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Recently, as the number of cancer patients has increased, much research is being conducted for 
efficient treatment, including the use of artificial intelligence in genitourinary pathology. Recent 
research has focused largely on the classification of renal cell carcinoma subtypes. Nonetheless, the 
broader categorization of renal tissue into non-neoplastic normal tissue, benign tumor and malignant 
tumor remains understudied. This gap in research can primarily be attributed to the limited availability 
of extensive datasets including benign tumor and normal tissue in addition to specific type of renal cell 
carcinoma, which hampers the ability to conduct comprehensive studies in these broader categories. 
This research introduces a model aimed at classifying renal tissue into three primary categories: 
normal (non-neoplastic), benign tumor, and malignant tumor. Utilizing digital pathology while 
slide images (WSIs) from nephrectomy specimens of 2,535 patients from multiple institutions, the 
model provides a foundational approach for distinguishing these key tissue types. The study utilized 
a dataset of 12,223 WSIs comprising 1,300 WSIs of normal tissue, 700 WSIs of benign tumors, and 
10,223 WSIs of malignant tumors. Employing the ResNet-18 architecture and a Multiple Instance 
Learning approach, the model demonstrated high accuracy, with F1-scores of 0.934 (CI: 0.933–0.934) 
for normal tissue, 0.684 (CI: 0.682–0.687) for benign tumors, and 0.878 (CI: 0.877–0.879) for malignant 
tumors. The overall performance was also notable, achieving a weighted average F1-score of 0.879 
(CI: 0.879–0.880) and a weighted average area under the receiver operating characteristic curve of 
0.969 (CI: 0.969–0.969). This model significantly aids in the swift and accurate diagnosis of renal tissue, 
encompassing non-neoplastic normal tissue, benign tumor, and malignant tumor.
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In recent years, the United States has witnessed a growing incidence of renal cancer, attributed to factors such 
as aging, obesity, and the prevalence of metabolic syndrome1. In 2019, approximately 73,820 new cases were 
identified, accounting for 4.2% of all cancer cases nationwide2. The accurate and swift diagnosis of renal tumors, 
recognizing the broad spectrum of their histological presentations, is vital for making informed treatment 
decisions3. Consequently, artificial intelligence (AI) technologies have risen to prominence, playing a crucial 
role in refining the precision of diagnoses, aiding in the prediction of prognoses, and reducing the time required 
for diagnosis4–8. In genitourinary pathology, the diagnostic evaluation of renal cell carcinoma (RCC) involves 
multiple critical factors that guide treatment and prognosis. Pathologists not only classify tissues as benign, 
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malignant, or non-neoplastic, but also focus on essential details such as histological subtype, grade, and stage9,10. 
Identifying the RCC subtype—such as clear cell, papillary, or chromophobe—is fundamental, as each subtype 
exhibits distinct clinical behaviors and therapeutic responses, making precise classification vital for patient 
management10. Tumor grade, assessed through the WHO/ISUP grading system, further aids in understanding 
tumor aggressiveness, with higher grades (G3/G4) typically indicating more aggressive disease9,10. Staging, 
based on the TNM classification, provides additional insights into tumor progression, including the size 
of the tumor, lymph node involvement, and the presence of metastasis11. For instance, tumor invasion into 
perinephric fat or the renal vein can significantly impact treatment strategies and prognosis. Furthermore, 
the evaluation of histological features such as lymphovascular invasion, tumor necrosis, and sarcomatoid or 
rhabdoid differentiation, as outlined in the College of American Pathologists (CAP) protocol, is crucial9. These 
features provide deeper insights into the tumor’s behavior and further refine clinical decision-making, ensuring 
personalized and effective treatment approaches. This diagnostic complexity illustrates that pathologists’ tasks 
extend well beyond a simple classification of tissue types and into nuanced decisions that affect staging, treatment 
strategies, and patient prognosis. However, inherent challenges remain in analyzing complex histopathological 
images, often compounded by the availability of pathologists12–14. Leveraging AI as a diagnostic aid can mitigate 
the impact of pathologist shortages by transforming complex histopathological image data into quantitative 
metrics—such as cell size, shape, and density—thereby enhancing the objectivity, precision, and accuracy of 
renal tumor diagnoses12,13,15–17.

AI has been already increasingly researched as a diagnostic aid in renal cell carcinoma classification for 
pathologists. Lu et al. (2022) utilized a federated learning framework to classify malignant kidney tumor 
subtypes, achieving F1-scores between 0.88 and 0.984. Wu et al. (2021) reported accuracies around 93% in 
distinguishing normal and malignant renal tissues using whole slide images (WSIs)5. Haeyeh et al. (2022) and 
Tabibu et al. employed ResNet architectures to classify renal cancer subtypes, achieving high accuracy and AUC 
scores above 0.956,7. Chanchal et al. developed a model to classify clear cell RCC grades with 90.14% accuracy8.
While these studies show promising results using AI as a diagnostic tool, key challenges remain, such as small 
dataset sizes performed in single institution, narrow diagnostic focus, and ambiguity in model inference criteria.

In a national project with the National Information Society Agency (NIA), we collected a comprehensive 
kidney dataset by collecting extensive data from multiple tertiary care hospitals. This dataset includes high-
quality labeling masks created by board-certified pathologists and labelers, ensuring superior quantity and 
quality compared to existing datasets. Our innovative research approach of developing a general-purpose model 
that includes various subcategories is founded on solving mentioned above problems through model training 
using this robust dataset. To our knowledge, this study is the first to utilize this nationwide project dataset. 
In response, our study develops a ResNet-18-based classification model that utilizes a comprehensive kidney 
dataset, encompassing benign and malignant tumors as well as non-neoplastic renal tissue, and applies the 
multiple instance learning (MIL) method in instance level. This approach is designed to address some of the 
limitations observed in previous research by offering a more generalized solution for renal tissue classification, 
supported by quantitative performance metrics.

Methods
Data collection
This study was conducted with the approval of the Institutional Review Board (IRB) of Seoul St. Mary’s Hospital, 
and the need for informed consent was waived due to the retrospective nature of the study (Approval Number: 
KC23RNDI0458). All experimental protocols were performed in accordance with the relevant guidelines and 
regulations of the Declaration of Helsinki. The data used in this research comprises kidney whole slide images 
(WSIs) collected from 2,535 patients who underwent either partial or radical nephrectomy for renal masses, or 
biopsy due to suspected kidney cancer, across five university hospitals. The dataset comprises a male-to-female 
ratio of 6:4, including 1,300 WSIs of normal (non-neoplastic) tissue, 700 WSIs of benign tumors, and 10,223 
WSIs of malignant tumors. All pathology slides were digitally scanned at 20× magnification, using a Hamamatsu 
NanoZoomer S360 Digital Slide Scanner (Hamamatsu Photonics, Hamamatsu, Japan), Aperio GT450 (Leica 
Biosystems, Deer Park, IL, USA), and Pannoramic 250 Flash III (3DHISTECH, Budapest, Hungary). The 
data was assembled in 2023 as part of the Artificial Intelligence Learning Data Construction Support Project 
organized by the National Information Society Agency in Korea.

The collected raw WSIs were labeled as normal (non-neoplastic), benign tumor, and malignant tumor regions 
through the cloud-based MeDIAuto platform (Urbandatalab, Seoul, Korea) (Fig. 1). This process was performed 
directly by the labeler and confirmed by a pathologists. The pathologists who participated in the inspection have 
26 and 11 years of experience, respectively, and have at least 10 years of sufficient field experience. For ambiguous 
cases, such as papillary adenoma and papillary carcinoma, where there may be differing opinions on collection 
criteria, a consensus was reached among the participating pathologists, and consistent standards were applied 
throughout the review process. The labeled images were divided into training, validation, and test sets at a ratio 
of 8:1:1, forming datasets of 9,723, 1,250, and 1,250 WSIs, respectively. The composition of the constructed 
dataset resulted in the training set containing 886 normal, 370 benign, and 8,467 malignant WSIs, the validation 
set consisted of 113 normal, 38 benign, and 1,099 malignant WSIs and the test set was 301 normal, 292 benign 
and 657 malignant WSIs. Between 2 and 8 WSIs were collected per patient, with careful attention to ensure that 
WSIs from the same patient were not used across the training, validation, and test sets. From the collected WSIs, 
we extracted and utilized 111,754 benign tiles, 255,646 normal tiles, and 267,033 malignant tiles. Although the 
number of normal WSIs was fewer, we could extract a sufficient number of normal tiles from the WSIs of both 
malignant and benign cases to ensure an adequate representation of normal tissue. Normal tissue shows minimal 
variation across cases and remains largely uniform in its histological features, making it morphologically similar 
between different patients. In contrast, malignant tumors exhibit significant variability, both across and within 
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the various histologic subtypes of renal cell carcinoma. This diverse morphology in malignant cases requires a 
larger number of images to capture the full range of variability accurately. Therefore, the increased number of 
malignant WSIs reflects the need to accommodate the morphological heterogeneity of malignant renal tumors. 
In addition, the number of detailed diagnostic items for each grade and the nuclear grade according to WHO/
ISUP standards for clear cell RCC and Papillary RCC are shown in the table and figure below (Table 1; Fig. 2).

Research environment
The experiments in this study were conducted on a system consisting of NVIDIA GeForce RTX 4070 (NVIDIA, 
California, USA) GPU, Intel® Core™ i7-13700 F (Intel, California, USA) CPU, 32GB RAM, 3 TB storage, and 
Windows 11 Home operating system. Python (version 3.10.6) was used as the programming language, and 
Pytorch (version 2.0.1) was applied as the deep learning framework. For image preprocessing, the OpenCV-
Python library (version 4.8.1.78) was used to identify and extract specific tissue areas and to divide images into 
tiles. To evaluate the performance of the developed model, quantitative indicators of classification performance 
were presented through calculation of the confusion matrix and AUC using the Scikit-learn library (version 
1.3.2).

Data preprocessing
To mitigate the impact of noise such as air bubbles, pen marks, background, and tissue folding on learning and 
inference outcomes18, the Otsu algorithm was employed for noise removal19. By converting images to the Lab 

Fig. 1.  Whole slide images of the kidney are annotated with polygons to illustrate three types of labeling: 
normal, benign tumor, and malignant tumor areas. (a) An image with annotations of only normal kidney 
tissue. (b) An example with annotations of both normal kidney and benign tumor regions. (c) and (d) Images 
with polygon annotations of normal kidney and malignant tumor areas, where (c) shows a papillary renal cell 
carcinoma (RCC) and (d) shows a clear cell RCC.
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space and applying the Otsu Algorithm to the A channel representing red to green, areas exceeding the threshold 
were treated as tissue, while those below were set to zero, thus segmenting and highlighting tissue in the A 
channel color.

Due to the use of WSIs obtained from various scanners, each slide may differ in staining density, color, and 
resolution20. To address this, a color normalization process was implemented as a standardization method. First, 
a slide image from a reference scanner was selected, and a generative adversarial networks (GAN) model was 
trained with this image serving as the standard for color normalization of other slides. Color normalization 
through GANs involves a generator and a discriminator, repeatedly generating new images based on the 
provided image until the discriminator recognizes the generated image as a real21,22.

Based on the labeled areas, regions of each class were cropped and extracted from the WSIs. Tiling was then 
performed on the extracted areas by each class to collect tiles for learning by classes, and tiles containing more 
than 75% background, making them unidentifiable as belonging to a specific class, were excluded. Finally, the 
selected tiles were resized to a uniform size of 224 pixels by 224 pixels (Fig. 3).

Fig. 2.  Cell nuclear grade of clear cell RCC and Papillary RCC for the entire dataset.

 

Malignant tumor WSIs Benign tumor WSIs

Clear cell renal cell carcinoma 8,502 Oncocytoma 318

Papillary renal cell carcinoma 728 Angiomyolipoma 363

Chromophobe renal cell carcinoma 657 other 19

Renal cell carcinoma, not otherwise specified 102

TFE3-rearranged renal cell carcinomas 30

Clear cell papillary renal cell tumor 84

Succinate dehydrogenase-deficient renal cell carcinoma 5

Acquired cystic disease-associated renal cell carcinoma 31

Tubulocystic renal cell carcinoma 10

Eosinophilic solid and cystic renal cell carcinoma 14

other 60

Total 10,223 Total 700

Table 1.  Number of data by pathological diagnosis for benign and malignant tumor.
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Model and learning method
Among several candidate models, such as GoogleNet and AlexNet, we chose ResNet-18 as the backbone for 
our study. This decision was guided by its successful application in numerous previous studies, particularly 
in medical imaging, where it has demonstrated strong performance even with relatively limited datasets. The 
ResNet-18 model consists of 18 layers and employs skip connections and residual blocks to address the issue 
of vanishing gradients, which can occur as the model deepens, especially when training on large-scale datasets 
(Fig. 4).This architecture mitigates the gradient vanishing problem by adding the value from previous layers, 
enhancing the flow of gradients through the network23. A distinctive feature of our model compared to the 
original design is the inclusion of a rectified linear unit (ReLU) layer and a Dropout layer in fully connected 
(FC) layer. This addition enables the model to learn from a broader range of features and reduces overfitting24,25.

To augment the data, we utilized the Albumentations library, applying a variety of transformations such as 
resizing, brightness adjustment, rotation, and flipping. These transformations increase the diversity of the data, 
thereby improving the model’s performance and robustness26.

To proceed with MIL learning, we preprocessed slides, then masks are extracted and tiled. Each tile is treated 
as an instance in MIL learning and is trained by our Resnet-18 model. In the inference, the tiles extracted 
from the slide are used to construct a bag of instances containing tiles from whole slides, and the inference 
of the instances in the bag is predicted to classify the entire slide as a class. This instance-level MIL approach 
contributes to increasing the accuracy of the overall diagnostic result by identifying the diagnostic significance of 
each instance. This method is especially used to highlight and learn important areas in medical images (Fig. 5)27.

The training parameters were set with a batch size of 4, using Stochastic Gradient Descent (SGD) as the 
optimizer, a maximum of 10 epochs, an initial learning rate of 0.001, and a learning rate scheduler, StepLR, with 
a step size of 5 and gamma of 0.1. We trained on a set of 9,727 training WSIs, validated the model using a set of 
1,250 validation WSIs.

Fig. 4.  Basic ResNet-18 model structure.

 

Fig. 3.  Data preprocessing flowchart from noise removal in top left to tiling in bottom right.
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The model was trained using the training set, with the validation set employed to monitor generalization 
during training by reducing loss. To ensure an unbiased evaluation, all final performance metrics were calculated 
on a separate test set that was not involved in the training process.

Statistical analysis methods
In this study, precision, sensitivity, F1-score, and AUC were utilized as performance evaluation metrics for the 
kidney tumor classification model. The F1-score represents the harmonic mean of precision and sensitivity, 
used to assess the balance between these two metrics. AUC indicates the model’s ability to distinguish between 
positive and negative classes. All indicators were through bootstrap sampling. Additionally, to evaluate the 
model, we calculated the weighted average value of AUC and F1 score for each class according to the amount of 
data samples. additionally, we used the accuracy index to determine the performance for the major subclasses of 
benign and malignant. This represents the proportion of true positive predictions among all predictions.

Finally, we confirmed the intermediate process of model inference through gradient-weighted class 
activation mapping (Grad-CAM) operation. Grad-CAM image is an image that visualize how much and where 
a convolution neural network (CNN) focuses its attention, and which parts of the image lead it to make specific 
decisions.

Results
We evaluated the model using a test set of 1,250 WSIs, constructed separately from the train set and validation 
set that used in train session, for normal, benign, and malignant classes. The class-specific metrics provided 
in Table 2; Fig. 6 illustrate the performance for each class, calculated with 95% confidence intervals (CI) using 
the bootstrap method. The reported metrics were achieved on a separate test set, which was not used during 
the training or validation stages. The validation set was used solely to monitor and adjust the model during 
training, ensuring it could generalize well. The test set provided an independent evaluation of the model’s final 
performance.

The metrics below are all values ​​output for the test set described above. For the normal class, the precision was 
0.959 (CI: 0.958–0.960), sensitivity was 0.910 (CI: 0.908–0.911), and the F1-score was 0.934 (CI: 0.933–0.934). 

Precision sensitivity F1-score AUC

Normal renal tissue 0.959 (0.958–0.960) 0.910 (0.908–0.911) 0.934 (0.933–0.934) 0.987 (0.986–0.987)

Benign tumor 0.620 (0.617–0.623) 0.764 (0.760–0.767) 0.684 (0.682–0.687) 0.949 (0.949–0.950)

Malignant tumor 0.887 (0.886–0.888) 0.869 (0.868–0.871) 0.878 (0.877–0.879) 0.957 (0.957–0.958)

Weighted Avg 0.887 (0.886–0.888) 0.874 (0.874–0.875) 0.879 (0.879–0.880) 0.969 (0.969–0.969)

Table 2.  Precision, sensitivity, F1-score, and AUC results of the model inferred with test set.

 

Fig. 5.  Flowchart of model learning and inference method through Multiple Instance Learning.
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These metrics indicate a high level of accuracy and reliability in identifying normal tissues, demonstrating the 
model’s robustness in this category. In the benign class, precision was 0.620 (CI: 0.617–0.623), sensitivity was 
0.764 (CI: 0.760–0.767), and the F1-score was 0.684 (CI: 0.682–0.687). Although the performance is lower 
compared to the normal class, the model still shows a reasonable ability to detect benign tumors, reflecting the 
challenges posed by the smaller dataset. The malignant class exhibited a precision of 0.887 (CI: 0.886–0.888), 
sensitivity of 0.869 (CI: 0.868–0.871), and an F1-score of 0.878 (CI: 0.877–0.879).

The weighted average F1-score, considering the number of tiles per class, was 0.879 (CI: 0.879–0.880), 
demonstrating strong overall performance. AUC values were 0.987 (CI: 0.986–0.987) for the normal class, 
0.949 (CI: 0.949–0.950) for the benign class, and 0.957 (CI: 0.957–0.958) for the malignant class, with a overall 
average AUC of 0.964(CI: 0.948–0.98) and weighted average AUC of 0.969 (CI: 0.969–0.969). Based on the 
above performance indicators, our model showed excellent overall classification performance, particularly in 
distinguishing malignant and normal classes. These performance metrics underscore the potential utility of 
our models in the quantitative evaluation of renal tumor in clinical settings, highlighting their reliability and 
effectiveness in supporting pathological diagnostics.

To assess the model’s performance when data from lower categories were classified into higher categories, 
we calculated the accuracy for chromophobe RCC (86.80%), clear cell RCC (87.16%), and papillary RCC 
(86.77%)—subtypes that account for the majority of the dataset. Similarly, for benign tumors, angiomyolipoma 
achieved an accuracy of 76.99%, and oncocytoma 76.37%, with an overall average accuracy of 86.91% for the 
malignant category and 76.68% for the benign category (Fig.  7). We displayed representative tiles that were 
correctly classified by the model: normal (non-neoplastic) renal tissue as normal class (Fig. 8a), benign tumors as 
benign class (Fig. 8b: oncocytoma, Fig. 8c: angiomyolipoma), and malignant tumors as malignant class (Fig. 8d: 
papillary renal cell carcinoma, Fig. 8e: clear cell renal cell carcinoma, Fig. 8f: chromophobe renal cell carcinoma).

We have also displayed representative tiles where the model made misclassifications. Figure 8g shows a tile 
with a malignant tumor (clear cell renal cell carcinoma) that was incorrectly predicted as benign. The tumor 
cells in that tile show closely packed nests with granular, eosinophilic cytoplasm, which may have led our model 

Fig. 6.  Receiver operating characteristic curve and AUC value based on the classification probability of each 
class. AUC, area under the curve.
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Fig. 8.  Representative tiles showing accurate predictions and discrepancies. Panels (a-f) display tiles correctly 
classified as (a) normal tissue, (b-c) benign tumors (b): oncocytoma, (c): angiomyolipoma), and (d-f) 
malignant tumors (d): papillary renal cell carcinoma, (e): clear cell renal cell carcinoma, (f): chromophobe 
renal cell carcinoma). Panels (g-h) highlight misclassifications, with (e) a malignant tumor (clear cell renal 
cell carcinoma) incorrectly labeled as benign and (f) a benign tumor (oncocytoma) mistakenly predicted as 
malignant.

 

Fig. 7.  Accuracy of major subcategories in classify to higher class(malignant and benign).
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to mistakenly classify it as oncocytoma, a benign tumor, due to their histological similarities that can also cause 
confusion for pathologists. Figure  8h shows a tile with a benign tumor (oncocytoma) that was incorrectly 
predicted as malignant. The tumor cells in this tile show a solid nest and cystic arrangement with eosinophilic 
cytoplasm, a feature occasionally observed in the eosinophilic variant of chromophobe renal cell carcinoma, 
potentially leading to the misclassification. Such eosinophilic tumors are often difficult to differentiate in 
pathologic diagnosis, making immunohistochemistry essential.

For the purpose of understanding the model’s decision-making process and identifying areas of focus, we 
applied Grad-CAM. This allowed us to clearly visualize the intensity of the model’s attention and determine 
which part of the image it focused on to predict a particular class. Figure 9 shows Grad-CAM images among 
correctly classified patches. For the normal class, it appears that our model identified normal renal tissue based 
on the histology of regularly arranged and loosely packed renal tubule structures (Fig. 9a). For the benign class, 
it seems that the model classified the oncocytoma as a benign tumor by recognizing the histologic feature of 
monomorphic tumor cell nests with granular eosinophilic cytoplasm (Fig.  9b). For the malignant class, our 
model appears to have classified the clear cell renal cell carcinoma as malignant based on the histologic features 
of closely packed monomorphic cells with nest and tubule structures, clear cytoplasm, and hemorrhagic tumor 
stroma (Fig. 9c).

Discussion
We introduced a classification model designed to support the diagnostic evaluation of renal tissues, employing 
a dataset of digital pathology WSIs from nephrectomy specimens of over 2,535 patients from five institutions, 
providing a robust approach for distinguishing renal tissue types. Built upon the ResNet-18 architecture and 
incorporating the MIL method, the model is engineered to differentiate among renal tissues that are normal 
(non-neoplastic) renal tissue, benign tumors, and malignant tumors. It delivers superior performance metrics 
that demonstrate its capability in precisely classifying these distinct tissue types.

Previous research has predominantly focused on utilizing pathology WSIs for classifying specific 
subcategories and nuclear grading within malignant renal tumors, achieving notable performance. However, 
there has not been effort aimed at classifying WSIs into broader categories, such as distinguishing between 
normal renal tissue, benign tumors, and malignant tumors. Contrastingly, our study analyzed a comprehensive 
dataset of 12,223 WSIs, encompassing a wide array of renal tissue types, significantly enhancing the model’s 
power, robustness, and broad applicability. This dataset includes 1,300 normal, 700 benign, 10,223 malignant 
WSIs, all sourced from five tertiary care hospitals28.

Our model’s strong performance metrics underscore its utility as a diagnostic support tool. Our model 
achieved high accuracy with F1-scores of 0.934 for normal tissue, 0.684 for benign tumors, and 0.878 for malignant 
tumors, along with a weighted average F1-score of 0.879 and an area under the receiver operating characteristic 
curve of 0.969. These results demonstrate its capability in accurately classifying renal tissue types. making it a 
valuable resource in various clinical settings. By incorporating this broader understanding, we emphasize that 
our AI model primarily focuses on aiding the classification of non-neoplastic, benign, and malignant categories. 
While it cannot replace the full diagnostic process, it can be a valuable tool in certain contexts, particularly 
in environments with limited pathology expertise. For instance, in smaller or remote hospitals where general 
pathologists manage nephrectomy specimens, the model can assist with initial classification, saving time and 
improving diagnostic confidence. Additionally, in high-volume centers, the AI can support quality control by 
flagging cases that may require further review, particularly in borderline diagnoses or during periods of heavy 
workload. This can serve as a safety net, helping to reduce diagnostic errors or oversight.

At the WSI level, classification uses one large piece of data rather than splitting it into smaller instances. 
One label is assigned to the entire image, and learning is also judged based on the entire image. This method 
has simple data preprocessing and can learn global features of the entire image, but if a specific region of the 
image is important, such as cancer cells, the features of that region may be diluted. So, in classification at the WSI 
level, providing precise location information of cancer cells using Grad-CAM images is challenging because the 

Fig. 9.  Grad-Cam image and original image showing the attention intensity when the model infers, from left 
(a) normal tissue, (b) benign tumor (oncocytoma), (c) malignant tumor (clear cell renal cell carcinoma).
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model considers not only cancer cells but also the histologically meaningless finding such as an artifact of the 
WSI during inference29.

However, we adopted the tile-level MIL approach instead of WSI level classification to focus on capturing 
and analyzing microscopic lesions and specific pathological features within small tile segments. This method 
significantly enhanced feature extraction in more detailed areas, thereby increasing the sensitivity to early and 
subtle pathological changes30. Recovering the tile results back to the full WSI would allow us to pinpoint the sets 
of key tiles, providing a more precise geographical mapping of cancerous regions within the WSIs. By classifying 
at the tile level, we ensured that the model focused on cancer tiles during training, minimizing the influence of 
the histologically meaningless findings in WSI and surrounding tissues. Using Grad-CAM that provide insights 
into the model’s attention during inference, we ensured that the model focused on key histologic features that 
define each class, such as arrangement and cytoplasmic characteristics of tumor cells as well as tumor stroma. 
This focus is attributed to the use of the tile-level MIL approach. By interpreting the Grad-CAM images, we 
could histologically understand the model’s inferences, making it a form of explainable artificial intelligence.

The disparity in performance across different tissue classifications could largely be attributed to the inherent 
difficulties in differentiating tumors with eosinophilic features, as evidenced by our review of Grad-CAM images. 
For instance, clear cell renal cell carcinoma with prominent eosinophilic features, could have led our model to 
mistakenly classify it as oncocytoma, a benign tumor, due to their histological similarities. Similarly, oncocytoma 
with solid nest and cystic arrangement, could have caused the model to make errors because these features are 
occasionally observed as a variant of renal cell carcinoma. Such confusions are challenges that pathologists often 
face in pathologic diagnosis.

Despite these errors in subtyping classes that show histological similarities, the performance disparity also 
stems from the limited dataset for benign tumors and the uneven distribution of benign class subcategories. 
Normal tissues were labeled across all WSIs, including those for benign and malignant tumors, due to the presence 
of peritumoral normal tissue, ensuring a dataset size comparable to that of malignant tumors. In contrast, labeling 
for benign tumors was confined to their specific WSIs, leading to a considerably smaller dataset. Enhancing the 
training dataset by acquiring additional benign tumor data or applying data augmentation techniques could 
potentially ameliorate this performance gap.

As the model was designed to classify broad categories such as benign, malignant, and normal, there were 
limitations in distinguishing between aggressive and indolent variants within the malignant class. To enhance 
the model’s practical utility, follow-up research should focus on expanding the dataset to include more diverse 
morphologies, such as sarcomatoid and rhabdoid features, and incorporating metadata to classify normal tissue, 
benign tumors, and malignant tumors along with their subcategories or degrees of differentiation. Additionally, 
optimizing the algorithm to improve overall classification performance is essential. These advancements will 
lead to more reliable models and provide flexible metrics that can be applied across a wider range of diagnostic 
and research settings.

In summary, our study classified renal tissue into three categories: normal, benign tumor, and malignant 
tumor, utilizing instance-level MIL along with large-scale datasets collected from multiple hospitals. This 
approach provides a broader categorization of renal tissue types rather than solely subclassifying malignant 
tumors, with a average AUC of 0.964. The use of Grad-CAM for explainable AI ensured that our model focused 
on key histologic features, such as the arrangement and cytoplasmic characteristics of tumor cells as well as tumor 
stroma. This not only paves the way for developing practical diagnostic support models that can be seamlessly 
integrated into actual pathological diagnostic processes but also highlights the importance of constructing and 
utilizing large-scale datasets, like those used in this study, for application in various diagnostic environments.

Data availability
The data used to support the findings of this study are available upon request from the corresponding authors.
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