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Abstract: Cordyceps, also known as “zombie fungus”, is a non-poisonous mushroom that parasitizes
insects for growth and development by manipulating the host system in a way that makes the victim
behave like a “zombie”. These species produce promising bioactive metabolites, like adenosine,
β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its
immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and
sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS))
and neurotrauma. Both these conditions share common pathophysiological features, like oxida-
tive stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine,
N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides)
exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial
effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Al-
though a considerable list of compounds is available from Cordyceps, only a few have been evaluated
for their neuroprotective potential and still lack information for clinical trials. In this review, the
neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed,
which might be helpful in the identification of novel potential therapeutic entities in the future.

Keywords: Cordyceps; zombie fungus; neuroprotection; neuroinflammation; oxidative stress;
neurodegenerative diseases; neurotrauma

1. Introduction

Neurodegenerative diseases (NDs) result from gradual loss of neuronal function,
which ultimately causes cell death. These diseases remain incurable because of the com-
plexity of brain function, leading to devastating neurological disorders. An increase in
the incidence rate of NDs has been observed owing to rising life expectancy [1]. An im-
balance between antioxidant and pro-oxidant species causes increased oxidative stress [2].
Increased reactive oxygen species (ROS)/reactive nitrogen species (RNS) in cells and tis-
sues interfere with cellular mechanisms, such as mitochondrial dysfunction, leading to
a decrease in energy production. Increased oxidative stress may lead to neuronal cell
loss, a common feature of various NDs [2–4]. Oxidative stress, along with the production
of cytokines, chemokines, and other secondary messengers, is the underlying cause of
neuroinflammation. The expression levels of inflammatory cytokines positively correlate
with the levels of neurotrophic factors [5]. Regulated inflammatory processes are important
for maintaining tissue homeostasis and proper functioning, and extensive inflammation
can lead to additional cell injury [6]. Neuroinflammation can be considered a double-edged
sword, as it may cause damaging effects in NDs [7], while minor inflammation may be
beneficial for recovery under some conditions [6,8–10]. Certain inflammatory inducers
produce neurotoxic substances that amplify disease symptoms. These neurotoxic factors are

Nutrients 2023, 16, 102. https://doi.org/10.3390/nu16010102 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16010102
https://doi.org/10.3390/nu16010102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-6720-257X
https://orcid.org/0000-0002-8123-6183
https://doi.org/10.3390/nu16010102
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16010102?type=check_update&version=2


Nutrients 2023, 16, 102 2 of 28

associated with several NDs, like Alzheimer’s disease (AD), Parkinson’s disease (PD), mul-
tiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) [11,12]. Neuroinflammation is
the major cause of ischemic stroke. M1-type microglial cells play a major role in prolonged
inflammation, leading to brain tissue damage [13]. Although inflammation may not always
be the initiating factor of these diseases, other sources of neuroinflammation include brain
trauma, injury, and infection. Mitochondrial dysfunction, gliosis, and accumulation of
abnormal protein aggregates also play critical roles in neurodegeneration [14]. Advanced
glycation end products (AGEs) are formed by a non-enzymatic reaction (Maillard reaction)
between the carbonyl group of reducing sugars and the amino group of amino acids. AGEs
interact with the receptors of advanced glycation end products (RAGEs), initiating the
activation of several pathways, including oxidative stress, and inflammation [15]. AGEs
are also generated in food during thermal processing, like the pasteurization of dairy prod-
ucts [16,17] and immunomodulating gut bacteria. Nε-(carboxymethyl)lysine (CML) is an
AGE that interacts with RAGEs and releases inflammatory cytokines, ultimately increasing
oxidative stress [17]. Small-molecule therapeutics that interfere with AGE–RAGE interac-
tions inhibit the inflammatory cascade and attenuate disease development [18]. Researchers
worldwide have attempted to identify an effective cure for NDs. Despite several attempts
to identify drugs that can reduce the symptoms of neurodegeneration, no permanent cure
has been found. Hence, there is a critical need to identify bioactive compounds in nature
and investigate their effects on neurodegeneration associated with NDs or neurotrauma.

Cordyceps, commonly known as the “caterpillar fungi”, “zombie fungus”, “Viagra
of the Himalayas”, and “Yartsa gunbu”, belongs to the phylum Ascomycetes (Sac fungi).
Cordyceps encompasses approximately 750 species that are distributed in different parts
of the world, especially in temperate regions at altitudes over 3800 m. Cordyceps is the
most expensive mushroom, with some species costing approximately USD 20,000/kg [19].
All Cordyceps species survive by invading their hosts with selective specificity. Most of
these species parasitize insects and other arthropods, whereas a few invade Elaphomyces
(Truffle genus) [20]. In brief, the life cycle of Cordyceps is initiated by spore germination,
followed by the growth of hyphae by absorbing nutrients from the soil, invading the host,
penetrating the host’s exoskeleton, and surviving in its tissues. After the host’s death,
the fungus continues to grow, fruiting bodies sprout from the host’s head and release
spores, and the cycle continues [21]. As this fungus manipulates the host system, the
victim behaves like a “zombie”, with frequent convulsions; it is also called “zombie fun-
gus” [22]. Due to these typical growth and survival tactics, these species synthesize promis-
ing bioactive metabolites, like anthraquinones, pyridines, cytochalasin, cyclic peptides,
bioxanthracenes, polyketide, dihydrobenzofurans, glycans (β-glucans), alkaloids, phenols,
flavonoids, terpenes, sterols (ergosterol), naphthoquinones, and nucleosides (adenosine,
cordycepin) with broad therapeutic applications [23–25]. Cordyceps has been used in tradi-
tional Chinese medicine (TCM) health tonics [26] and for its medicinal properties, such as
anticancer [27–29], antihyperglycemic [30,31], antifatigue [32], hepatoprotective [33], sper-
matogenic [34], hypolipidemic [35,36], antihypertensive [37,38], anti-inflammatory [39,40],
nephroregulatory [41–43], antifibrosis [44], and immunomodulatory [45,46] properties.
Although more than 750 Cordyceps species have been identified, only a few (C. militaris,
C. ophioglossoides, C. sinensis, C. cicadae) have been studied for their neuroprotective activities.

Previous reviews of Cordyceps have focused on their nomenclature, structural eluci-
dation, traditional use, and nutraceutical and pharmacological activities [23,34,46–56]. A
bioactive compound (cordycepin) from this fungus has been a compound of choice among
researchers, and most neuroprotective studies have been conducted using this compound,
while information on other compounds is scarce. Hence, we present a comprehensive
review of the neuroprotective mechanism and safety profile of the extracts and the active
metabolites from Cordyceps investigated so far on neurotrauma and NDs.
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2. Methods

This study presents a comprehensive review of the existing published scientific
works from various databases (PubMed, Google Scholar, and Science Direct) until August
2023 on the key bioactive metabolites and neuroprotective potential of various species of
Cordyceps to support its use in the treatment of searing diseases. The search terms used
were “cordyceps” or “cordyceps bioactive” or “cordyceps metabolites” with the filter “neu-
roprotection”, “neurotrauma”, “neurodegenerative diseases”, “in vivo”, “in vitro” and
“English”. Studies relevant to chemical analyses, medicinal applications, safety, toxicity,
and neurodegeneration were selected.

3. Neuroprotective Potential of Cordyceps Extracts

Of all Cordyceps species, only 35 have been characterized [23], of which C. militaris
and C. sinensis are the two most widely studied. C. sinensis is a rare and expensive species
that is difficult to cultivate, whereas C. militaris is a successful commercially grown species
and is considered an alternative to C. sinensis [57]. By changing the culture conditions, the
concentrations of bioactive compounds can be manipulated.

Several extraction methods and solvents have been employed for the isolation of
selective bioactive compounds [50,58], with each extract exhibiting specific activity. As
polar molecules, the aqueous extract contains functional concentrations of nucleosides and
polysaccharides. In contrast, alcoholic extracts are rich in nucleosides, polysaccharides,
and proteins with a high antioxidant potential. Some of the bioactive components from
Cordyceps species have been summarized in Table 1.

The neuroprotective mechanisms of the different types of Cordyceps extracts have been
discussed below.

3.1. Cordyceps militaris

C. militaris is a valuable TCM that grows on moth larvae (Lepidoptera). This fun-
gus has been reported to treat respiratory, renal, hepatic, and cardiovascular diseases
and has antiaging, antiviral, anti-inflammatory, and antitumor potentials [59]. Recently,
C. militaris has become an economical alternative to C. sinensis in TCM because it can
be easily cultivated under artificial conditions using diverse media [57]. Analyses of the
compositions revealed that the concentrations of cordycepin and polysaccharides in the
media of cultured C. militaris were higher than those in C. sinensis from the natural site [60].
The major bioactive components of C. militaris are nucleosides (adenosine, uridine, and
cordycepin), myriocin, ergosterol, polysaccharides, L-arginine, and L-proline [43,57,61].
Previous studies have shown the presence of GABA (γ-aminobutyric acid), ergothioneine,
D-mannitol (cordysepic acid), glycolipids, glycoproteins, xanthophylls (like carotenoids),
sterols, statins, phenolic compounds, vitamins, and biominerals in C. militaris [60,62]. A
previous study reported differences in the concentrations of cordycepin, cordycepic acid,
and ergothioneine between fruiting bodies and mycelial biomass. The concentrations of
cordycepin, cordycepic acid, and carbohydrates are higher in mycelial biomass, whereas
those of ergothioneine and total amino acids are higher in fruiting bodies [62]. The reported
optimal drying temperature for C. militaris is 60 ◦C, over which, cordycepin and phenolic
compounds are lost [63]. Pentostatin, used as an antileukemia drug, is also produced by
C. militaris through the same biosynthetic gene cluster for cordycepin production [64].
Similar to other chemotherapeutic drugs, it also has side effects such as diarrhea, nau-
sea, and neurological toxicities [65]. Cordymin is an antifungal peptide that inhibits
the mycelial growth of various fungi, including Candida albicans, Bipolaris maydis, and
Rhizoctonia solani [66]. Ergosta-7,9(11),22-trien-3β-ol isolated from C. militaris shows anti-
inflammatory and antioxidative activity [67].

Selective deterioration of cholinergic neurons in AD diminishes acetylcholine (ACh)
levels, contributing to cognitive decline [68]. In addition to acting as a neurotransmitter,
ACh also induces neurite outgrowth [69,70]. The methanolic extract of C. militaris promoted
neurite outgrowth and ACh expressions in Neuro 2A mouse neuroblastoma cells in a dose-
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dependent manner (5–20 µg/mL). It also reversed scopolamine-induced memory deficits
in rats and increased central cholinergic function at a dose of 300 mg/kg [71]. The ethano-
lic extract has been known to promote neurite outgrowth in Neuro 2A cells [72], provide
protection from amyloid beta (Aβ)-induced toxicity [73], reduce the expression of inflamma-
tory markers (cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS)), and
downregulate mitogen-activated protein kinases/c-Jun N-terminal kinase/extracellular
signal-regulated kinase (MAPK/JNK/ERK) pathway in C6 glial cells [74], which helped to
reduce stress, inflammation, and apoptosis [75]. In addition, the extract restores recognition
and memory functions by inhibiting oxidative stress (nitric oxide (NO) and lipid peroxi-
dation) caused by toxic peptides [76]. Moreover, it upregulated the dopaminergic system
in vivo and in vitro by upregulating tyrosine hydroxylase, an enzyme that catalyzes the
rate-limiting steps in the biosynthesis of dopamine and other catecholamines [77].

One of the most conspicuous age-related diseases is ischemia, which is a common
form of neurodegeneration that leads to cognitive impairment in the elderly [78]. The
post-ischemic brain induces hippocampal neuronal death, neuroinflammation, and neu-
ropathy, similar to AD [79]. Post-ischemic treatment with the butanolic extract of the
fungus (WIB-801C: 50 mg/kg) decreased the inflammatory cell infiltration into ischemic
lesions by inhibiting chemotaxis through adenosine receptor A3 (A3AR), thus providing
neuroprotection in the middle cerebral artery occlusion (MCAO) rat model [80]. Moreover,
after spinal cord injury (SCI), it mitigated blood–spinal cord barrier (BSCB) disruption by
inhibiting matrix metalloprotease-9 (MMP-9), downregulating the expression of chemokine
and promoting that of pro-nerve growth factor (NGF) in microglia (MG) [81]. The fungus
also improved memory impairment caused by global cerebral ischemia and memory de-
terioration by delaying neuronal death, decreasing MG expression in the CA1 region of
the hippocampus in rats [82], and increasing the expression of brain-derived neurotrophic
factor (BDNF) and tyrosine kinase B (TrkB) in gerbils [83].

C. militaris aqueous extract showed beneficial effects in a D-galactose (Gal)-induced
aging mouse model by improving memory [84]. Extract supplementation improved the
levels of antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GPx), and
glutathione (GSH)) and reduced malondialdehyde (MDA) and monoamine oxidase (MAO),
which play important roles in the progression of aging. These results suggest a role for
the antioxidant action of the fungus in recovering memory impairments in mice with
D-Gal-induced aging [84].

In a recent study, nanoencapsulated C. militaris extract relieved neuronal pathology in
SH-SY5Y cells (human neuroblastoma cells) by significantly improving dopamine secretion
and the expression of dopaminergic-specific genes such as leucine-rich repeat kinase 2
gene (LRRK2), LIM homeobox transcription factor 1 beta (LMX1B), Forkhead Box (FOXA2),
engrailed homeobox 1(EN1), and nuclear receptor-related 1 protein (NURR1) [85]. In line
with this, C. militaris treatment enhanced the expression of neuronal protein paired box 6
(PAX6), a crucial player in brain development and function [86], and neuron-specific class
III beta-tubulin (nestin), a marker of neuronal progenitor cells in the adult brain [87], indi-
cating the role of C. militaris in enhancing neuronal maturation. Furthermore, it reduced
amyloid precursor protein (APP) secretion by promoting autophagy [85]. As autophagy
helps clear Aβ and tau aggregates in brain cells [88], C. militaris is considered important in
AD treatment. The downregulated expression of AD-related genes presenilin 1 (PSEN1),
presenilin 2 (PSEN2), and APP and the increased expression of the non-amyloidogenic
pathway, ADAM metallopeptidase domain 10 (ADAM10), and sirtuin1 (SIRT1) by nanoen-
capsulated C. militaris extract suggest its potential in improving AD pathology at both the
gene and protein levels [85].

These results suggest that the fungus is highly effective in protecting against memory-
related neuronal degeneration in the brain and in retarding the progression of mem-
ory deficits associated with various NDs by its antioxidant, anti-inflammatory, and anti-
apoptotic properties.



Nutrients 2023, 16, 102 5 of 28

3.2. Cordyceps ophioglossoides

C. ophioglossoides, commonly known as the “golden thread Cordyceps”, is colonized on
fruiting bodies of truffle-like Elaphomyces [89]. The fungus contains a variety of polysaccha-
rides (antioxidant nature), ophiocordin (antibiotic), peptibiotics (antibiotic and antifungal
properties), sesquiterpenes (antitumor activity), balanol (a protein kinase inhibitor with
antitumor activity), and arsenocholine-O-sulfate (a nontoxic form of arsenic) [89–93].

Aβ(25–35) represents the biologically active region of Aβ, since it is the shortest frag-
ment that displays large β-sheet aggregated structures, keeping the toxicity of the full-
length peptide [94]; hence, it is often used as a model for inducing toxicity and memory
deficits. The neuroprotective effect of C. ophioglossoides (methanolic extract) has been
observed in vitro (extract: 100 µg/mL) and in vivo (extract:100 mg/kg) in Aβ(25–35) AD
models, where the fungal extract protected SK-N-SH human neuroblastoma cells from cell
death and helped in the restoration of spatial memory loss in induced memory deficit by
Aβ(25–35) in rats probably by suppressing Aβ-induced oxidative stress [95].

3.3. Cordyceps sinensis

C. sinensis is the most popular Cordyceps, which parasitizes the larva of Hepialus
armoricanus. This fungus has long been used in TCM to promote longevity and has anti-
inflammatory and antitumor activities [24]. The major biochemical markers of nucleosides
are adenosine and cordycepin [50,96], with immunomodulatory and antioxidant activities.
In 2008, Yuan et al. reported the presence of other nucleosides (thymine, adenine, cytosine,
uracil, uridine, hypoxanthine, ionosine, guanosine, and thymidine) in aqueous extracts of
C. sinensis [97]. Polysaccharides are major contributors to the biological activities of
C. sinensis. Guan et al. identified several monosaccharides (fructose, mannitol, galactose,
arabinose, ribose, rhamnose, mannose, xylose, glucose, and sorbose) using GC-MS [98].
Ergosterol is the main identified sterol [99] and is present either as free or esterified ergos-
terol [50,100,101] with antitumor activity [102]. Other compounds, such as polyamines
and free fatty acids, have also been identified in C. sinensis extracts [103]. Two peptides
(cordymin and cordycedipeptide) and an ergosterol (H1-A) with biological activities were
also isolated from the fungus [104].

Aqueous and different alcoholic extracts (CSEs) from the fungus revealed the presence
of the antioxidants hesperidin, rutin, and ascorbic acid by high-performance thin-layer
chromatography (HPTLC). Hesperidin, rutin, and ascorbic acid were present at high con-
centrations in the aqueous extract. However, the highest hesperidin content was observed
in the 25% alcoholic extract in comparison to others [105]. Additionally, adenosine, adenine,
and uracil are present at higher concentrations in the aqueous extract than in the other
extracts [106]. The protective effects of the extracts against hypoxia-induced oxidative stress
and inflammation were studied in mouse hippocampal (HT22) cells. CSEs (250 µg/mL)
show neuroprotection by increasing the expression of endogenous antioxidants (GSH, GPx,
and SOD), limiting lipid oxidation by decreasing MDA levels and reducing the level of
inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) as well
as transcription factor nuclear factor-κB (NF-κB) to various extents. The aqueous extract
is more effective as an antioxidant in hypoxia, whereas the alcoholic extract prevented
oxidative stress and inflammation [105], owing to the presence of more phenolics and
flavonoids [106].

The aqueous [107] and ethanolic [108] extracts of the fungus were also evaluated for
anti-inflammatory effects in an experimental middle cerebral artery occlusion/reperfusion
(MCAO/R) model, as ischemic brain injury is associated with inflammatory reactions. In
addition, neuronal apoptosis is triggered by increased expression of Bcl2-associated X (Bax),
an apoptosis regulator, which in turn activates caspase-3 and inhibits B-cell lymphoma-2
(Bcl-2) expression [109]. The extract provided neuroprotection by downregulating the
expression of inflammatory cytokines and other inflammatory mediators (IL-1β, TNF-α,
Myeloperoxidase (MPO), and adhesion molecules ICAM-1, COX-2, and iNOS), blocking
polymorphonuclear cell (PMNC) infiltration, thereby subsiding neurological deficits and in-
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farct volume. Moreover, the aqueous extract also revealed the decreased Bax, cytochrome c
(Cyt c), and caspase-3 protein expressions, which in turn improved mitochondrial mem-
brane potential (ψm), thus modulating the electron transport chain in the mitochondria
in vivo and in vitro [110].

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the CNS that
involves a variety of immune cells [111]. Inflammation resulting from MS is mediated
by the infiltration of autoreactive T cells into the CNS through the blood–brain barrier
(BBB) [112]. Amongst the T cells, primarily interferon-gamma (IFN-γ)-producing T-helper 1
(Th1) cells and IL-17-producing Th17 cells had an important role in the pathogenesis of
the disease [113]. Effector molecules secreted by Th1 cells directly affect the phenotype,
function, and recruitment of MG, whereas Th17 cells upregulate chemokines during the
inflammatory process [114]. C. sinensis extract was reported to reduce the number of Th1
cells in a mouse model of MS/experimental autoimmune encephalomyelitis (EAE), thus
relieving EAE severity and the associated pathology [115].

The neuroprotective effect of fermented fungus powder (Cs-C-Q80 or ‘corbrin capsule’)
was evaluated in subcortical ischemic vascular dementia induced in a mouse model of right
unilateral common carotid artery occlusion (rUCCAO) [116], which damaged the white
matter region in the brain, resulting in myelin loss, glial activation, neuroinflammation,
and dementia [117]. However, both the prophylactic and therapeutic administration of
corbrin (1 g/kg) significantly reduced white matter lesions and improved learning and
memory loss through anti-inflammatory actions [116]. A lower dose of corbrin (1 mg/kg)
was effective in reducing the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), improving
the levels of oxidative stress parameters (SOD, MDA), increasing ATP concentration, and
alleviating neurological deficits in an MCAO mice model [118].

3.4. Cordyceps cicadae

C. cicadae is the oldest known therapeutic fungus that feeds on Lepidoptera species
larvae [119]. It has been used in TCM for the treatment of asthma, cancer, convulsions,
dizziness, palpitations, and chronic renal disease. Natural C. cicadae is a slow-growing
fungus in high demand, whereas its anamorph, Paecilomyces cicadae, can be cultured easily
and used as a substitute for C. cicadae to accommodate market requirements [120]. Various
bioactive compounds, such as cyclopeptides, myriocins, polysaccharides, nucleosides,
and mannitol have been identified in C. cicadae [120,121]. LC-MS analyses have detected
adenosine and adenosine analogs, N6-(2-hydroxyethyl)-adenosine (HEA), a Ca2+ antag-
onist, and an anti-inflammatory agent [122–124]. HEA is a major bioactive compound in
C. cicadae that exhibits antidiabetic, sedative, analgesic, antitumor [125], and renoprotective
activities [126,127]. Another isolated bioactive compound, ergosterol peroxide, exhibits
immunomodulatory and anti-inflammatory effects [128,129].

Table 1. Some important compounds from Cordyceps species and their biological activities.

Bioactive Compound Cordyceps Species Chemical Class Biological Activity References

Adenosine C. sinensis Nucleoside Prohibits cancer cell growth
Anti-inflammatory effect [103]

Cordycepin
C. sinensis
C. militaris
C. cicadae

Derivative of the
nucleoside adenosine

Enhances immunity
Anti-tumor activity
Anti-inflammatory

Antimicrobial activity

[57,103,121]

D-mannitol C. militaris Sugar alcohol Diuretic effects [57]
GABA C. militaris Primary amine Neurotransmitter [57]

Ergotheoneine C. militaris
C. cicadae

Thiourea derivative
of histidine Antioxidant [57,121]

Lovastatin C. militaris Statin Cholesterol-lowering agent [57]

Uridine C. militaris Nucleoside Maintenance of the
cellular metabolism [61]

N-(2-Hydroxyethyl) adenosine C. cicadae Derivative of the
nucleoside adenosine Anti-inflammatory activity [121]
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Table 1. Cont.

Bioactive Compound Cordyceps Species Chemical Class Biological Activity References

Cordycepic acid C. cicadae Sugar alcohol Bacteriostatic activity [103,121]
C. sinensis Antioxidant

Beauvericin C. cicadae Cyclic hexadepsipeptide Antimicrobial and
antitumor activity [121]

Methyl-2-(5-(3-
Hydroxybutyl)furan-2-yl)acetate C. cicadae Furane methyl ester Anti-AChE activity [121]

α-furoic acid C. cicadae Carboxylic acid Anti-AChE activity [121]
2-(5-(3-Oxobutyl)furan-2-yl)

acetate C. cicadae Furane methyl ester Anti-AChE activity [121]

Hercynine C. cicadae Histadine derivative Antioxidant [121]
EPSF C. sinensis Polysaccharide Antioxidant, antitumor [103]
APS C. sinensis Polysaccharide Antioxidant [103]

CPS-1 C. sinensis Polysaccharide Antioxidant [103]
CPS-2 C. sinensis Polysaccharide Inhibits cell proliferation [103]

Ergosterol C. sinensis Phytosterol Antimicrobial activity
Cytotoxicity [103]

Cordymin C. sinensis Peptide Antidiabetic [103]
Tryptophan C. sinensis Amino acid Sedative effects [103]

Trauma to the CNS and NDs initiate a torrent of cellular and molecular reactions that
result in neuronal loss and regenerative failure. To understand the associated mechanisms,
the rodent optic nerve crush (ONC) model can be used and later extrapolated to NDs [130].
C. cicadae mycelium extract provided neuroprotection in the ONC rat model through
anti-apoptotic and anti-inflammatory effects by improving retinal ganglion cell (RGC)
density and P1-N2 amplitude [131], which intensified with visual–spatial attention in
the visual cortex. The butanol fraction protected rat adrenal pheochromocytoma (PC12)
cells against glutamate-induced oxidative damage. Additionally, the extract restored
the mitochondrial function, suppressed ROS accumulation, upregulated the antioxidant
enzymes (GPX and SOD), increased cell viability, decreased lactase dehydrogenase (LDH)
release, and reduced apoptosis [132,133]. Subsequently, adenosine was identified as the
main nucleoside responsible for this neuroprotective action [133]. The anti-inflammatory
activities of three bioactive nucleosides (adenosine, cordycepin, and HEA) isolated from
wild-type and artificially cultured C. cicadae were evaluated. Cordycepin was found to be
more potent than other nucleosides in limiting the release of pro-inflammatory cytokines by
lipopolysaccharide (LPS)-stimulated RAW 264.7; however, no synergistic effect of the three
compounds was observed. LPS-induced pro-inflammatory responses were attenuated by
HEA through the suppression of the toll-like receptor (TLR)-4-mediated NF-κB signaling
pathway [134]. The effects of the hydroalcoholic fungal extract on cisplatin toxicity have
also been evaluated. Cisplatin is an anticancer agent involved in multi-organ toxicity,
including neurotoxicity. It accumulates in the dorsal root ganglion (DRG) and causes
oxidative stress, neuronal apoptosis, and inflammation [135]. The nucleoside-rich extract
of C. cicadae ameliorated memory impairment and neuropathy by reducing oxidative stress,
acetylcholinesterase enzyme (AChE) levels, and inflammation in cisplatin-treated rats [136].

In a recent study, increased levels of bioactive compounds were obtained from cultured
C. cicadae in deep ocean water (DOW) and minerals, thus increasing their therapeutic
value [137]. The effect of DOW-cultured fungus (DCC) was investigated on D-Gal-induced
brain damage and memory impairment in rats. DCC (100–500 mg/kg), in turn, improved
cognition by alleviating the expressions of antioxidants and inflammatory genes (iNOS,
TNF-α, IL-6, IL-1β, COX-2), along with reduced expressions of the aging-related proteins
(glial fibrillary acidic protein (GFAP) and PS1) [137].

The neuroprotective activity of Cordyceps extracts has been summarized in Table 2.
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Table 2. Neuroprotective mechanism of Cordyceps extracts.

Species Extract Study Model Study Outcome Mechanism Refs.

C. militaris EtOH in vitro, in vivo
Aβ(1–42)- induced

toxicity in mice and C6
glial cells

Improved cognition, decreased
NO and lipid peroxidation,

downregulated COX-2
and iNOS,

downregulated
MAPK/JNK/ERK pathway

Antioxidant,
Anti-inflammatory [72–74,76]

C. militaris MeOH in vitro, in vivo
Neuro 2A,

scopolamine-induced
memory loss in rats

Promoted neurite outgrowth,
increased ACh,

improved memory

Increase ACh,
neurogenesis [71]

C. militaris AQ in vivo

Cerebral
ischemia-induced

short-term memory
impairment in gerbils

Protected neuronal death
Increased BDNF and

TrkB expression

Anti-apoptotic
Antioxidant [83]

C. militaris AQ in vivo D-Gal-induced
aging mice

Increased SOD, GPx, GSH
Decreased MDA

Restoration of memory
Antioxidant [84]

C. militaris EtOH in vitro, in vivo PC12 cells and rat Increased tyrosine hydroxylase Upregulation of the
dopaminergic system [77]

C. militaris BuOH in vivo

MCAO-rat,
scopolamine-induced
memory loss in rats,
spinal cord injury

Inhibited MMP-9,
downregulated chemokines,

delayed neuronal death
Anti-inflammatory [80,81]

C. militaris AQ in vivo
Ischemia-induced death

and cognitive
impairment in rats

Decreased microglial
expression Memory

improvement
Anti-inflammatory [82]

C. militaris NP in vitro SH-SY5Y

Enhanced the expression of
neuronal proteins

Increased expression of
dopaminergic-specific genes
Decreased expression of PS1,

PS2, APP
Upregulated ADAM10

and SIRT1
Decreased Aβ secretion

Autophagy,
neurogenesis,

secretion of dopamine
[85]

C. ophioglossoides MeOH in vitro, in vivo Aβ (25–35)-induced
SK-N-SH and rats

Decreased oxidative stress
Restored memory Antioxidant [95]

C. sinensis AQ, EtOH in vitro Hypoxia-induced
oxidative stress in HT22

Increased SOD, GPx, GSH
Decreased MDA, IL-6,

TNF-α, NF-kB

Antioxidant
Anti-inflammatory [105]

C. sinensis AQ, EtOH in vivo MCAO/R
Decreased IL-1β, TNF-α, MPO,

ICAM-1, COX-2 and iNOS
Suppressed PMNC infiltration

Anti-inflammatory [107,108]

C. sinensis AQ in vitro, in vivo MCAO/R Decreased Bax, Cyt c, Caspase-3 Anti-apoptotic [110]
C. sinensis - in vivo Mice mode of MS-EAE Decreased Th1 Immunoregulatory [115]
C. sinensis Fermented in vivo rUCCAO mice model Reduced white matter lesion Anti-inflammatory [116]

C. sinensis Fermented in vivo MCAO

Decreased TNF-α, IL-1β, IL-6
Increased SOD and ATP

Decreased MDA
Memory improvement

Antioxidant
Anti-inflammatory [118]

C. cicadae - in vivo ONC rat model Improved retinal ganglion cell
density and P1-N2 amplitude

Antioxidant
Anti-apoptotic [131]

C. cicadae BuOH in vitro Glutamate induced
toxicity in PC12 cells

Increased GPx, SOD
Increased cell viability,

decreased LDH

Antioxidant
Anti-apoptotic [132,133]

C. cicadae AQ, MeOH in vitro LPS-stimulated RAW
264.7 macrophages

Suppressed TLR-4-mediated
NF-kB pathway Anti-inflammatory [134]

C. cicadae HA in vivo Cisplatin-induced
toxicity in mice

Reduced IL-6, TNF-α, and
IL-1β; decreased AChE and

oxidative stress

Antioxidant
Anti-inflammatory [136]

C. cicadae DOW-cultured in vivo
D-Gal-induced brain
damage and memory

impairment in rats

Decreased expression of
GFAP, PS1

Decreased COX-2, TNF- α,
IL-6, IL-1β

Antioxidant
Anti-inflammatory [137]

Abbreviations: AQ: aqueous; MeOH: methanol; EtOH: ethanol; BuOH: butanol; HA: hydroalcoholic; NP: nanopar-
ticle; DOW: deep Ocean water.

4. Neuroprotective Potential of Bioactive Compounds from Cordyceps

Cordyceps is a rich source of over 200 bioactive compounds, including nucleotides,
nucleosides, polysaccharides, proteins, sterols, vitamins (Vit E, K, B1, B2, and B12), and
trace elements [138]. These bioactive compounds are associated with a range of phar-
macological activities, including antimicrobial, anti-allergic, antidiabetic, analgesic, anti-
apoptotic, anticancer, anti-inflammatory, antioxidant, antiaging, and immunomodulatory
effects [23,50,52]. However, few studies have investigated their neuroprotective activities.



Nutrients 2023, 16, 102 9 of 28

The mechanisms underlying the neuroprotective effects of these bioactive compounds
(Figure 1) under various conditions are discussed below.

Figure 1. Some of the bioactive compounds from Cordyceps.

4.1. Cordycepin

Cordycepin (C10H13N5O3, MW 251.24 g/mol) is a bioactive nucleoside (3′-deoxyadenosine)
from Cordyceps. It has several pharmacological properties, including anti-aging, anti-
inflammatory, anticancer, and antioxidant properties [139–143]. Cordycepin is the most
extensively studied bioactive compound in Cordyceps and its neuroprotective activities in
different diseases are discussed below.

4.1.1. Neuroprotection in PD

PD is a progressive neurological disorder primarily affecting dopaminergic neurons in
the substantia nigra region and is characterized by intracellular α-synuclein aggregates in
the form of Lewy bodies and Lewy neurites. The biochemical processes implicated in PD
include neuroinflammation, mitochondrial dysfunction, and faulty protein clearance [144].

The neuroprotective effects of cordycepin in PD have been investigated in several
neurotoxin-induced models, namely, 6-hydroxydopamine (6-OHDA)-, 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), and rotenone-induced models, to reiterate disease
pathology both in vitro and in vivo. Isolated cordycepin from C. cicadae protected the PC12
cells against 6-OHDA-induced neurotoxicity by reducing caspase-3 activity, improving
ψm, and elevating the levels of antioxidant enzymes [145], and finally, through an anti-
apoptotic mechanism via Bax downregulation [146]. Furthermore, cordycepin protected
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dopaminergic neurons from death and inflammation by inhibiting dynamin-related protein-1
(Drp-1)-mediated (NOD)-like receptor protein 3 (NLRP3) inflammasome activation by
increasing AMP-activated protein kinase (AMPK) phosphorylation in a rotenone-induced
PD rat model and cultured PC12 cells [147]. Cordycepin alleviated MPTP-induced PD
through TLR/NF-κB inhibition and mitigated the cytotoxic effects of MG on LPS-induced
PC12 cells [148]. The anti-inflammatory role of cordycepin, along with the neuroprotection,
was reported in LPS-induced MG activation in hippocampal cultured neurons (BV2) by
assisting neural growth and development in the hippocampal neurons and downregulating
the levels of TNF-α, IL-1β, iNOS, and COX-2, leading to an anti-inflammatory effect [149].
As TNF-α and IL-1β had a role in the activation of NF-κB, COX-2 was in turn activated
by it [150], suggesting the involvement of the NF-κB pathway in the anti-inflammatory
action of cordycepin. Therefore, constraining the TLR-4/NF-κB pathway and NLRP3
inflammasome activation would be valuable therapeutic targets for controlling pyroptosis
and consequently advancing neurodegeneration in PD [151].

Glutamate is a key excitatory neurotransmitter that maintains cognitive, motor, and
sensory functions, while GABA is an inhibitory neurotransmitter that maintains neuronal
function. An imbalance between the glutamate and GABA synaptic systems results in
impaired neural function that affects memory and cognition [152]. The extra synaptic
diffusion of glutamate is strongly associated with MG activation and neuroinflamma-
tion, which are considered common characteristics in many NDs, including PD [153].
Moreover, hyperactivations of postsynaptic glutamate receptors α-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) were
implicated in various neurological dysfunctions. Hence, the antagonists of these receptors
have several beneficial effects in reversing motor symptoms [154]. Cordycepin suppressed
AMPA and NMDA-receptor-mediated responses through a reduction in the presynaptic
mechanism [155] and reduced the frequency of glutamatergic and GABA-ergic postsy-
naptic transmission without affecting the amplitude through A1AR activation [156]. This
mechanism might provide neuroprotection against Aβ toxicity, hypoxia, ischemia, and
other excitotoxic disorders. Cordycepin also protects against glutamate-induced oxidative
toxicity in HT22 cells by downregulating the endoplasmic reticulum (ER) stress-specific
caspase-12, which is important for the initiation of ER stress-induced apoptosis. Addi-
tionally, cordycepin inhibited the expression of pro-apoptotic genes (C/EBP homologous
protein (CHOP) and Bax) and genes involved in ER stress-induced apoptosis (JNK, protein
kinase R (PKR)-like ER kinase (PERK), and mitogen-activated protein kinases (p38)) [157].
Cordycepin also reduced ROS and Ca2+ levels. A1AR activation has been shown to mediate
the neuroprotective effect of cordycepin [157,158].

Promising results from various studies have indicated the potential of cordycepin as a
drug for the treatment of PD.

4.1.2. Neuroprotection in AD

AD is a multifactorial ND characterized by neuronal loss, accumulation of Aβ plaques,
and neurofibrillary tangles. Aβ toxicity is accompanied by increased ROS production
in neurons, which in turn leads to a series of events, like AChE activation, rise in Ca2+

concentration, mitochondrial dysfunction, and increased neuronal apoptosis resulting in
cognitive deficit [159,160]. AChE hydrolyzes ACh, a neurotransmitter required for synaptic
transmission, and, in turn, increases AChE activity, adversely affecting neurotransmission.
The neuroprotective effect of cordycepin has been established in Aβ-induced rat hippocam-
pal cells in the AD model [158]. Cordycepin effectively reduced ROS production and Ca2+

levels, inhibited AChE, suppressed apoptosis, and downregulated p-tau expression. These
results suggest the involvement of A1AR in the neuroprotective activity of cordycepin.

Communication between neurons and MG in healthy brains and NDs has been studied
extensively [161]. Two forms of active MG with antagonistic actions have been identified:
MG-M1 (pro-inflammatory) and MG-M2 (anti-inflammatory); the MG-M1 form is prevalent
in AD, leading to Aβ and tau accumulations, neuronal damage, and synaptic dysfunc-
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tion [162]. Since MG polarization determines the fate of MG neurons in NDs, it is an efficient
approach to fight AD. Recently, cordycepin was reported to induce MG-M2 polarization
through the activation of cAMP-response element binding protein (CREB) activation and
upregulation of NGF. This mechanism improved cognitive deficits in an APP/PS1 mouse
model [163].

4.1.3. Neuroprotection in Ischemic Stroke

Cerebral ischemia/reperfusion injury (CI/RI) is a general feature of ischemic stroke,
involving an interval of limited blood flow to the brain, followed by the refurbishment of
blood supply through clinical intervention [164]. CI/RI results in neuronal injury or death,
and irreversible brain damage due to oxidative stress, amino acid toxicity, Ca2+ overload,
BBB dysfunction, inflammation, and apoptosis [165]. Cordycepin has been reported to exert
protective effects in vitro and in vivo against CI/RI by restoring the levels of oxidative
stress markers (MDA and SOD), reducing the levels of excitatory amino acids (glutamate
and aspartate), and suppressing the expression of the inflammatory enzyme MMP-3 [139].
A study showed that a lower dose (10 mg/kg) of cordycepin was more effective in multiple
myeloma cells, indicating that a higher concentration might induce cell death by preventing
RNA synthesis [166] in astrocytes, reducing the number of astrocytic glutamate transporters
and elevating extracellular glutamate levels. In addition, both C. militaris (water extract,
500 mg/kg) and cordycepin (10 mg/kg) reduced the levels of 4-hydroxynonenal (a lipid
peroxidation marker) by reducing oxidative stress [167], delaying membrane depolarization,
adjusting the electrophysiological activity of hippocampal CA1 neurons [168,169], and
improving learning and memory [170] through A1AR activation [171].

4.1.4. Neuroprotection in Multiple Sclerosis

MS is a prominent neuroinflammatory autoimmune disorder characterized by the
intrusion of immune cells from the perivascular region into the CNS. It is a demyelinat-
ing disease in which myelin is lost from various regions, leaving a scar (sclerosis) and
disrupting signal transmission to and from the brain [172]. Cordycepin promoted remyeli-
nation by suppressing neuroinflammation (IL-6 and IL-1β) and upregulation of BDNF
and anti-inflammatory cytokines (IL-4, IL-10, and TGF-β) in the corpus callosum and
hippocampus in a cuprizone (CPZ)-induced mice model [173]. Cordycepin suppressed
LPS-induced dendritic cell activations by mitigating oxidative stress through alleviating the
protein kinase B/extracellular signal-regulated kinase/NFκB (AKT/ERK/NF-kB) signaling
pathways in vitro and decreased the levels of migration/adhesion molecules (integrin
β1, integrin α4, c-type lectin, intermolecular adhesion molecule-1 (ICAM-1), CC motif
chemokine receptor 7 (CCR7)) in vitro and in vivo. Furthermore, cordycepin treatment in
the experimental autoimmune encephalomyelitis (EAE) mice model decreased the level of
chemokines (CC chemokine ligand 6 (CCL6), PAR response elements 2 (PARRES-2), IL-16,
C-X-C motif chemokine ligand 10 (CXCL10), and cc motif chemokine ligand 12 (CCL12))
in the CNS and spinal cord and inhibited the production of pro-inflammatory cytokines
(IFN-γ, IL-6, TNF-α, and IL-17) in activated microglial cells, macrophages, and Th cells
in vitro [174], thus potentially ameliorating MS progression.

In summary, cordycepin ameliorates motor dysfunction, improves remyelination,
decreases the number of glial cells, suppresses pro-inflammatory cytokines, increases
anti-inflammatory cytokines and neurotrophic factors, and reduces oxidative stress. Con-
sequently, it is a potential candidate for treating demyelination-associated diseases such
as MS.

4.1.5. Neuroprotection in Traumatic Brain Injury

Traumatic brain injury (TBI) leads to serious neurological dysfunctions that affect
motor and cognitive functions. Additionally, white matter injury (WMI) resulting from
secondary TBI is extremely vulnerable to neuroinflammation owing to a vicious cycle
caused by the penetration of neuroinflammatory receptor immune cells. TLR-4 is expressed
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on astrocytes, microglia, and neurons and is activated upon infection, brain injury, BBB
disruption, and many NDs, including AD, PD, and ALS [175,176]. Another important
protein is MMP-9, which contributes to BBB disruption and edema after TBI [177]. Hence,
therapies directed toward these targets are beneficial.

The administration of cordycepin in TBI mice (10 mg/kg) [178] and rats (20 mg/kg) [179]
ameliorated long-term neurological deficits, as observed in behavioral tests. Immuno-
histochemical staining indicated that cordycepin secured the number and structure of
nonmyelinated and myelinated axons, thereby enhancing their conductive abilities. Cordy-
cepin administration also decreased the levels of pro-inflammatory markers: cluster of
differentiation-16 (CD16), interleukin-17α (IL-17α), IL-1β, iNOS, and MPO, with an up-
regulation of anti-inflammatory ones (CD-206, IL-10, Arginase-1). Moreover, it elevated
the expression of tight-junction proteins (zonula occludens-1 (ZO-1) and occludin) and
reduced the activity of MMP-2 and MMP-9, preserving the integrity of the BBB [178,179].
Additionally, cordycepin inhibits NADPH oxidase (NOX1), which is the main contributor
to ROS, by disrupting the BBB after TBI [179].

As the brain is sensitive to oxygen levels, hypobaric hypoxia (HH) could lead to
neuronal death and neuropsychological dysfunction [180]. HH induces oxidative stress
and neuroinflammation, which eventually disturb the integrity of the BBB. Early HH
followed by TBI increases the severity of secondary brain injury [181]. Cordycepin (10
mg/kg) inhibits the hippocampus-dependent memory impairment caused by acute HH,
relieves hyperactivation of astrocytes/microglia in the CA1 region, and mitigates HH-
induced activation of the TLR-4/NF-κB neuroinflammation in the rat model. In addition,
it conserved BBB integrity by repressing MMP-9 expression and increasing the levels of
tight-junction proteins (claudin-5, occludin, and ZO-1) in the hippocampus [182].

From the above studies, it is evident that cordycepin provides neuroprotection through
antioxidant and anti-inflammatory mechanisms via A1AR activation. Additionally, it
enables the presynaptic suppression of excitatory synaptic transmission by limiting the
release of excitatory neurotransmitters, a novel system for modulating CNS activity.

The mechanism of neuroprotection displayed by cordycepin in various conditions has
been summarized in Table 3.

The neuroprotective mechanisms of other bioactive compounds from Cordyceps have
been discussed below.

4.2. N6-(2-Hydroxyethyl)-Adenosine (HEA)

N6-(2-hydroxyethyl)-adenosine (HEA), a bioactive nucleoside (C12H17N5O5; MW
311.29 g/mol), was identified from the butanolic fraction of C. cicadae. It is a calcium antag-
onist and interacts with human serum albumin [125,127]. HEA is a potent antioxidant with
glucose-lowering, hepatoprotective, cardioprotective, sedative, antitumor, eye-protective,
and anti-inflammatory properties [126,134,165,183,184].

Limited literature is available on the neuroprotective activities of HEA. HEA (5–40 µM)
protected against H2O2-induced oxidative stress in PC12 cells by increasing cell viability,
decreasing LDH release, preventing ψm breakdown, limiting ROS generation, inhibit-
ing lipid peroxidation, and reducing inflammatory cytokines (IL-6, IL-1β, TNF-α, and
NF-κB) [185]. HEA alleviated the pro-inflammatory response in RAW264.7 macrophages
by suppressing the TLR-4/NF-κB pathway in LPS-induced inflammation [134].

4.3. Adenosine

Adenosine is a pentose sugar bonded to adenine, that is, adenine riboside (C10H13N5O4;
MW 267.24 g/mol). It is a neuromodulator of the CNS that primarily operates via the
adenosine A1 receptor (A1R). A1R activation plays a neuroprotective role by modulating
the Gα/cAMP/PCK pathway, enhancing synaptic plasticity, memory, and cognition [186].

Excessive glutamate triggers intracellular Ca2+ influx by activating NMDA recep-
tors and enhancing mitochondrial oxidative stress, which in turn activates mitochondria-
associated apoptotic proteins. Furthermore, the upregulation of MAPK during oxidative
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stress is associated with apoptosis in several NDs. However, adenosine isolated from C.
cicadae protected PC12 cells from glutamate-induced apoptosis by increasing the Bcl-2/Bax
ratio, decreasing oxidative stress (increasing GPX, SOD, ψm), and alleviating Ca2+ overload
(via decreasing p38/JNK/ERK phosphorylation) [133]. Hence, adenosine is a promising
pharmacophore for the treatment of NDs.

Table 3. Neuroprotective mechanism of cordycepin.

Disease Study Model Mechanism MOA Refs.

PD 6-OHDA-induced neurotoxicity in
PC12 cells

Decreased caspase-3,
increased SOD andψm

Antioxidant activity [145]

Rotenone-induced toxicity in
rat model

Decreased Bcl2 expression,
increasedψm,

decreased caspase-3

Anti-apoptotic
Antioxidant [146,147]

MPTP-induced PD in rats and
PC12 cells Suppressed TLR4/NF-κB pathway Anti-inflammatory [148]

Glutamate-induced oxidative
toxicity in HT22 cells

Downregulated caspase-12
Deceased expression of CHOP, Bax, JNK,

PER, p38
Reduced ROS and Ca2+

Anti-apoptotic,
Antioxidant, A1AR activation [157]

LPS-induced BV2 cells Neurogenesis
Downregulated TNF-α, IL-1β, iNOS, Cox2

Anti-inflammatory
Neurogenesis [149]

LPS-treated C57BL/6J mice and
BV2 cells

Suppressed TLR4/NF-κB-mediated NLRP3
inflammasome activation and

GSDMD-related pyroptosis
Inhibited pore formation in the

plasma membrane
Reduced the release of

pro-inflammatory mediators

Anti-apoptotic
Anti-inflammatory [151]

Hippocampal brain slice from rats Reduced excitatory synaptic transmission Synaptic transmission [155]

AD Aβ-induced toxicity in primary
hippocampal neurons

Downregulated pTau, anti-AChE,
reduced ROS and Ca2+

Anti-apoptotic
Antioxidant

Enzyme inhibition
A1AR activation

[158]

APP/PS1 mice model Microglia/macrophage polarization
through CREB Neurogenesis [163]

Ischemic Stroke OGD model

Increased SOD
Decreased MDA

Suppressed Glu and Asp
Decreased MMP3

Antioxidant [139]

Ischemic damage in gerbils;
β-amyloid and ibotenic

acid-induced hippocampal CA1
pyramidal neuronal hyperactivity

Reduced 4-hydroxynonenal,
delayed membrane depolarization

Antioxidative
A1AR activation [167–170]

Acute hypobaric hypoxia-induced
BBB disruption and cognitive

impairment in rats

Increased tight-junction proteins (claudin5,
occluding, zonula occludens-1)

Inhibited TLR-4/NF-κB/MMP-9 pathway

Anti-inflammatory
Antioxidant [182]

MS LPS-induced dendritic cells,
MS-EAE mice model

Inhibited AKT/ERK/NF-kB pathway
Decreased integrin (β1,α-4), c-type lectin,

ICAM1, CCR7
Decreased chemokines

Decreased INF-γ, IL-6, IL-17, TNF-α

Antioxidant,
Anti-inflammatory [174]

CPZ-induced demyelination in mice

Decreased IL-6, IL-1β
Increased IL-4, IL-10, and TGF-β

Upregulated BDNF
Promoted remyelination

Anti-inflammatory [173]

TBI TBI-mice, rats

Decreased MMP-2, MMP-9; CD-16, IL-17,
NOX1, MPO, iNOS

Increased ZO-1, CD-206, IL-10, IL-1β,
Arginase-1

Suppressed neutrophil infiltration

Anti-inflammatory
Antioxidant [178,179]

4.4. Polysaccharides

Polysaccharides obtained from Cordyceps are also important bioactive compounds
with a wide range of activities, including immunomodulatory, antioxidant, and antitumor
activities [187–191].

Polysaccharides from the fruiting bodies of C. militaris were evaluated for their
protective effects in a D-Gal-induced aging mouse model [192], where they protected mito-
chondrial integrity by scavenging free radicals and increasing the activity of the antioxidant
enzymes responsible for aging. Heterogeneous polysaccharides (CPA-1 and CPA-2), mainly
composed of mannose, glucose, and galactose, isolated from C. cicadae provided neuropro-
tection against glutamate-induced toxicity in PC12 cells [193] by increasing cell viability and
the levels of antioxidant enzymes (GSH-Px and SOD) and reducing LDH release, ROS, and
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Ca2+ levels through their antioxidant action. A similar neuroprotective effect was observed
in H2O2-treated PC12 cells by acid polysaccharides (APS) from C. sinensis [194,195]. Fur-
thermore, crude polysaccharides (CPs) and non-digestible polysaccharides (NPs) isolated
from cultivated C. cicadae exhibited anti-inflammatory activities in LPS-induced RAW264.7
macrophages [196]. Compared to CPs, NPs displayed better inhibition of NO, TNF-α,
and IL-1β production in LPS-stimulated cells. The different conformations and molecular
weights of the two polysaccharides may be responsible for the variations in their activities.
Additionally, CP70, a polysaccharide from C. cicadae, displayed anti-aging activity and
extended the lifespan of Drosophila by upregulating the expression of antioxidant enzymes
(catalase (CAT) and SOD) [197].

In summary, the polysaccharides from Cordyceps provide neuroprotection through
antioxidant and anti-inflammatory mechanisms.

4.5. Ergosta-7, 9 (11), 22-Trien-3β-ol (EK100)

EK100 (C28H44O; MW 396.64 g/mol) is a derivative of fungal ergosterol. Ergosterols
are the active components of Cordyceps and have important therapeutic activities, such as
analgesic, antimicrobial, antitumor, antioxidant, anti-inflammatory, antidiabetic, antihyper-
lipidemic, and immunomodulatory activities [129,198–203].

In the AD model of Drosophila with the pan-neuronal overexpression of human Aβ,
EK100 improved the life span, motor functions, and memory by modulating MG activation,
only without having any effect on the oxidative stress markers [204]. MG-mediated innate
immunity is a double-edged sword, particularly in AD. Activated MG clears Aβ but
inevitably damages neurons in the microenvironment [205]. A decline in innate immunity
(MG activation) reduces its impact on Aβ clearance, hence leading to Aβ deposition and
generating oxidative stress.

During chronic inflammation, the MAPK/activator protein (AP-1) pathway plays a
critical role in the release of pro-inflammatory cytokines. Hence, controlling LPS-induced
TLR-4/NF-kB/MAPK may benefit cells. The anti-inflammatory potential of ergosterol
EK100 isolated from C. militaris [206] was studied in LPS-induced RAW264.7 cells. EK100
(80 µM) significantly reduced the cytokine releases and the levels of pro-inflammatory
mediator proteins, attenuated phosphatidylinositol-3-kinase (PI3K)/Akt phosphorylation,
inhibited the TLR-4/myeloid differentiation factor 88 (MyD88)/IκB kinase (IKK) inflam-
matory signaling pathway, and suppressed the nuclear translocation of p65 and p50 in
the treated cells. Molecular docking studies revealed that EK100 restricted docking of
LPS to the LPS-binding protein (LBP), CD14, and TLR-4/myeloid differentiation-2 (MD-2)
co-receptors and finally suppressed the TLR-4/NF-kB inflammatory pathway. Moreover,
EK100 not only modulated the LPS/TLR-4-related MAPK/AP-1-induced inflammatory
pathway but also activated nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-
1(HO-1) antioxidative signaling by increasing the levels of antioxidant enzymes (GPX, SOD,
and CAT) [67].

At present, recombinant tissue plasminogen activator (rtPA) is the only standard
treatment for ischemic stroke, which damages the brain tissue through brain infarc-
tion and inflammation, [207]. Recently in a study, EK100 (30–120 mg/kg) supplemen-
tation ameliorated ischemic stroke brain injury in mice [208]. The combination of EK100
(60 mg/kg) and r-tPA (10 mg/kg) enhanced the protective action compared to either of them
alone. Reduced levels of inflammation and apoptosis markers (p65NF-κB and caspase-3)
and upregulation of neurogenesis protein (doublecortin) by EK100 via PI3K/AKT acti-
vation, glycogen synthase kinase-3 (GSK-3) inhibition, and β-catenin upregulation were
observed [208]. GSK-3 inhibition has already been reported as an effective neuroprotective
approach to ischemic stroke [209].

Intracerebral hemorrhage (ICH) is a neurological disorder characterized by intensified
excitotoxicity, neuroinflammation, and apoptosis in the damaged brain tissue. The upreg-
ulation of COX-2 induces an inflammatory cascade by activating specific prostaglandin
receptors post-ICH [210]. Furthermore, oxidative stress and MMP-9 activation have delete-
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rious effects on brain injury as they promote DNA damage, apoptosis, and edema [211].
Hence, treatments directed towards controlling the expression of COX-2 and MMP-9 may
be beneficial for ICH. EK100 was reported to inhibit JNK/MAPK activation and COX-2 and
MMP-9 expression in vitro (BV2 cells) and in vivo (collagenase-induced ICH mice) and
improved brain edema and neurobehavioral defects in ICH mice [212].

Therefore, EK100 is a promising novel dual strategy for the treatment of inflammatory
diseases that not only suppresses inflammatory transcription factor signaling but also
activates the antioxidative transcription factor signaling pathway.

4.6. Cordymin

Cordymin is a 10.9 kDa weight fungal peptide with an N-terminal sequence of AMAP-
PYGYRTPDAAQ, isolated from Cordyceps [66,213]. It is reported to possess anticancer,
antidiabetic, anti-inflammatory, and antinociceptive activities [214,215].

Ischemia-reperfusion (IR) injury is a common characteristic of ischemic stroke resulting
from restoration of blood supply after ischemia. It results in the release of inflammatory cy-
tokines and free radicals, resulting in apoptosis [216]. In the cerebral ischemia-reperfusion
injury rat model, cordymin (1–4 mg/kg) protected the ischemic brain by elevating antiox-
idant activity (through increasing GSH, reducing lipid peroxidation), decreasing inflam-
mation (downregulating IL-1β and TNF-α and C3 protein), and repressing infiltration of
polymorphonuclear cells (PMNCs) in the lesion [213]. Consequently, cordymin can be used
as a promising protective agent against IR injury.

4.7. Active Polypeptide

Active polypeptides are specific protein fragments that have a positive effect on health.
Bioactive polypeptides can be directly absorbed into the system and serve as carriers.
C. militaris polypeptides improve immunity and exhibit antioxidant properties [217,218].

The effect of Cordyceps polypeptide was studied in a scopolamine-induced memory-
impaired mouse model, where it improved the condition through antioxidant action (in-
creased SOD and decreased MDA) and retarded AChE activity in the mouse brain. It also
elevated the activity of the sodium–potassium pump (Na+-K+-ATPase), which is involved
in the energy supply, and upregulated the expression of GABA and glutamate, which
are the central inhibitory and stimulatory neurotransmitters, respectively. Moreover, the
polypeptide increased the gene expression of Slc18a2 (secretion of neurotransmitters) with
a concomitant decrease in the expression of Pik3r5 (cell proliferation and apoptosis) and
Il-1β (pro-inflammatory) [219].

4.8. Fingolimod

Fingolimod (FTY-720; C19H33NO2; MW 307.47 g/mol) is a synthetic analog of myriocin
(C21H39NO6; MW 401.54 g/mol), which is a non-proteinogenic fungal amino acid.

Myriocin ((2S, 3R, 4R)-(E)-2-amino-3,4-dihydroxy-2-(hydroxymethyl)-14-oxoeicos-6-
enoic acid) was isolated from Isaria sinclairii (imperfect stage of C. sinclairii) almost 30 years
ago [220]; it shows strong in vitro immunosuppressive activity; however, it induces toxicity
in vivo. Extensive chemical modification of the myriocin structure generated fingolimod
[FTY-720; (2- amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol)], which has stronger im-
munosuppressive activity and less toxicity than myriocin [221]. The structure of fingolimod
is closely related to that of sphingosine; hence, fingolimod is phosphorylated by sphingo-
sine kinases. Phosphorylated fingolimod depletes lymphocyte circulation by activating
the sphingosine-1-phosphate receptor (S1PR) and displaying potent immunosuppressive
activity [222–224]. As S1PR is located in the CNS, the neuroprotective properties of FTY720
have been reported in experimental models of AD and PD [225,226] and granted with
US Food and Drug Administration (FDA) approval as the first oral drug to reduce MS
relapse [227,228]. Recently, FTY720 was found to exert neuroprotection in CI/RI by re-
ducing the protein levels of IL-17α in the glial cells and reducing inflammatory reactions
in the brain. Moreover, it protected the entire neurovascular unit by reducing the infarct
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volume, protecting the BBB, improving neurological deficits, and reducing apoptosis in the
neurons [229].

The mechanism of neuroprotection exerted by bioactive compounds from Cordyceps
has been summarized in Table 4.

Table 4. Neuroprotective potential of other bioactive components from Cordyceps.

Name Nature Study Model Study Outcome Mechanism Refs.

N6-(2-
hydroxyethyl)-

adenosine
Nucleoside in vitro

H2O2-induced
oxidative stress in

PC12 cells

Reduced IL-6, IL-1β, TNF-α
and NF-kB

Reduced LDH release,
increased Ψm

Antioxidant
Anti-inflammatory [185]

in vitro

LPS-induced
inflammation
in RAW264.7
macrophages

Decreased pro-inflammatory
cytokines by suppressing
TLR-4/NF-kB pathway

Anti-inflammatory [126]

Adenosine Nucleoside in vitro Glutamate-induced
toxicity in PC12 cells

Increased GSH-Px and SOD
Increased Bcl-2/Bax

ratio
Reduced the expression of

ERK, p38, and JNK,
increased Ψm

Antioxidant
Anti-inflammatory

Anti-apoptotic
[133]

Mixture Polysaccharide in vivo D-Gal-induced aging
mice model

Decreased ROS
Increased

antioxidant enzymes
Protected mitochondria

Antioxidant
Anti-aging [84]

CPA-1, CPA-2 Polysaccharide in vitro Glutamate-induced
toxicity in PC12 cells

Increased cell viability;
ncreased GSH-Px, and SOD
Reduced LDH release, ROS,

and Ca2+ levels

Antioxidant [193]

CP, NP Polysaccharide in vitro

LPS-induced
inflammation
in RAW264.7
macrophages

Inhibited NO, IL-1β, TNF-α Anti-inflammatory [196]

CP70 Polysaccharide in vivo Drosophila Increased CAT,
SOD expression

Antioxidant
Anti-aging [197]

APS Polysaccharide in vitro H2O2-induced stress
in PC12

Increased cell viability;
increased GSH-Px, and SOD
Reduced LDH release, ROS,

and Ca2+ levels

Antioxidant [194]

Ergosta-7, 9 (11),
22-trien-3β-ol Ergosterol in vivo Drosophila AD model Reduced microglia activation

and inflammatory markers Anti-inflammatory [204]

in vitro
LPS-induced

RAW264.7 and
BV2 cells

Reduced the cytokine release
and pro-inflammatory
markers Suppressed

TLR4/NF-kB pathway,
activated

Nrf2/HO-1 pathway

Antioxidant
Anti-inflammatory [67,206]

in vivo Ischemic stroke brain
injury in mice

Increased neurogenesis,
upregulated PI3K/AKT

pathway

Anti-inflammatory
Anti-apoptotic [208]

in vivo, in vitro Collagenase-induced
ICH in mice, BV2 cells

Downregulated MMP-9,
COX-2 Anti-inflammatory [212]

Cordymin Peptide in vivo Ischemic stroke brain
injury in mice

Elevated GSH
Reduced MDA, IL-1β,

TNF-α
Reduced infiltration of

PMNCs

Antioxidant
Anti-inflammatory [213]

Active polypeptide Peptide in vivo
Scopolamine-induced
memory impairment

in mice

Increased SOD, Na-K-ATPase
Decreased MDA and AChE

Increased secretion
of neurotransmitters

Antioxidant
Anti-inflammatory

Anti-apoptotic
[219]

Fingolimod
Myriocin
synthetic

analog
in vivo, in vitro

Focal CI/RI in the rat,
mice PD

model 6-OHDG
Rotenone-induced

SH-SY5Y Cells

Protected BBB
Improved

neurological deficits
Reduced IL-17

Reduced
caspase-3 expression

Immunosuppressant
Anti-inflammatory

Anti-apoptotic
[225,226,229]

As the common molecular mechanism in NDs and neurotrauma involves the interplay
of oxidative stress, neuroinflammation, and programmed cell death, a combination therapy
has become utterly important. Henceforward, the bioactive compounds from the zombie
fungus Cordyceps are the potential candidates in the treatment of such pathological condi-
tions. They affect various pathways (Figure 2) involved in neuroprotection by alleviating
ROS, reducing inflammation, restoring mitochondrial dysfunction, limiting apoptosis, and
improving levels of antioxidant enzymes.
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Figure 2. Summary of neuroprotective mechanisms exerted by various bioactive compounds from
Cordyceps. Cordycepin, HEA, and EK100 suppressed the TLR-4/NF-kB pathway, suppressing
inflammatory cytokines (TNF-α, IL-1β, IL-6). Additionally, cordycepin suppressed NLRP3 inflamma-
some activation and iNOS levels. Cordymin also inhibited pro-inflammatory cytokines in addition
to elevating the levels of antioxidant enzymes. CP and NP inhibited NO levels. Mitochondrial
membrane potential was improved by adenosine and HEA. Cordycepin and adenosine improved
Bcl2/Bax ratio. CPA1, CPA2, APS, and cordycepin reduced Ca2+ overload with cordycepin fur-
ther decreasing caspase-12 and caspase-3 activity. Fingolimod also reduced caspase-3 indicating an
anti-apoptotic mechanism. CPA1, CPA2, and APS decreased ROS. EK100 activated the PI3K/AKT
pathway. Cordycepin, HEA, adenosine, APS, CPA1, CPA2, and CP70 increased the antioxidant levels.
(red arrows represent downregulation/decrease, while green arrows indicate upregulation/increase
by the compounds).

5. Safety and Toxicity

Cordyceps is a medicinal mushroom widely used as a health supplement. Like all
other supplements, the US FDA has not approved it for safety concerns, but Cordyceps and
its two dietary supplements have been approved by the Chinese National Medical Products
Administration (NMPA) [230]. Cordyceps is relatively safe but may cause allergies, nausea,
and stomach aches in some cases. Certain medications, such as antidiabetic, antithrombotic,
and anticancer drugs [31,231,232], may interact with Cordyceps; hence, it is advised to
consult a doctor before consuming them. The most prominent concern is the accumulation
of heavy metals, especially arsenic, in naturally growing mushrooms in contaminated
soils. The recommended dose of C. sinensis is 4 g/day for no more than 5 months [233].
Moreover, it is not recommended for patients with chronic kidney disease because it affects
renal function [26]. As per the reports, cordycepin resulted in gastrointestinal and bone
marrow toxicity in dogs [234,235], oosporein caused gout in avian species [234,236], and
beauvericin might induce apoptosis and cell cytotoxicity [237]. Clinical trials have been
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conducted to investigate Cordyceps for immunomodulation [238–241], anticancer activ-
ity [242], respiratory function enhancement [243], insomnia management [244], prostate
problem management [245], liver dysfunction alleviation [246], and increased tolerance
to high-intensity exercise [32,247,248]. However, no clinical studies have investigated its
neuroprotective activity.

6. Conclusions and Future Directions

Similarities in the pathophysiological mechanisms have been implicated in neuro-
trauma and neurodegenerative diseases. Both conditions are associated with oxidative
stress, neuroinflammation, and glutamatergic excitotoxicity. The cascade of reactions
can lead to apoptosis, necrosis, Ca2+ overload, protein aggregation, and mitochondrial
dysfunction, affecting various signaling pathways (PI3K/AKT, TLR-4/NF-kB, Nrf/HO-1,
ERK/p38/JNK] and eventually causing amnesia and brain damage.

Recent studies have demonstrated the role of dietary interventions in the control of
oxidative stress, a key regulator of the pathogenesis of several diseases. Dietary components
are known to boost mood, memory, and several other brain processes by maintaining a
healthy oxidative state and improving synaptic function and neuronal plasticity. In this
context, various studies validated the effectiveness of Cordyceps bioactives in protection
against memory-related neuronal degeneration by antioxidant, anti-inflammatory, and
anti-apoptotic properties. They exhibit anti-AChE activity, stimulate neurite outgrowth and
neurotrophic growth factors, promote remyelination and dopamine release, and improve
motor and cognitive function. These properties are important for maintaining synaptic
plasticity and promoting neuron recovery. However, the pharmacodynamics of Cordyceps
reveal a short half-life and low bioavailability, which limits therapeutic effect; hence, a
system to increase bioavailability and enhance efficacy with curative practicality must
be developed. Although Cordyceps contain several important compounds, only a few
have been evaluated for their neuroprotective potential. Furthermore, no clinical studies
have been conducted on the neuroprotective efficacy of the fungus. Thus, there is a
need to investigate new bioactive compounds of Cordyceps to develop new drugs for
preventing and treating neurodegeneration, in combination with preclinical and clinical
safety assessments. Such studies will help in the design and development of safe and
effective neuroprotective drugs.
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