisfaction
n energy efficiency planning of the micro-grid, there remains a
aucity of evidence on providing the EMS based on the precise
usiness model [3]. Business models for micro-grid deployment
n each country need to be customized to address dominant types
f micro-grid penetration and its power system structure and
egulations.

Korea increasingly has substituted fossil fuels with RESs after
he ministry of trade, industry, and energy announced incentive
olicies for developing RESs-related industries in 2016, along
ith the liberalization of the electricity generation market [4]. In
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Korea, new RES deployment strategies began with the micro-grid-
based green islands introduction and evolved via the construction
of NZR-MG in several cities [5]. Among the globally accepted
business models of micro-grid owner financing and pay-as-you-
go are the most accepted approach. The facility owner constructs
the micro-grid, funds the project, then manages the assets in the
owner financing & maintenance model. Grid-connected campus
micro-grids follow this business model. On the other hand, pay-
as-you-go is sponsored by world-class financial organizations and
used in remote locations, with customers paying for their energy
consumption [6]. Given the definitions and objectives of each
model, the combination of both mentioned models can meet the
Korean style micro-grid penetration in the metropolitan areas. Af-
ter the micro-grid construction, private sectors maintain, control,
and improve micro-grid infrastructure according to the owner
financing & maintenance model. In this structure, consumers only
pay for their energy consumption according to the pay-as-you-
go model. This combined business model will generate fresh
insight into micro-grid’s EMS by considering benefits for whole
stakeholders and enhancing the micro-grid structure to access
maximum profit.

On the other hand, stochastic and model-free characteristics
of the micro-grid environment call for an optimization model
that supports sequential and online learning. As a subset of ma-
chine learning, reinforcement learning (RL) involves an agent that
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https://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2022.12.008&domain=pdf
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earns from observing the outcomes of its actions in a given
nvironment. The most significant recent advance in the RL field
s the model-free approach that obtains the optimal solution
ithout getting access to the precise model of the environment.
L is also combined with the deep neural network (DNN) to solve
igh-dimensional problems and is called DRL. The other benefit of
eploying DNN for micro-grid is providing the pattern of environ-
ent elements that behave stochastically. In this way, DRL will

elease from the necessity of forecasting those parameters’ future
tatus. Therefore, in this paper, we will hire DRL to schedule EMS
or NZR-MG.

. Literature review

Since this paper’s objective is to provide a DRL-based solution
hat supports profitable EMS scheduling for whole stakeholders,
e categorized related studies into three different
pproaches. Firstly, studies that solved the EMS problem us-
ng standard DRL methods since they support high-dimensional,
odel-free, and stochastic characteristics of the micro-grid en-
ironment [7–9]. Secondly, several researchers have combined
RL methods or used model-based optimization to enhance the
ulti-dimensional support characteristic of DRL and accelerate
onvergence optimization [10–13]. Finally, a number of studies
ave focused on profit-driven optimization of micro-grid EMS
ithout applying DRL techniques. However, all of the aforemen-
ioned efforts arrange profitable EMS according to the general
nsight or tendentious one of micro-grid stakeholders [14–16].

With the aim of an online solution for residential micro-grid
lements, including electric vehicles (EVs), smart appliances, and
hotovoltaics (PVs), a deterministic policy gradient (DPG) was
ired in [7]. The primary objectives of this study were to reduce
eak demand and minimize power demand costs. Bui et al. in [8]
eployed DDQN to schedule the energy storage systems (ESSs)
ommunity of micro-grids to satisfy consumers in islanded mode
y preventing the shed of critical loads and minimizing the cost
f power generation in grid-connected mode. Tightiz et al. in [9]
ompared soft-actor critic (SAC) and deep deterministic policy
radient (DDPG) techniques performances for micro-grid EMS.
uthors in this paper defined an innovative cost function to
aximize profit for micro-grid owners while this cost function
onsiders utility grid interests giving priority to supporting the
ower system in contingency situations with micro-grid higher
eliable energy resources. However, despite the priority of DRL in
roviding a model-free solution, there is a dedicated weak point
n RL methods, which is the sensitivity of speed and accuracy of
he system learning convergence to the definition of the proper
eward function. Therefore, the reward function was defined ex-
erimentally with trial and error to converge the learning process
o sensible results.

Nakabi et al. in [10] compared a diverse set of DRL methods
xecutions such as deep Q-network (DQN), asynchronous ad-
antages actor–critic (A3C), proximal policy optimization (PPO),
tc. in the residential micro-grid optimization participating in
emand response. Authors in this paper deployed replay buffer
emory of previous actions to control correlation in action se-

ection for A3C and PPO, which improves convergence to the
ptimal policy for both algorithms. Long short term memory
eural networks (LSTM) were hired in [11] to determine patterns
f PV, wind turbine (WT), and load from historical data of a resi-
ential micro-grid. The evoked patterns arranged an environment
or a model-based RL to minimize the cost of power generation
nd consumption. This paper also considered the load power
low limitations of the proposed electricity network. Yoldas et al.
n [12] considered daily and emission costs minimization of a
ampus micro-grid with Q-learning. Using MINLP to set up an
472
EMS for the micro-grid, the authors considered PV, ESS, and
diesel generator (DG) constraints to minimize daily and emission
costs for the micro-grid. Micro-grid operators planned micro-grid
EMS without observing EV and air conditioner data in [13] by
utilizing vectorized advantage actor–critic (A2C) to respect the
consumers’ privacy. The authors, in this paper, to provide a stable
learning process deployed the gated recurrent unit (GRU) neural
network method to estimate the value function of actions and
policy estimation of critic and actor networks. Deploying GRU,
which uses fewer gates, resulted in lower memory consumption
and faster computation than LSTM. Although there are signs of
progress in speed convergence improvement of DRL methods
learning process in [10,11,13], implicit reward function definition
remains a challenge.

Ref. [14] is one of the initial studies on evoking profit-driven
residential micro-grid scheduling that concerned various stake-
holders’ interests in their solution. In this proposed business
model, the micro-grid traded power with the utility grid through
the supervisory of the aggregator based on a set of rules. Further-
more, smart home appliances contribute to demand response for
peak-shaving, respecting the utility grid profit. This study identi-
fied the optimal number of housing units, size of battery energy
storage systems (BESS), and area of PVs by utilizing space explo-
ration techniques. However, this study concentrated on the de-
sign alternatives before the micro-grid construction using space
exploration methodology. In addition, the effect of EVs in res-
idential micro-grid optimal scheduling is not negligible these
days compared to the time of publication of the paper [17].
A micro-grid supplier in [15], equipped with the dispatchable
natural-gas-based power generator, guarantees the reliability of
customer power supply by offering backup power to the micro-
grid customer in the utility grid’s absence. In this paper, when the
power generation cost, including fuel, emission, and maintenance
costs, are lower than selling power to the utility grid, the supplier
was scheduled to sell power in the electricity market. Monte Carlo
simulation evaluated this commercial arrangement of micro-grid
by utilizing Texas power system reliability indexes and the power
market. Qu et al. in [16] explored a community-scale micro-
grid business model for an industrial park. The authors, in this
paper, without specifying the optimization method, introduced
a platform for the green micro-grid project planning and op-
eration. This study scheduled BESSs and demand response for
maximum profit considering the lowest emissions and electricity
charges in different scenarios for PV performances, including the
highest, the lowest, and fluctuation in power generation and
micro-grid operation in islanded and grid-connected modes. Al-
though [14–16] considered the micro-grids business model in
EMS cost function arrangement, there have been few empirical
investigations on different stakeholders’ interests according to
the power system structure and regulations of the understudy
region of the micro-grid.

In this paper, we deploy DDQN as a DRL method to provide
a model-free and online scheduling that support stochastic and
uncertain characteristics of the RES-based micro-grid and release
from forecasting tools deployment. DDQN is a value-based DRL
technique that tackles DQN’s learning process instability. DDQN
utilizes two separate networks for Q-value estimation to elimi-
nate the correlation between the target value and the estimated
value. However, DDQN supports discrete action space problems.
There is also the enhanced family of the DRL, which is an actor–
critic that supports continuous action space. This specification is
suited to BESS micro-grid element performance. However, actor–
critic techniques such as DDPG and A3C utilized in [10,13] are
subjected to unstable and unreliable learning processes due to
the wide range of hyper-parameter calibration requirements [18].
Hence, to make a tradeoff between resolution, simplicity, and ac-
cessibility in the learning process, we hired DDQN. Furthermore,



L. Tightiz and J. Yoo ISA Transactions 137 (2023) 471–491

i
b
d
a
m
m
e
o
r
m
e
a
l
m
d
p
s
t
c
s
a
f
s
b
c
c
t
t
o

i
N
a
h
d
w
d
b
e
P
E
s
i
a
o
p
a

p
p
e
d
t
I
i
b
a

n DRL, learning is not usually accurate if reward functions are
ased on actual cost functions. Standard DRL methods do not pro-
uce a precise learning process using realistic reward definitions
nd require trial-and-error to develop the implicit reward that
eets the action selection objectives. In the case of profitable
icro-grid EMS unit arrangement, an MINLP approach is a proven
fficient technique to model actual cost function. The complexity
f solving the MINLP model highlights the problematic issue of
ealistic reward determination for the DRL arrangement of the
icro-grid. Therefore we develop a reward estimator to hire
xplicit rewards by attaching the MINLP solver to the DDQN. This
pproach will accelerate policy optimization and, consequently
earning process. Additionally, it is feasible to hire the proposed
ethod for any future system extension with minimal effort
ue to this realistic reward definition compared to hiring im-
licit rewards. Another disadvantage of hiring continuous action
pace-based methods such as DDPG is their combination with
he MINLP solver will result in massive action space. The dis-
rete action characteristic of the DDQN algorithm supports the
trategy-based solution that we set by deploying MINLP. This
pproach appears to improve the accuracy of the system per-
ormance comparing other methods. However, the convergence
peed will be subject to latency by combining DDQN with model-
ased solutions. To conquer this hindrance, we deployed TL to
ontrol the extreme behavior of the system, such as state of the
harge (SoC) limitation and power balance. Our approach involves
aking learned parameters of different EMS task levels to our
arget task, which accelerates the learning process and accuracy
f DDQN action selection.
Furthermore, this study presented here is one of the first

nvestigations to focus specifically on EMS arrangement for the
ZR-MG business model based on Korean power system structure
nd regulations. This research fills the gap in the literature on
ow it is possible to enhance existing NZR-MG EMS to be profit-
riven by respecting the whole stakeholder’s benefits. Therefore,
e consider an NZR-MG with the same load pattern as a resi-
ential complex in metropolitan areas in Korea. We stipulate the
aseline model of this NZR-MG deploys commonly distributed
nergy resources (DER) in Korea’s net-zero buildings, including
Vs and fuel cells. We develop the baseline model by considering
V stations and consumers’ participation in demand response to
tudy their effect on making the micro-grid business model prof-
table for whole stakeholders and explore new opportunities to
ccelerate increase micro-grid and holistically widen the horizon
f NZR-MG utilization in Korea. Hence, the contributions of this
aper to providing EMS that fits Korea’s power system structure
nd regulations are as follows.

• Business model arrangement for NZR-MG considering whole
stakeholders profit;
• Development of the NZR-MG model with demand response

and EV contribution;
• Implementation of profit-driven EMS for NZR-MG through

online learning by deploying DDQN;
• Arrange a novel DRL solution for our NZR-MG model based

on DDQN attaching MINLP as a reward estimator and TL for
accelerating the learning process.

The remainder of this paper will be as follows: Section 3
rovides a business model for NZR-MG proportional to the Korean
ower system structure and regulations. Section 4 investigates el-
ments constraints and modeling of the understudy NZR-MG. We
evote Section 5 to the development procedure of the hired DRL
echnique in response to the proposed business model objectives.
n Section 6, we examine the efficiency of the proposed technique
n different cases of NZR-MG by comparing its performance with
enchmark solutions. Ultimately, this paper ceases in Section 7 as
conclusion.
473
3. NZR-MG business model arrangement

The initial objective of the micro-grids advent was to avoid
power system generation and transmission lines extension by
deploying DERs to electrify remote places. Integrating RESs into
micro-grid enables this solution to address environmental con-
cerns. In the Korean peninsula, initially, islanded micro-grid was
attractive to provide green islands, and later grid-connected
micro-grid were deployed through the cities by implementing
NZR-MGs. The NZR-MG projects in Korea often involve a group
of nearby residential buildings. Net-zero buildings equipped with
intelligent energy management solutions and generating heating
from renewable energy as objectives of the Korea 2050 net-
zero plan accelerated by improving NZR-MGs from self-sufficient
to electricity market participants [19]. Therefore, NZR-MG will
offer profit to their stakeholders besides reducing electricity
production costs. Since, in this paper, we considered the im-
plemented NZR-MG project in Korea, we will define a business
model that improves this residential micro-grid to provide profit.
The micro-grid business model includes planning, deployment,
and operation of micro-grids to meet its tactical goals. Ref. [20]
offers a variety of business models for micro-grids and their
components [20]. We adapted the business model framework for
micro-grid in [20] to our understudy NZR-MG and planned the
business model framework as shown in Fig. 1. Several elements
that are determinants in the NZR-MG business model, including
NZR-MG (R), technology provider (T), utility grid service provider
(U), and micro-grid service provider (S). As we design a profit-
driven micro-grid business model, it is required to analyze the
interactions between elements and determine the associated
costs and revenue. As seen in Fig. 1, let G = (V , E) denotes the
graph of our NZR-MG business model where V is the set of
business model elements and E is the set of relationships between
elements based on costs and income. Given the definition of G,
we can calculate the profit of our business model arrangement at
time t as follows.

P(t) =
N∑
i=1

N∑
j=1

Profit(K i
a|ζi,j)(t), (1)

Profit(K i
a|ζi,j)(t) =

N∑
i=1

N∑
j=1

(Revenue(K i
a|ζi,j)(t)− Cost(K i

a|ζi,j)(t)).

(2)

where Ka is the key action of the proposed business model ele-
ments, N is the number of NZR-MG elements, and Profit(K i

a|ζi,j)
is the amount of earning from each activity after distracting the
activity cost.

Profit(K i
a|ζi,j) depends on the actions and relationships be-

tween elements of our business model. We assign weights to the
relationship between entities and recognize adjacent matrices for
the graph G, which is,

M =

⎛⎜⎝
R I T S

R 0 0 ζ13 ζ14
I 0 0 ζ43 ζ24
T ζ31 ζ34 0 ζ32
S ζ41 ζ42 ζ23 0

⎞⎟⎠
where,
ζ13 = {Cost−deg},
ζ14 = {D−,D+},
ζ23 = {Investment on Infrastructure+},
ζ24 = {π

+

DR, π
−

Purchasing , π
+

Selling},
ζ31 = {Cost−Ownership},
ζ = {Cost− },
32 Infrastructure
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Fig. 1. The business model framework for NZR-MG.
Fig. 2. The business model framework for NZR-MG with subtracting technology
mapping.

ζ34 = {π
+
env},

ζ41 = {Bill reduction+},
42 = {Peak shaving+},
43 = {Emission reduction+}.
Cost−deg is the cost of utilized technology degradation, D− is the
ustomer demand, D+ is the customer demand reduction from
tilizing technology, π+env is the policy of the institution struc-
ure supervisory level to encourage technology contribution in
et-zero planning, π+DR is incentives for taking part in demand

response, π−Purchasing and π+Selling are policies for trading power with
the utility grid. However, other relationships such as Cost−Ownership,
Cost−Infrastructure, Bill reduction

+, Investment on Infrastructure+, Peak
shaving+, and Emission reduction+ are clear. It is noted that the
sign + shows the revenue while - shows the cost.

We coarsen the graph by merging technology with the third
party and arranging a super vertex. We relaxed ζ34 and ζ43 on
trading power policies. Since the operator is responsible for main-
tenance and investment in the micro-grid ζ31 and ζ13 are ag-
gregated together and applied to the operator as the cost of
deployed technology degradation. The new version of graph G is
represented in Fig. 2.

The adjacent matrices for this new setup, which is,

M =

⎛⎝
R I S

R 0 0 ζ 13
I 0 0 ζ 23
S ζ 31 ζ 32 0

⎞⎠
where,
ζ 13 = {Cost

−

deg},
ζ 23 = {Bill reduction

+
},

ζ 31 = {π
+

DR, π
−

Purchasing , π
+

Selling},
ζ 32 = {Peak shaving+}.

According to the relationship between the business model
lements, it is possible to calculate the profit of each action. On
474
the other hand, since the energy transaction is the main action
of micro-grid elements, we can reformulate the profit function
accordingly.

Profit(.|ζ i,j)(t) =
N∑
i=1

N∑
j=1

ui
a E i

a (Cost(.|ζ i,j)− Revenue(.|ζ i,j)), (3)

where,
ua ∈ {0, 1},
Ea ∈ {EG, EC },
ua is the binary that shows each element’s activating status, EG
is the amount of each element’s energy generation, and EC is the
amount of each element’s energy consumption. Energy genera-
tion is always associated with the cost of fuel and degradation of
generators, revealed as ζ 13 in the business model. On the other
hand, the reduction in energy demand will result in bill reduction
and benefits for the utility grid, such as peak reduction known in
the business model as ζ 23 and ζ 32, respectively. ζ 31 determines
the policies and prices that govern all energy transactions be-
tween NZR-MG and the utility grid. Hence, we calculate the profit
as follows.

Profit(.|ζ ) = EG Revenue(.|ζ 23, ζ 32)− EG Cost(.|ζ 13)−
EC Cost(.|ζ 31). (4)

The next section describes the revenue and cost associated
with each energy transaction.

4. NZR-MG elements and constraints

We assume in our NZR-MG, 130 households are equipped
with 400 kW PVs, 600 kWh BESS, and 300 kW fuel cells. This
micro-grid is maintained and developed by the third party as
the system operator. This NZR-MG trades energy with the Korean
electric power company (KEPCO) as a transmission system opera-
tor (TSO)/distribution system operator (DSO) at a medium voltage
level. In Korea, apartment complexes electrifying with medium-
voltage (MV) levels can make single or general power purchase
agreements with KEPCO. A single contract determines charges for
the apartment complexes based on the total electricity consump-
tion of residents and common areas; however, in a general one,
the electricity consumption of each household and shared facil-
ities shall be separately billed. In our study, we considered that
there is a single contract for the apartment complex. Therefore,
KEPCO installed bi-directional metering in the point of common
coupling (PCC). The MV level will supply the public areas, while a
private 22.9 kV/0.4 kV transformer to provide a low voltage (LV)
line for residential units. Using the sum of energy usage divided
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y the number of households, the management office that has
he role of micro-grid operator calculates the electricity bills. To
rovide a real plan for maximizing all stakeholders profits, the
ystem operator will develop NZR-MG by installing seven fast-
harging stations and implementing a demand response schedule
ased on Korean electricity consumers’ behavior. It is noted that
he EV charging stations will have their electricity contract from
he building and is under the control of the micro-grid operator
nd try to make maximum profit from selling energy to EVs. Fig. 3
epresents the elements of the NZR-MG project in which dotted
ines represent the elements of the developed micro-grid. The
ollowing sections describe the models used for each NZR-MG
omponent.

.1. RESs characteristics and constraints

PV is the nature-based generation unit deployed in the un-
erstudy NZR-MG. Since PV power output is a random variable,
he PV historical data reveal its stochastic behavior. To satisfy
he emission-free objective of micro-grid stakeholders and to
otivate the minimum dependency of NZR-MG on the utility
rid, we ignore the cost of power generation of PV in this study.

ost(PPV |ζ 13)(t) = 0. (5)

Since we consider the PV generation revenue in the energy
transaction to the utility grid, the only limitation of PV perfor-
mance is its minimum and maximum power generation.

P i
PV ,min ≤ P i

PV (t) ≤ P i
PV ,max, 1 ≤ i ≤ M, (6)

where M represents the number of PVs in the NZR-MG and PPV
is PVs output power, respectively.

4.2. Fuel cell characteristics and constraints

The fuel cell is one of the power generation sources of our
NZR-MG that serves demand in the PV absence. The current study
ignores the cost of fuel cell degradation and applies costs for fuel
cell energy production based on fuel price.

Cost(FC |ζ 13)(t) = (PFC (t) CostFuel(t))/ηFC , (7)

where PFC is the output power of the fuel cell and ηFC is its
efficiency. With the same approach as PV, the revenue from fuel
cell performance is considered in the power transaction with
the utility grid. Additionally, the fuel cell state can change in a
certain time step concerning its minimum up and down time
characteristics as follows.

(T on
FC (t − 1)− T up

FC )(uFC (t − 1)− uFC (t)) ≥ 0 (8)

(T off (t − 1)− T down)(u (t)− u (t − 1)) ≥ 0 (9)
FC FC FC FC

475
where T up
FC and T down

FC determine the fuel cell’s minimum up and
down time and T on

FC and T off
FC are fuel cell’s duration of being on

or off, respectively. uFC is a binary value that shows whether the
fuel cell is on or off.

4.3. BESS modeling and constraints

BESS controls the stochastic characteristic of RESs in our NZR-
MG. We indicate the SoC of BESS each time by:

SoC(t) = SoC(t − 1)+
Pbat ∆t
Eb ηbat

, (10)

here Pbat has a positive value in the charging state and negative
mount in the discharging mode, Eb is the reference capacity of
he battery, ∆t is the time slot of charging/discharging of the bat-
ery, and ηbat is the battery charging and discharging efficiency.
owever, to protect the battery capacity from deterioration we
imit the SoC variation and battery power according to (11), (12).

oCmin ≤ SoC(t) ≤ SoCmax, (11)

bat,min ≤ Pbat (t) ≤ Pbat,max. (12)

In this study, we estimate the cost of battery degradation
ccording to (13) [21] and consider the revenue from battery
ower provision in energy transactions with the utility grid.

ost(BESS|ζ 13)(t) = α (SoC(t)− SoC(t − 1))2. (13)

From [21], we assigned 0.9 to the battery degradation coef-
ficient α proportional to our BESS capacity and other NZR-MG
elements specifications to control the BESS number of charging
and discharging cycles.

4.4. Demand response modeling

4.4.1. Residential load modeling and demand response
The under-study NZR-MG consists of three residential building

blocks located in Seoul. We considered the residential load profile
of the NZR-MG according to Korean residential power consumers’
behavior. The details of the monthly load profile estimation and
hired databases are represented in Appendix C.

We did not apply demand response in the base case model.
To grant the accuracy of our business model considering profit
for each stakeholder, we added demand response to the devel-
oped NZR-MG model. In Korea, the electricity market operator,
Korean power exchange company (KPX), determines the system
marginal price (SMP) for trading power in the electricity mar-
ket. In addition, KPX estimates power shortage and issue biding

commands through aggregators for demand response resources.
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he period of applying demand response according to the KPX
olicy should not exceed 60 h [22]. We categorize loads within
emand response into shiftable, reducible, and non-interruptible.
n this paper, we applied demand response to heating and cooling
ystem as reducible loads. The reasons for this arrangement are
wofold. According to the understudy NZR-MG electricity contract
ith KEPCO, the energy price is a three-stage progressive rate
Pricet,d3sp) determined in Section 4.5. Since the sum of the load con-
sumption during the day determines the cost of power, shifting
the load is not an incentive. In addition, most of the electricity
consumed by residential units goes to heating and cooling sys-
tems. The energy reduction is implemented by controlling the
indoor temperature (θin) in a range of residents desirable (θmin,
max). Participation probability for each demand response unit
n every event day (PDR) is calculated with a Gaussian mixture
odel based on Korean electricity market records [23]. Hence, we
eployed the following equation to apply demand response to our
odel and calculate our NZR-MG revenue from this action.

evenue(DR|ζ 31, ζ 23)(t) = PDR,dev(t)P(PDR,dev|t)Price
t,d
3sp − uax∆θ t ,

(14)

where,

∆θ t
=

⎧⎨⎩
(θmin − θ t

in), if θ t
in < θmin,

(θ t
in − θmax), if θ t

in > θmax,

0, otherwise,
(15)

P(PDR,dev|t) = 0.35exp(1.69(t − 10)2)+0.25exp(25(t − 1)2), (16)

uax is the anxiety coefficient of consumers from undesired in-
door temperature, and t is the time of demand response event.
The outdoor temperature historical data and heating and cooling
system power usage (PH&C (t)) facilitate the indoor temperature
calculation according to (17) [24].

θ t
in = θ t−1

in + K1(θ t−1
out − θ t−1

in )+ K2PH&C (t), (17)

where K1 and K2 are coefficients to determine indoor tempera-
ture. The power consumption of the heating and cooling system
and indoor temperature amount is limited as follows.

θmin ≤ θ t
in ≤ θmax, (18)

PH&C
min ≤ PH&C (t) ≤ PH&C

max . (19)

The amount of reduction in power consumption of the heat-
ing and cooling system will determine the amount of demand
response power according to (20), (21).

∆PH&C
= PH&C (t)− PH&C (t − 1), (20)

PDR,dev = ∆PH&C . (21)

4.4.2. EV modeling
Determination of EV power demand depends on the owner’s

driving habit and the charging characteristics of the EV. In this
paper, concerning EV battery lifetime, we consider SoC between
0.2 and 0.8. Since the charging station is a fast charger, the power
demand during this range of SoC stays almost constant [25].
The arrival time of EV in this paper assumes that have Gaussian
distribution according to (22).

P(t, EV ) =
1

δtarr
√
(2π )

exp(−
(t − µtarr )2

2δtarr 2
), (22)

here P(t, EV ) is the possibility of EV arriving home at time
, δtarr is the standard deviation, and µtarr is the average value
nd equal to 38.8 km and 21.9 km for personal purpose travels,
476
respectively, and according to the Korean private vehicles travel
pattern [26]. However, we consider each charging pile is available
to serve EVs the whole time. Hence, we model the demand of the
charging station in each time based on the home arrival time of
EVs as follows [27].

PCS,dev(t) =
k∑

n=1

Pn,ratedP(t, EV ), (23)

where k is the number of charging piles at the charging station
and Pn,rated is the rated power of charging piles. Since the charging
stations in our model are fast DC chargers, we did not apply
the vehicle-to-grid (V2G) in our model [28]. The price of power
purchasing for EV is according to Table B.1 of Appendix B [29].

Since the NZR-MG operator objective is the profit maximiza-
tion from selling power to the EVs, demand response is not
applied to EV load. However, to respect the interests of the utility
company, the NZR-MG operator firstly supplies EVs by surplus
power of RESs if the residential loads are already fulfilled. The op-
erator sells the power to EV owners slightly higher than the prices
in Table B.1 of Appendix B when the utility grid supplies EVs.
Therefore, the revenue from the EV charging station is calculated
as follows.

Revenue(EV |ζ 31)(t) = PCS,dev(t) Price
t,d
EV , (24)

where,

Pricet,dEV = ρPriceKEPCOEV . (25)

Table B.1 of Appendix B determines the PriceKEPCOEV , and we
assume ρ is equal to 1 if the NZR-MG supplies PCS,dev(t) and 1.1
if the PCS,dev(t) is purchased from the utility grid and determined
by Ppurchase(.|EV )(t).

4.5. The utility grid modeling

Our NZR-MG in the PCC purchases power from the grid to
compensate for power shortages in the absence of RESs and when
the cost of power provision from other resources is higher than
purchasing power from the utility grid. Table B.2 of Appendix B
shows the price of power purchasing from the grid for residential
consumption.

In addition, the NZR-MG can participate in the electricity
market to sell its excess power based on SMP determined by
KPX [30]. The NZR-MG elements should coordinate to respect the
balance between generation and consumption. We consider RESs
as the high prior sources of power generation and EV as the load
with the profile according to Section 4.4.2 that should be served
continuously. The constraints for trading power with the utility
grid and power balance in the NZR-MG are as follows.

Pnet (t) = PPV (t)− (Pload(t)− PDR,dev(t)), (26)

Pnet (t)+ PFC (t)+ Pbat (t)+ Ppurchase(.|load)(t)+ Ppurchase(.|EV )(t)

−Psell(t)− PCS,dev(t) = λ, ∀t λ = 0, (27)

Ppurchase(.|load)(t)Psell(t) = 0, (28)

where Ppurchase(.|load)(t) is the amount of power that is purchased
from the utility grid to supply load, Ppurchase(.|EV)(t) is the amount
of power that is purchased from the utility grid to supply EVs,
and Psell(t) is the amount of sold power to the grid at each
time t . The NZR-MG is not allowed to sell and purchase power
simultaneously, as shown in (28). The revenue and cost of power
trading with the utility grid are as follows.

Revenue(Psell|ζ 31)(t) = Psell(t)SMP t,d, (29)

Cost(P |ζ )(t) = P (.|load, t)Pricet,d . (30)
purchase 31 Purchase 3sp
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.6. NZR-MG profit modeling

According to the proposed profit function in (4) and the cost
unction of the NZR-MG elements represented in the previous
ections, we define the objective function for our NZR-MG as
ollows.

ax Profit(t) =

Max
[
Revenue

(
Psell(t)+ PDR,dev(t)+ PCS,dev(t)

)
−

Cost
(
PPurchase(.|load, t)+ Pbat (t)+ PFC (t)

) ]
, (31)

Max Profit(t) =

Max
[(

Psell(t)SMP t,d
+ (PDR,dev(t)P(PDR,dev|t)Price

t,d
3sp − uax∆θ t )+

PPurchase(.|EV , t)Pricet,dEV

)
−

(
PPurchase(.|load, t)Price

t,d
3sp +

α(SoC(t)− SoC(t − 1))2 + (PFC (t)CostFuel)/ηFC

)]
(32)

subject to
(6), (8), (9), (11), (12), (15), (18), (19), (27), (28).

5. DRL solution algorithms

The complexity and the high-dimensional problem of NZR-
MG encourage deploying model-free DRL to solve micro-grid
EMS problems. Our baseline solutions encompass three DRL algo-
rithms, DQN, DDQN, and DDPG. To provide an accurate and fast
converged solution, DDQN combined with MINLP and TL. The first
step in solving RL is the Markov decision process (MDP) arrange-
ment. Therefore, this section discusses the MDP arrangement and
the solution algorithms for our understudy NZR-MG.

5.1. NZR-MG MDP arrangement

MDP is a 4-tuple {S , A, T , R}, where S is the set of the
environment states,A is the agent’s actions set, T is the transition
function that shows the probability of transferring to the next
state st+1 while agent takes action at in time t, and R is the set
of rewards that agent assigns to each action.

5.1.1. States
We arranged our understudy NZR-MG elements according to

Fig. 3 with limitations and constraints specified in Section 4. Since
the objective of NZR-MG advent is spreading RESs deployment,
their sufficiency in supplying loads, Pnet , calculated by (26), is one
of the most critical states of the environment. The other states
are other generators’ status, including fuel cell output power
(PFC ) and available power of BESS in discharging mode (Pbat )
and its SoC. Because NZR-MG can trade energy with the utility
grid, selling surplus power to the utility grid price (SMP t,d) and
purchasing energy from the grid rate, Pricet,d3sp based on Table B.2
of Appendix B, are the other states. To distinguish the Pricet,d3sp, we
need to calculate the sum of electrical power NZR-MG purchases
from the grid to supply residential loads each day, as shown in
(33).

SUMPur,load =

T∑
t=1

PPurchase(.|load, T ), (33)

where T is the number of the time period that the meter records
the electrical power usage in each day.
477
For the developed case, the EV charging station power con-
sumption (PCS,dev) and charging price, Pricet,dEV based on Table B.1
of Appendix B, will be added to the state space. In addition to
that, in the developed case to contribute NZR-MG in the demand
response program, according to Section 4.4.1, the inside and
outside building temperature (θin(t), θout (t)) are the other states
of the environment.

Therefore, we specify the state space by

S = {Pnet (t), PCS,dev(t), SoC, SUMPur,load,

SMP t,d, Pricet,d3sp, Price
t,d
EV , T on

FC , T off
FC , θin(t), θout (t), time}. (34)

5.1.2. Actions
Our NZR-MG includes controllable and stochastic resources of

energy. We deployed historical data to predict stochastic char-
acteristics of RESs and loads. The agent can control the other
elements, including BESS, fuel cell, and the amount of trading
power from the utility grid. Hence, the action space A is defined
by:

A = {ABESS,AFC ,Asell,Apurchase|load,Apurchase,dev|EV ,ADR,dev}. (35)

Each action can follow a discrete or continuous space. We
present in this paper several DQN-based algorithms and DDPG
procedures for managing energy transactions in the micro-grid,
which have different approaches related to the action space. The
DQN-based agent selects actions from a discrete action space,
while the DDPG agent takes continuous actions. To determine the
discrete action, we discrete battery and fuel cell power according
to (36) and (37), respectively, and arrange discrete action space
with a mixture of these actions and other elements of action
space as follows.

Pbat,disc = {−200,−150,−100,−50, 0, 50, 100, 150, 200}, (36)

PFC,disc = {0, 100, 200, 300}, (37)

Adisc = {Pbat,disc,UFC , PFC,disc, Psell,
Ppurchase(.|load), Ppurchase,dev(.|EV ),

Apurchase,dev|EV ,ADR,dev}, (38)

where,
Apurchase,dev|EV = {0, 1}.
ADR,dev = {0, 1}.
Pbat,disc : The BESS amount of charging or discharging per kW,
according to the predetermined range.
UFC : The fuel cell state of being on or off.
PFC,disc : The fuel cell amount of charging or discharging per kW,
according to the predetermined range.
Psell: The amount of selling power to the utility grid in the PCC
per kW.
Ppurchase(.|load): The amount of buying power from the utility grid
in the PCC per kW.
Ppurchase,dev(.|EV ): The amount of power purchased to supply EV
from the utility grid or NZR-MG per kW in the developed case.
Apurchase,dev|EV : The state of supplying EV from the utility grid or
from NZR-MG resources in the developed NZR-MG.
ADR,dev: The state of reducible load participation in the demand
response plan in the developed NZR-MG.

The continuous action space is defined as follows.

Acont = {Pbat (t), PFC (t), Psell(t), Ppurchase(.|load)(t),
Ppurchase,dev(.|EV )(t), PDR,dev(t)},

(39)

where,
Pbat : The amount of BESS charging or discharging per kW.

PFC : The amount of power generated by the fuel cell per kW.
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sell: The amount of selling power to the utility grid in the PCC
er kW.
purchase(.|load): The amount of buying power from the utility grid
n the PCC per kW.
purchase,dev(.|EV ): The amount of power purchased to supply EV

from the utility grid or NZR-MG in the developed case.
PDR,dev: The amount of load reduction by participation in demand
esponse per kW.

.1.3. Transition function
In our understudy NZR-MG, BESS is the only element we can

stimate its next state with (10). The other elements’ status,
uch as RESs, Loads, EVs, and SMP, is unknown. Due to this, we
tilize DRL, which is model free technique and can support the
ncertain environment of NZR-MGs. To provide an accurate next
tate estimation, we start from a stochastically choosing SoC at
he starting point of each episode and determine RESs, Loads, EVs,
nd SMP present states from the historical data. While the next
tep of Pbat is determined according to (10), the agent initially
chooses the other elements in a stochastic manner. This random
selection will be conducted to the best action selection during the
agent’s learning process by assigning the reward to each action,
which is the nature of the DRL approach to solving problems.

5.1.4. Reward
Given that we selected two different actions for the DRL, it

s appropriate for the reward function to be set based on those
ctions. However, since we deployed two different approaches in
ction selection for the DRL agent, we need to modify this reward
unction accordingly. Therefore, we define the reward function as
ollows.

=

( N∑
i=1

αiAi
dis/cont (Revenue

i
A − Cost iA)

)
+RSoC +Rbalance, (40)

where i is the number of each NZR-MG element, Adis/cont are
continuous and discrete actions defined in (38) and (39), and the
coefficient α is defined according to the priority of resources in
energy provision and determined as follows.

αPV ≫ αbat ≫ αFC > αDR,dev > αTrading . (41)

RSoC is a punishment to keep the SoC in a range defined in
(11), and Rbalance preserves NZR-MG power balance evaluated by
(26) as follows.

RSoC = −2× 107, if (SoC < SoCmin) ∥ (SoC > SoCmax), (42)

balance = −2× 107, if λ ̸= 0. (43)

.2. DQN

DQN is an efficient RL algorithm to overcome the curse of di-
ensionality weakness of Q-learning when solving problems in-
olving large numbers of states, such as EMS in micro-grids [31].
DQN agent provides environment states as inputs to the DNN,
lso known as the Q network, in each time step and receives the
-value of each action from the DNN. The agent selects an action
ith a higher value based on the ϵ-greedy policy. This process
ill provide a transition tuple for each time step (st , at , rt , st+1)
aved in an experienced buffer. The batch of experience from the
eplay buffer after each episode termination applies to the Q-
etwork to prevent correlation between inputs for the DNN. To
pdate the weight of the network, the agent deploys a gradient
escent approach by estimating the loss function according to
44), which is the mean square error of the difference between
478
the target value yt , derived from the Bellman equation repre-
sented in (45), and the Q-network predicted value as follows.

Loss(θt ) = E[(yt − Q (st , at |θt ))2], (44)

here,

t = rt + γmaxQ (st+1, at |θt ), (45)

is discounting factor and maxQ (st+1, at ) is the maximum future
-value of the next state.
Algorithm 1 represents the pseudo-code of DQN to solve the

MS problem of our NZR-MG environment.

Algorithm 1: DQN algorithm pseudo-code
Initialize Qθ and empty replay buffer D ;
for episode = 1 to E do

Generate st based on (34) ;
for t = 1 to T do

Generate at based on (38) using ϵ-greedy;
Calculate reward rt according to (40);
Store transition (st , at , rt , st+1) in D;
Sample minibatch of transitions;
if episode terminates at step t + 1 then

yt ← rt ;
else

yt ← (rt + γmaxQ (st+1, at |θt ));
Calculate loss function according to (44);

5.3. DDQN

The DQN agent’s main drawback is that it overestimates the
Q-value since it uses the maximum Q-value of all possible actions
to update the Q-value. Attaching target network with network
parameter of θ ′ in DDQN updates (44) with the estimation of
target value from this network as follows [32].

Loss(θt ) = E[(rt + γmaxQ (st+1, at |θ ′t )− Q (st , at |θt ))2]. (46)

The target network is a copy of the main Q-network frozen for
while to prevent oscillation of the Q-network by estimating its
eight from estimation. Algorithm 2 is the DDQN pseudo-code

or scheduling EMS of our understudy NZR-MG.

Algorithm 2: DDQN algorithm pseudo-code

Initialize Q θ , Q θ ′
←Q θ , and empty replay buffer D ;

for episode = 1 to E do
Generate st based on (34) ;
for t = 1 to T do

Generate at based on (38) using ϵ-greedy ;
Calculate reward rt according to (40);
Store transition (st , at , rt , st+1) in D;
Sample minibatch of transitions;
if episode terminates at step t + 1 then

yt ← rt ;
else

yt ← (rt + γmaxQ (st+1, at |θ ′t ));
Calculate loss function according to (46);
Update Qθ with SGD by minimizing loss function;
Set Target network weights after several steps by
Q θ ′
←Q θ ;
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.4. DDPG

As with DQN, DNNs estimate the DDPG value function. How-
ver, DDPG is an actor–critic method and requires another DNN
o approximate the strategy function. DDPG also benefits from
eplay buffer and fixed Q target network tricks of DQN. Therefore,
here are four DNNs in DDPG, including θQ and θQ ′ for online
and target value function estimation and θµ and θQµ′

for online
and target strategy function evaluation, respectively [33]. The
online value network is updated similarly to the DQN, whereas
the online policy network is updated based on (47).

θµ
← θµ

− αc▽θµ J, (47)

here αc is the policy network learning rate, and ▽θµ J is the
radient of the objective function to estimate the maximum of the
bjective function.▽θµ J is equivalent to the action-value function
xpected gradient and calculated as follows.

▽θµ J (θ )

≈
1
N

∑
i

[▽aQ (s, a|θQ , s = si, a = µ(Si))▽θµ µ(S|θµ, s = si)].

(48)

DDPG updates actor and critic target networks with a soft
pdate mechanism to provide stability in learning process, ac-
ording to (49), (50).
Q ′
← τθQ

+ (1− τ )θQ ′ , τ ≪ 1, (49)

µ′
← τθµ

+ (1− τ )θµ′ , τ ≪ 1. (50)

here τ is the target smoothing factor set to 0.005 in this study.
In the utilized DDPG algorithm in this paper, we also used

ean-zero Gaussian noise to improve exploration in action se-
ection.

Algorithm 3: DDPG algorithm pseudo-code

Initialize Q θ ′
←Q θ , Qµ′

← Qµ, and empty replay buffer D
;

for episode = 1 to E do
Initialize random process N ;
Generate st based on (34) ;
for t = 1 to T do

Generate at based on (39) using current policy and
exploration noise (at =µ(S|θµ)+ Nt );

Calculate reward rt according to (40);
Store transition (st , at , rt , st+1) in D;
Sample minibatch of transitions;
if episode terminates at step t + 1 then

yt ← rt ;
else

yt ← (rt + γmaxQ (st+1, at |θ ′t ));
Update critic network by minimizing loss function
(46);

Update policy network using sampled policy
gradient according to (47);

Update critic and policy target networks by Setting
θ ′ and µ′ according to (49), (50);

5.5. Proposed DDQN algorithm with MINLP and TL contribution

The objective of the RL method is to maximize the cumulative
eward over time. By selecting actions with the highest value
479
function, DQN, DDQN, and DDPG accomplish this objective. Ac-
cordingly, the quality of the Q-value function is a determinant of
learning speed and accuracy. Deploying the maximum value to
estimate future rewards makes all Q-learning methods subjected
to over-estimation. We combine DDQN and MINLP to prevent
overestimation and accelerate the optimization process to con-
verge to the accurate results in this paper . In the deployed DQN,
DDQN, and DDPG, which is a pure DRL method, the definition
of the reward function according to the exact profit represented
in (32) is not viable and defined according to (40). As with all
RL methods, the reward function will imitate the original cost
function. On the other hand, DDPG has a continuous action space,
and its combination with the MINLP solver encounters a large
amount of action resulting in failover in action evaluation. As a
result, DDQN is combined with MINLP solvers to provide agents
with more effective rewards. Instead of discrete action space
(38), MINLP+DDQN determines several strategies with upper and
lower bounds of Pbat as follows.

StrategyMINLP+DDQN = {[−200,−150], [−150,−100],
[−100,−50],
[−50, 0], [0, 50], [50, 100], [100, 150], [150, 200]}. (51)

These strategies with the other elements constraints provide
upper and lower bounds of MINLP solver according to (52), (53).

Ub = [Pbat,min, PFC,min, Psell,min, Ppurchase|load,min,

Ppurchase,dev|EV ,min, PDR,dev,min], (52)

Lb = [Pbat,max, PFC,max, Psell,max, Ppurchase|load,max,

Ppurchase,dev|EV ,max, PDR,dev,max], (53)

where Pbat is a member of (51).

Algorithm 4: TL+DDQN+MINLP approach

For subtask 1 initialize Q θ , Q θ ′
←Q θ randomly;

For subtask 2 initialize Q θ , Q θ ′
←Q θ from subtask 1

learned parameters;
For subtask 3 initialize Q θ , Q θ ′

←Q θ from subtask 2
learned parameters;

Initialize an empty replay buffer D;
for episode = 1 to E do

Generate st based on (34) ;
for t = 1 to T do

For subtask 1 and subtask 2 generate at based on
(38) using ϵ-greedy ;

For subtask 3 Generate at based on (51) using
ϵ-greedy ;

run MINLP solver for (32) with applying
related constraints;

Deliver optimal actions to DDQN agent;
For subtask 1 calculate reward according to (54);
For subtask 2 calculate reward (55);
For subtask 3 calculate reward rt according to (40);
Store transition (st , at , rt , st+1) in D;
Sample minibatch of transitions;
if episode terminates at step t + 1 then

yt ← rt ;
else

yt ← (rt + γmaxQ (st+1, at |θ ′t ));
Calculate loss function according to (42);
Set Target network weights after several steps by
Q θ ′
←Q θ ;
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Fig. 4. Our NZR-MG EMS optimization approach flowchart.
Fig. 5. Solution algorithms training process comparison in base case and developed case.
However, MINLP computation costs will subject the learning
rocess to delay when finding optimized actions. To overcome
his weak point, we utilized TL techniques. This approach acceler-
tes the learning process of the agent. Transfer learning involves
aking what has been learned on one task and applying it to
nother possibly related challenge. To this end, we divided NZR-
G optimization into three subtasks. In subtask 1, the agent will

ustify network weights to prevent extreme behavior, related to
oC and Power balance limitations. Subtask 1 reward function
s calculated by (54). Since the agent should consider the cu-
ulative power purchase from the utility grid to avoid falling
rice into the higher stages, subtask 2 is an effort to determine
etwork parameters concerning this limitation. Subtask 2 ac-
ions will be evaluated with reward function according to (55).
he third subtask is considering the environment with whole
bjectives and constraints. Algorithm 4 reveals pseudo-code of
L+MINLP+DDQN, and Fig. 4 represents a flowchart of different

approaches hired in this paper to schedule EMS for NZR-MG.

rt = RewardSoC + Rewardbalance, (54)

= α A (Revenue − Cost ) (55)
t Trading dis A A

480
6. Results and discussion

6.1. Experimental setup

We evaluate our proposed methodology by planning EMS
for the base and developed cases of NZR-MG, introduced in
Section 4. Table D.1 shows the NZR-MG elements’ specifications
and constraints. The annual historical data of PV output power
for a one-hour time slot according to the weather condition of
Seoul is provided from [34]. The load profile follows the pattern
represented in Section 4.4.1. NZR-MG base case consists of PV
output power, average load profile, hourly SMP, and Pricet,d3sp of
each selected month while adding the inside and outside tem-
perature, EV load profile, and PriceEV provide the environment for
developed NZR-MG specified in Section 4.4.2. As part of setting
up our NZR-MG environment, we divided our historical data
into training and testing sets. Training data consists of 243 days,
including two months from each season, and testing data consists
of 122 days remaining in the year. We schedule our NZR-MG for
every 5 min. To this end, for both base and developed cases in
the training process, the number of sampling for each episode is
69,984, which is the number of training days times the number
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f 5-min periods in a day. The test process also samples actions
5,136 times, according to the test data size.
We deployed DQN, DDQN, DDPG, MINLP+DDQN, and

L+MINLP+ DDQN algorithms to schedule energy resources for
the base and developed cases of NZR-MG. Table D.1 of Appendix D
outlines the hyper-parameters for each algorithm. Q-networks
and policy networks have two fully connected hidden layers.
Each hidden layer has 200 ReLU neurons. We fix the replay
buffer capacity to 5000, and in each gradient descent step, the
minibatch size of samples is 256. The algorithms trained over
10,000 episodes.

For DQN, DDQN, and MINLP-DDQN, action selection follows
he ϵ-greedy policy. Actions are randomly selected in the first
00 episodes to explore the state–action space as effectively as
easible. The next step is to choose actions using the ϵ-greedy
olicy according to (56). As can be seen, in (56), ϵ-greedy is
mplemented in DDPG by adding noise with a zero Gaussian
481
distribution pattern.

at =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Any at , probability ε

maxQt (a) probability 1− ε, if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DQN

DDQN

DDQN +MINLP

TL+ DDQN +MINLP

µ(St |θ
µ)+Nt , probability 1− ε, if DDPG

(56)

.2. Experimental results

This section represents a comprehensive comparison of each
lgorithm in planning EMS of NZR-MG. We conduct experiments
n MATLAB Simulink (2022a) and test simulations on a machine
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ith two Intel (R) Cores (TM) i5-10400F CPU @2.90 GHz and 8 GB
AM. In this section, we investigated the performance of pro-
osed algorithms for both base and developed cases of NZR-MG.
ig. 5 delineates a comparison of different algorithm’s learning
rocess average reward per episode over historical data from the
raining data set.

It can clearly be seen that TL+DDQN+MINLP converged in
shorter number of episodes comparing other algorithms. For
ase and developed cases, DDQN+MINLP stabilizes at 600 and
00 episodes, respectively, but adding TL to this algorithm drops
he learning rate to 400 and 600. However, agent training con-
ergence dramatically climbed to near 1000 for other methods.
s is expected, DDPG and DQN learning processes have fluc-
uation. Unstable DDPG training results from hyper-parameter
ependency and deterministic characteristics of the actor. It is
bserved from DDQN training that attaching a target network
482
o DQN could overcome its unstable performance. The ϵ- greedy
olicy in action selection leads all agent performances to start
rom lower rewards. The exploitation approach guides agents
o higher rewards with the increasing number of episodes. All
lgorithms in the base case converge faster than in the developed
ase because of its simpler state and action space.
Figs. 6 and 7 compare every 5-min power dispatch scheduling

f the base case NZR-MG with proposed modified DDQNs for
wo sequential days in January from our test data set. Although
igs. 6(a) and 6(b) show both methods respect power balance
n planning NZR-MG EMS, there is a difference in how algo-
ithms retrain resource deployment balance. A general rule is
hat TL+DDQN+MINLP compensates for RESs absence by hir-
ng internal resources, while DDQN+MINLP favors trading more
ower with the utility grid. As a result of this behavior, TL+
DQN+MINLP keeps the price of three-stage in the second stage,
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Fig. 8. Comparison of NZR-MG basecase hourly power dispatch with DDQN+MINLP and TL+DDQN+MINLP.
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Table 1
NZR-MG annual cost(KRW/kWh) based on each optimization algorithm.
Algorithm NZR-MG basecase NZR-MG developed case

Operational cost Operational cost User anxiety cost

DQN 0.797 × 109 0.936 × 109 0.139 × 104

DDQN 0.763 × 109 0.871 × 109 0.156 × 103

DDPG 0.784 × 109 0.894 × 109 0.261 × 103

DDQN-MINLP 0.757 × 109 0.837 × 109 0.152 × 103

TL-DDQN-
MINLP

0.743 × 109 0.822 × 109 0.123 × 103

MINLP solver
(CPLEX)

0.675 × 109 0.797 × 109 0.05 × 103

according to Fig. 7(b). While in DDQN+MINLP, being greedy with
cquiring profits from selling power in higher SMP rocketed the
rice for DDQN+MINLP solution to the third stage around 6 a.m.

of the second day, as shown in Fig. 7(a).
483
NZR-MG developed case, with both proposed algorithms, has
the same approach as the base case in EMS scheduling illustrated
in Figs. 8 and 9. TL+MINLP+DDQN agent for developed case
tilizes internal resources to fulfill energy shortages and supply
V contrasting the MINLP+DDQN agent, which falls into the trap
f increasing income by selling power to the grid and passing the
econd stage of price.
The other significant TL efficacy appears in the demand re-

ponse action of the agent. The sequential process of historical
ata feature extraction leads TL-based DDQN with more precision
pply the limitation of the desired temperature. The demand
esponse event occurs two times a day to decrease the peak–
verage ratio, according to Fig. 10. The room temperature in TL
s precisely within the desired temperature in both understud-
es two sequential days following the second demand response
vent. As for DDQN+ MINLP, the amount of room temperature is
igher than TL+MINLP+DDQN. This performance resulted in less
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Fig. 9. Comparison of NZR-MG basecase hourly power dispatch with DDQN+MINLP and TL+DDQN+MINLP.
ontribution to decreasing demand during the second peak time
f the day for the agent of DDQN+ MINLP.
The most important conclusion drawn from attaching TL to

INLP+DDQN is that although MINLP offers a more realistic
eward function for DDQN, the TL with step-by-step retrieving
eatures of historical data train agent hyper-parameters accu-
ately.

We also formalized optimum policy for both cases of NZR-
G with MINLP and compared its results from the CPLEX solver
ith all hired DRL algorithms in case of annual costs and each
takeholder profit represented in Table 1 and Fig. 11. We consid-
red the amount of peak–average ratio gained from the demand
esponse scheduling of each algorithm solution to compare the
mount of profit for the utility grid. It has been observed from
able 1 that TL+DDQN+MINLP has lower operational costs for
oth cases of NZR-MG as well as less user anxiety cost of demand
esponse program implementation in the developed case. Unlike
L+DDQN+MINLP, DQN has the highest cost in base and devel-
ped scenarios, and DDPG often sits between these two extremes.
egarding the profit, TL+DDQN+MINLP also provides near the
ptimal solution annual profit for whole stakeholders of NZR-MG
484
compared to the other methods, according to Fig. 11. Another
notable point observed in Fig. 11 is that the system operator,
which has a significant effect on increasing penetration of NZR-
MG through investment, makes the highest annual profit from
NZR-MG near to optimum point by utilization of our proposed
algorithm.

In our study, we arranged EMS as a central unit that directly
communicates with the utility company to dispatch resources.
This hypothesis is based on the present Korean power system
architecture. Despite the desire to maintain the Korean power
system monopoly structure over the generation, transmission,
and distribution sectors in the past, there are fresh insights into
the power system business model to facilitate joining RESs, EVs,
and demand response scheduling as flexible power resources
in the framework of local electricity markets [35]. As a result,
there is a surge in efforts to establish retail and local markets,
resulting in emerging micro-grid communities such as the NZR-
MGs community. In these communities, there is no doubt about
preserving the privacy of stakeholders’ electricity consumption
and generation data by using brokers in information exchange
with the utility company. Although our business model can be
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Fig. 10. Comparison of DDQN+MINLP and TL+DDQN+MINLP in demand response implementation.
Fig. 11. Comparison of each NZR-MG stackholder profit provision based on utilized optimization algorithms.
xtended to covering the brokers’ interests based on evoking
osts of services from stakeholders’ relationships and arranging
ost functions based on that, future work is required to establish
he viability of privacy provision of stakeholders. The Multi-agent
RL techniques will meet privacy requirements, where our pro-
osed method can be adapted to serve each micro-grid agent
ower dispatch locally.
The other open issue is the economic feasibility of our pro-

osed technique in compensating investment expenses. We eval-
ated the viability of operational cost optimization,
elf-sufficiency, and excess generation management using the
roposed algorithm. Therefore, further studies will be needed to
rove the economic feasibility of the hired approach for NZR-MG
usiness model arrangements in compensating investment costs.

. Conclusion

This paper presents a profitable business model for the NZR-
G following Korean power system regulations and policies. A

ypical NZR-MG model in Korea is enhanced by the addition
485
of EV charging stations and demand response plans, evidencing
realistic recent power consumption trends. Our approach involves
power dispatched scheduling of NZR-MG with a modified DDQN
algorithm. The proposed algorithm could offer an online solution
to maximize profit for whole stakeholders with the contribution
of MINLP-based reward estimator and TL techniques. We com-
pared our technique performance with a wide range of DQN-
based algorithms. Precise hyper-parameter provision by breaking
EMS task into several subtasks to hire TL and accurate reward
approximation by MINLP solver employment guided the NZR-MG
agent to the minimum difference with the optimum solution.

However, prospective alteration of the Korean power system
monopoly structure to serve the competitive electricity market
with RESs, EVs, and demand response scheduling will introduce
brokers in NZR-MG and the utility company information ex-
change, which calls for the provision of privacy for stakeholders’
data. To respect this privacy requirement, we will evaluate hiring
multi-agent arrangements for our DRL approach in the future.
Attaching investment expense compensation of NZR-MG to the
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Table A.1
Acronyms.
Abbreviation Description

A3C Asynchronous advantages actor-critic
A2C Advantage actor-critic
BESS Battery energy storage systems
DDQN Dual deep Q-learning (DDQN)
DDPG Deep deterministic policy gradient
DER Distributed energy resources
DG Diesel generator
DNN Deep neural network
DPG Deterministic policy gradient
DQN Deep Q-network
DRL Deep reinforcement learning
DSO Distribution system operator
EMS Energy management system
ESS Energy storage systems
EVs Electric vehicles
GRU Gated recurrent unit
KEPCO Korean electric power company
KPX Korean power exchange company
LSTM Long short term memory neural networks
LV Low voltage
MINLP Mixed-integer nonlinear programming
MV Medium-voltage
NZR-MG Net-zero residential micro-grid
PCC Point of common coupling
PPO Proximal policy optimization
PVs Photovoltaics
RES Renewable energy sources
RL Reinforcement learning
SAC Soft-actor critic
SMP System marginal price
SoC state of the charge
TL Transfer learning
TSO Transmission system operator
V2G Vehicle-to-grid
WT Wind turbine

EMS problem cost function will be another issue that will need
to be undertaken.
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Appendix A. Nomenclatures

See Tables A.1 and A.2.

Appendix B. Residential load and EV charging price in Korea

See Tables B.1 and B.2.

Appendix C. NZR-MG average monthly load profile estimation

Our NZR-MG is in Seoul, and it has 130 residential units
located in three eight-story blocks, with an average of four oc-
cupants in each unit. We followed Korean household electricity
consumption to provide real-world results. The primary electrical
devices for each residential unit include a TV, refrigerator, Kimchi
refrigerator, washing machine, rice cooker, and microwave, with
power consumption taken from the Enertalk database [36]. Power
usage is mainly affected by the heating and cooling system.
Therefore, we considered the tri-generation system that facili-
tates heating, cooling, and hot water of buildings with the help of
RESs and arranged average monthly load profiles [37]. Finally, the
public electricity consumption of each building block is calculated
by (C.1) from [38].

PC (∆t) = PP (0.148Ns + 0.092), (C.1)

where PC and PP are the amounts of common and private electric-
ity usage of each building block in each time slot ∆t , respectively,
and Ns denotes the number of floors. Fig. C.1 delineates estimated
verage monthly load profile of the NZR-MG during 2017 based

n appliances, heating and cooling, and common usage.
Table A.2
Symbols.
Parameters Description

Business model graph

i,j Indices for the elements
E Set of relationships
V Set of elements
ζ Element’s relationship
Ka Key action of the elements
N Number of elements
Profit(K i

a|ζi,j) Amount of each activity earning after distracting the cost
Cost−deg Cost of utilized technology degradation
D− Customer power demand
D+ Customer power demand reduction du to utilizing technology
π+env Policy of the institution structure
π+DR Incentives for taking part in demand response

π−Purchasing&π+Selling Policies for trading power with the utility grid
ua Business model element’s activating status
EG Amount of elements energy generation
EC Amount of elements energy consumption

(continued on next page)
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Table A.2 (continued).

NZR-MG elements

PV
M Number of PVs
PPV PVs output power (kW)
PPV ,min/max PVs minimum/maximum output power (kW)

Fuel cell

PFC The amount of fuel cell power output (kW)
T up/down
FC Fuel cell’s minimum up/down time

T on/off
FC Fuel cell’s duration of being on/off

uFC A binary value to show the fuel cell is on or off
CostFuel Cost of fuel cell’s fuel (KRW)
ηFC Fuel cell efficiency (%)

BESS

Pbat Battery power charging or discharging (kW)
Pbat,min/max Battery minimum/maximum output power (kW)
SoCmin/max Battery state of the charge minimum/maximum
Eb Battery capacity (kWh)
∆t Time slot of the battery charging/discharging
ηbat Battery charging and discharging efficiency
α Battery degradation coefficient

Residential load

PC Common electricity usage of each building block
∆t Time period in load consumption
PP Private usage of building block units
Ns Number of building’s floors
θin/out Indoor/outdoor temperature
θmin/max Minimum/maximum desired Indoor temperature
PDR Participation probability for each demand response unit
uax Anxiety coefficient of consumers
PH&C Heating and cooling system power usage (kW)

PH&C
min/max Minimum/maximum heating and cooling system power usage (kW)

K1&K2 Coefficients to determine indoor temperature
∆PH&C H&C system power reduction to contribute in demand response (kW)
PDR,dev Residential load reduction to contribute in demand response (kW)

EV charging station

P(t, EV ) the possibility of EV arriving home at time t
δtarr EV’s arriving home standard deviation
µtarr EV’s arriving home average value
k Number of charging piles
Pn,rated Rated power of charging piles
ρ Coefficient to determine EV charging power supplier
PCS,dev Charging station power consumption (kW)
Pricet,dEV EV charging power purchase rate (KRW/kWh)

Utility grid

PriceKEPCOEV EV charging power purchase rate determined by utility grid (KRW/kWh)

Pricet,d3sp Three-stage progressive rate energy price(KRW/kWh)

SMP t,d The price of selling power to the utility grid (KRW/kWh)

Ppurchase(.|load)(t) The amount of power purchased from the utility grid to supply load

Ppurchase(.|EV)(t) The amount of purchased power from the utility grid to supply EVs
Psell(t) The amount of sold power to the grid at each time t

DRL

S State space
A Action space
T Transition function
R Reward function
Acont/dics Continuous/discrete action space
Apurchase,dev|EV Supplying EV from the utility grid or NZR-MG resources
ADR,dev The state of reducible load participation in the demand response
RSoC Reward function to keep SoC in the desired range
Rbalance Reward function to keep balance between power generation and consumption
yt target value
γ Discounting factor
ε Probability of random action
τ Target smoothing factor
θ /θ ′ Critic/target critic networks weights
µ/µ′ Policy/target policy networks weights
Ub Set of MINLP upper bounds
Lb Set of MINLP Lower bounds
Table B.1
EV charging price (KRW/kWh) based on KEPCO regulation.
Time Summer Spring/Fall Winter

Off-peak 52.6 53.7 75.7
Mid-peak 140.3 65.5 123.5
On-peak 227.5 70.4 185.8

Appendix D. NZR-MG elements technical specifications

See Table D.1.
487
Table B.2
Three-stage progressive price (Pricet,d3sp) (KRW/kWh) based on KEPCO
regulations.
Sum of energy consumption Energy price

Summer (July 1∼Aug 31) Other seasons

1∼200 kWh 1∼300 kWh 73.3
201∼400 kWh 301∼450 kWh 142.3
401 kWh∼ 451 kWh∼ 210.6
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Fig. C.1. NZR-MG average load profile during the different months of 2017.
488



L. Tightiz and J. Yoo ISA Transactions 137 (2023) 471–491
Fig. C.1. (continued).
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Table D.1
NZR-MG elements technical specification and constraints.
PV PPV ,min (kW) 0

PPV ,max (kW) 400
CostPV (KRW/kW) 0

Fuel cell

PFC,min (kW) 0
PFC,max (kW) 300
ηFC (%) 80
CostFuel (KRW/kg) 8800

BESS

Ebat (kWh) 600
Pbat,min (kW) −200
Pbat,max (kW) 200
SoCmin (%) 20
SoCmax (%) 90
ηbat (%) 90
α 0.9

Utility Grid

PPurchase,max (kW) 700
PSell,max (kW) 700
Price of selling power to NZR-MG Pricet,d3sp acc. Table B.1
Price of purchasing power from NZR-MG SMP t,d

Residential load Load profile acc. to Fig. C.1

Demand response coefficients

θmin (◦C) 23
θmax (◦C) 25
ux 100
K1 , K2 0.8, −0.02

EV

EVCS rated power 7 ∗ 50 kW

EV arriving time
Pattern acc. (22)
δtarr (km) 38.8
µtarr (km) 21.9

Price of purchasing power acc. (25)
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