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Employing two standard mammography views is crucial for radiologists, providing comprehensive 
insights for reliable clinical evaluations. This study introduces paired mammogram view based-
network(PMVnet), a novel algorithm designed to enhance breast lesion detection by integrating 
relational information from paired whole mammograms, addressing the limitations of current 
methods. Utilizing 1,636 private mammograms, PMVnet combines cosine similarity and the 
squeeze-and-excitation method within a U-shaped architecture to leverage correlated information. 
Performance comparisons with single view-based models with VGGnet16, Resnet50, and 
EfficientnetB5 as encoders revealed PMVnet’s superior capability. Using VGGnet16, PMVnet achieved a 
Dice Similarity Coefficient (DSC) of 0.709 in segmentation and a recall of 0.950 at 0.156 false positives 
per image (FPPI) in detection tasks, outperforming the single-view model, which had a DSC of 0.579 
and a recall of 0.813 at 0.188 FPPI. These findings demonstrate PMVnet’s effectiveness in reducing 
false positives and avoiding missed true positives, suggesting its potential as a practical tool in 
computer-aided diagnosis systems. PMVnet can significantly enhance breast lesion detection, aiding 
radiologists in making more precise evaluations and improving patient outcomes. Future applications 
of PMVnet may offer substantial benefits in clinical settings, improving patient care through enhanced 
diagnostic accuracy.
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Background
Breast cancer is a formidable challenge in the realm of public health, significantly influencing mortality statistics 
worldwide1. However, from a clinical perspective, approximately 90% of cancers can be cured if detected and 
treated at an early stage, thus emphasizing the importance of early diagnosis of breast cancer2. Detecting breast 
lesions, which are the principal indicators of breast cancer, during the nascent stages is crucial for improving 
survival probabilities and the efficacy of therapeutic interventions. Therefore, there is a continuous demand 
for improving the accuracy of breast lesion diagnosis based on high sensitivity and low false positive rates3. 
Mammography is an indispensable primary diagnostic modality in breast cancer screening, providing multiple 
images depending on the angle of view4. Among the various views, the craniocaudal view (CC view), obtained 
by compressing the breast up and down, and the mediolateral oblique view (MLO view), obtained by adjusting 
the angle to include the pectoralis muscles, are used as standard views for screening5,6. The use of these two 
views in the clinical interpretation of patients with suspected breast cancer has been reported to be clinically 
advantageous in reducing false positives (FPs) and improving sensitivity compared with using only a single 
view7–10.

In the contemporary era, advances in artificial intelligence (AI) have led to remarkable progress in medical 
imaging as well as computer vision. This has significantly reduced the burden on clinicians by accelerating 
the diagnosis process. Moreover, AI-based CAD has proven its worth by providing consistent and objective 
indicators, demonstrating its reliability and efficiency. This is evident in its positive impact on inter- and intra-
observer11–14. Deep learning-based convolutional neural networks (CNN), a field of artificial intelligence, 
extract features as filter maps based on convolutional operations. This approach, which preserves the location 
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information of the extracted feature values, has found widespread use in computer vision and has demonstrated 
excellent efficiency in medical image data15,16. As a result, it has become a key tool in the development of breast 
lesion detection algorithms for early diagnosis of breast cancer from mammography data.

Related works
AI algorithms for breast lesion detection have been mainly based on single images. The Faster R-CNN model is 
an object detection algorithm that sequentially divides region detection and detected region classification based 
on convolutional neural networks17. This model has been used variously through application and structural 
modification to detect the location of breast lumps with relatively high detection accuracy and to classify lesions 
as benign or malignant18–20. In addition, the YOLO model, which has the advantage of fast inference speed while 
simultaneously detecting the location of candidate regions for the target object and classifying the detected 
regions, has been used mainly by using the model structure as it is or by modifying its layers21–23. The Retinanet 
model, proposing to improve the loss function to train about small objects efficiently, has been utilized in various 
breast lesion detection studies24. However, these studies were single view-based algorithms, where the lesion 
detection was performed separately for each image, and the correlated information between the two reference 
images, which could potentially enhance the accuracy of the detection, was not considered.

Some studies have utilized patches for breast lesion regions to apply the matching information of the 
two standard images. There is an experiment that extracted feature maps through a convolutional layer for 
the manually extracted patches from each image and performed patch-by-patch classification of whether the 
patches are for the same lesion by measuring the similarity of the neighboring values for each pixel in the 
two feature maps25. Some studies used deep learning-based detection models to extract patches for the lesion 
region individually and then similarly classified the two patches’ matching. One study utilized Unet to extract 
individual patches from two images. For each patch, a feature map was extracted using a convolutional filter, and 
each feature map was combined in a fully connected layer to share the features of the two images26. In addition, 
another study extracted patches using the YOLO model. It calculated cosine similarity between the two feature 
maps extracted through the convolutional layer from the patches to classify the matching27. These experiments 
aimed to remove false positives by determining the matching at the patch level. In this case, the positional 
information of the whole image was not considered in the feature extraction process for matching between 
patches. Nevertheless, when the two standard images employed the similarity of the lesion patches, they showed 
improved results in terms of quantitative performance indicators, demonstrating the validity of utilizing both 
images.

Another way to enhance performance has been conducted by using multi-view mammograms. One study 
attempted to employ the two views using the distance between the nipple and lesion and considering the location 
information from the CC view; however, in these studies, the MLO view image was not applied to detect breast 
lesions and was only used as an auxiliary input for detection in the CC view28. Other studies attempted to 
reconcile the two or four multi-view mammograms using an ensemble network across whole feature maps. 
However, they only employed the multi-views simultaneously for classification problems (abnormality or benign 
and malignant), not for extracting the feature map when detecting mass29–31.

Contributions
Therefore, in this study, we aimed to improve the detection performance by proposing an AI lesion detection 
algorithm that utilizes paired standard mammograms. The key points of the proposed contributions in this 
paper are as follows:

	1.	� We propose a deep learning based PMVnet (paired mammogram view based-network) that simultaneously 
utilizes the whole mammogram image’s paired craniocaudal and mediolateral oblique views.

	2.	� To evaluate the proposed algorithm, we compared its performance with single mammogram view-based 
networks(SMVnet), which are original standard Unet-based models.

	3.	� We analyzed localization results to investigate whether the PMVnet effectively extracts feature maps correlat-
ed with two views.

Materials and methods
Data collection
Due to the retrospective nature of the study, the Institutional Review Board (IRB) of Gachon University Gil Medical 
Center (IRB Number: GCIRB2020-477) waived the need for obtaining informed consent. All experimental 
protocols were performed in accordance with the relevant guidelines and regulations in compliance with the 
Declaration of Helsinki. We collected data acquired from devices produced by two different manufacturers: 
Lorad Selenia 2D Digital Mammography model, referred to as “Hologic” in this paper, from Hologic Inc. based 
in Lesionachusetts, USA; Senographe Essential model, referred to as “GE” in this paper, from General Electric 
Healthcare based in Illinois, USA. Figure 1 shows an example of the four standard views (RCC, LCC, RMLO, and 
LMLO) obtained from a single patient. To simultaneously utilize paired images, we grouped two standard views 
(RCC and RMLO) for the right side and two standard views (LCC and LMLO) for the left side into a unified set. 
The dataset comprises 818 sets of left and right views (1,636 images), with 525 sets (1,050 images) sourced from 
Hologic devices and 293 sets (586 images) obtained from GE. The Hologic data had a resolution of 2,560 × 3,328 
pixels, whereas GE data had a resolution of 3,328 × 4,096 pixels. Of the entire dataset, 738 cases (1,476 images) 
were allocated to train the models, and the remaining 80 cases (160 images) served as the evaluation data to 
validate the performance. In the training dataset, the average age of patients was 51.255 years (± 11.651), with 
99.6% female and 0.4% male. For performance assessment, the patients were all female and had an average age 
of 54.263 years (± 11.392). All identifiable information was anonymized for privacy purposes, except for age 
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and sex. All the data used in this research consisted of cases diagnosed as abnormal(malignant and/or benign 
lesions).

Data preprocessing
Breast lesions have vague outlines when they overlap with fibroglandular tissue, particularly in high-density 
breast tissue32,33. To address this issue, various studies have demonstrated that using pseudo-color images as a 
preprocessing technique can improve contrast and enhance the detection performance of masses, particularly in 
high-density breast tissue34–36.Therefore, we generated pseudo-color images as a preprocessing step to increase 
the contrast of the surrounding breast lesions, as shown in Fig. 2. Using pixel intensity, the window settings were 
adjusted in three different manners. Three adjusted grayscale images were assigned to each of the three channels 
(channels 0, 1, and 2), and synthesized to create a pseudo-colored image. In channel 0, an image set to the default 
window width and window level at the time of acquisition using the machine’s internal algorithm was inserted. 
Channel 1 was set to the window width and level for the range of the maximum and minimum values of the 
pixel value distribution for the breast region. Finally, Channel 2 was set by adjusting the pixel values by setting 
the window level to the most pixel value in the breast region.

We undertook a resizing process to enhance the utility of the collected mammogram images, which possess 
resolutions of 2,560 × 3,328 pixels or 3,328 × 4,096 pixels. The high resolution of these images posed potential 
challenges related to computational demand and memory usage. As a solution, we reduced the height of the 
images to 512 pixels, with the width adjusted correspondingly to maintain the original aspect ratio through zero-
padding, resulting in a final image size of 512 × 512 pixels. Furthermore, acknowledging the critical relationship 
between the volume of training data and model performance, we applied data augmentation techniques to 
enrich our dataset. By utilizing the padded images, we resized them to ratios of 4/3 and 2 times the original 
reference image. This approach enabled us to generate additional variations through both horizontal and vertical 
transitions, effectively increasing our dataset fourfold. An example of the data augmentation methodology is 
presented in Fig. 3.

Fig. 1.  Examples of standard mammogram views in the left and right directions. LCC left craniocaudal view, 
LMLO left mediolateral oblique view, RCC right craniocaudal view, RMLO right mediolateral oblique view.
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Paired standard mammogram views network
The Unet is a prominent CNN-based semantic segmentation model widely applied in medical image 
segmentation due to its exceptional performance, as noted across various studies37–40. This research introduces a 
PMVnet structure with a Unet comprising two core components: a contracting path (encoder) and an expanding 
path (decoder) with a multi-input design41.

To clearly understand the baseline model used for comparison, we define SMVnet as a single-view 
mammography network. Unlike PMVnet, which utilizes paired views to improve performance, SMVnet is a 
traditional Unet-based model that processes only one mammography view at a time. The SMVnet model in this 
study leverages the Unet architecture with various encoders such as VGG, ResNet, and Efficientnet to ensure a 
fair and thorough performance evaluation. By comparing the SMVnet-based model with PMVnet, we aim to 
directly evaluate the benefits of integrating paired-view information.

Figure  4 shows an example of the proposed model structure. This approach involves sharing weights by 
treating two standard images as a unified representation of one breast. We employed cosine similarity and an 
attention mechanism based on squeeze and excitation (SE) techniques42, effectively integrating the feature maps 
between the two images. The models trained on an Nvidia V100 GPU with configurations as follows: 4 batch 
sizes; 100 epochs; learning rate of 0.0001; focal loss; the learning rate was set to decrease by a factor of 0.1 if the 
loss did not decrease for 15 epochs on the validation data.

Let the outputs extracted from the encoders of each view be Occ and Omlo, respectively, and the 
concatenation of the two outputs be O. Let the size of the feature map of the O be H⨯W⨯C, the cth feature 
map by Fc, squeezing the spatial information be SC , the output applied the SE technique to the O be O′ , the 
operation by the fully connected layer with n outputs be Cn (x), the sigmoid function be σ (x) and the Relu 
function be R (x), and the following operations are applied. In this study, the reduction ratio was set to 4.

	
Sc = 1

H × W

∑
H
i=1

∑
W
j=1Fc� (1)

	 O′ = σ
(
Cn

(
R

(
C n

4
(Sc)

)))
� (2)

Therefore, we let the feature maps activated by the SE technique be O′ cc and O′ mlo, respectively, they can be 
represented as follows:

	 O′
cc = Occ · O′ � (3)

Fig. 2.  Example of pseudo-color image generation process to enhance the contrast between the lesion and 
surrounding area. (a) Original image. (b) The denoised and background-removed breast region. (c) The 
pseudo-color image generation process and the synthesized pseudo-color image. (d) The input image with 
padding and scaling for training a network.
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Fig. 3.  Examples of augmented images with the data scaling process applied. The final preprocessed image 
was zero-padded to be 512 × 512 in size. (a) Resized by keeping the original aspect ratio centered on the center 
of the image and applying padding on either side. (b) Resized to 512 × 512, ignoring the original proportions. 
(c) Resized to 4/3 times the original aspect ratio and flipped up and down. (d) Resized to 2 times the original 
aspect ratio and flipped left and right.
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Fig. 4.  The proposed PMVnet structure connects two U-shaped based models to form multiple inputs, and the 
feature maps extracted through each CC and MLO encoder are combined and fused, and then the squeeze-
and-excitation method is applied to each feature map at the decoder to measure the cosine similarity based on 
dot product.

 

Scientific Reports |         (2025) 15:4406 6| https://doi.org/10.1038/s41598-025-88907-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 O′
mlo = Omlo · O′ � (4)

Equation (5) is applied to the results extracted using Eqs. (3) and (4), and the result is applied to the feature map 
for each image through a scalar product to ensure that the similarity between the two images contributes to the 
feature extraction.

	
fcos (A, B) = A · B

∥ A ∥ ∥ B ∥ =
∑ n

i=1AiBi√ ∑ n

i=1A2
i

√ ∑ n

i=1B2
i

� (5)

Performance assessment
The performances of the models were evaluated and compared to verify their effectiveness. The data used for the 
performance evaluation were 80 mammograms of the CC view and 80 mammograms of the MLO view that were 
not used for training. The performance of each model was evaluated using the same data. TP indicates that the 
model predicted a lesion area as a lesion area, FP indicates that the model predicted a no-lesion area as a lesion 
area, and FN indicates that the model predicted a lesion area as not a lesion area. TN indicates that the model 
predicted a no-lesion area as not a lesion area. The TP, FP, FN, and TN were calculated by comparing the ground 
truth generated by the radiologist. The breast lesion area was predicted by each model on a pixel-by-pixel basis 
for semantic segmentation assessment using dice similarity coefficient (DSC), recall (same as sensitivity), and 
precision.

To evaluate lesion detection performance for investigating localization results, we generated a bounding box 
that included the lesion area (Fig.  5). The intersection of union (IoU) is an evaluation metric based on the 
overlap between two regions. In this study, we measured the IoU for the ground truth and the predicted region 
using a model based on the region containing the lesion and defined the measured IoU value for the predicted 
region as TP if it was above 0.1, FP if it was below 0.1, and FN if there was no predicted region to compare 
with the reference image region. Using these metrics, we calculated the recall, precision, and false positives per 
image (FPPI) to derive and analyze the performance of the model in detecting lesion-containing regions. The 
evaluation formulae are as follows:

Fig. 5.  Example of generating lesion regions for detection performance evaluation from semantic 
segmentation results. In (c) and (d), the red rectangle represents the converted rectangular format of the 
detection result containing the lesion. (a) Segmented lesions extracted from the model. The red-blended areas 
represent lesion regions predicted using the proposed model. (b) The converted area includes lesions generated 
by morphological operations from the segmentation results. (c) Conversion to the lesion detection format. 
The red squares represent the lesion-containing regions detected by the morphology operation based on the 
model predictions. (d) the final format of the lesion region reconstructed from the image size changes during 
preprocessing, considering the proportion and position of the original image.
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DSC = 2T P

2T P + F P + F N
� (6)

	
Recall = T P

T P + F N
� (7)

	
P recision = T P

T P + F P
� (8)

	
F P P I = F P

the Number of images
� (9)

Results
In this study, VGGnet16, Resnet50, and EfficientnetB5 were employed as encoder networks in the proposed 
U-shaped SMVnet and PMVnet-based models. The study aimed to assess the effectiveness of the proposed 
models and understand the underlying reasons by evaluating the performance of each configuration. In addition, 
a pretrained model with ImageNet weights was applied to the encoder structure of each model, and the results 
were compared43.

Table  1 lists the performance evaluation results for semantic segmentation, detailing how variations in 
the encoding stage of each model influenced the outcomes, as observed across different experiments. In the 
models without pretrained weights (plain), the proposed PMVnet resulted in a DSC of 0.709 for the VGGnet16 
encoder-based model, 0.652 for the Resnet50-based model, and 0.707 for the EfficientnetB5 model. Except for 
based on EfficientnetB5, the PMVnet-based model showed higher performance in all the values. However, when 
the models were initialized by ImageNet weights, overall values in PMVnet outperformed SMVnet. Figure 6 
illustrates the semantic segmentation outcomes of both SMVnet and PMVnet with frameworks that employ 
VGGnet16, Resnet50, and EfficientnetB5 models as the encoder.

Table 2 compares the detection performance of each model for the region containing the lesion. It shows 
that the VGGnet16-based model achieved an overall performance improvement of 0.137 for recall and 0.032 
for FPPI, and the Resnet50-based model achieved an improvement of 0.012 for recall and 0.050 for FPPI for 
the PMVnet. The EfficientnetB5-based model showed an improvement in sensitivity of 0.013 and a decrease in 
FPPI of 0.013. In the pixel-to-pixel comparison of semantic segmentation, the EfficientnetB5-based paired view 
model performed worse than the single-view model across all performance metrics but better in sensitivity in 
the region containing the lesion.

Discussion
To investigate the effectiveness of PMVnet in improving the performance of breast lesion detection, we analyzed 
the performance assessment results for segmentation and detection with and without ImageNet weights. The 
segmentation results show that the VGGnet16-based encoders exhibit the largest performance improvement 
when using PMVnet, followed by Resnet50 and EfficientnetB5, and that the performance improvement decreases 
as the model structure becomes more complex. PMVnet, designed to extract individual feature maps for each 
view image and concatenate the feature maps, experiences a rapid increase in the number of parameters as the 
encoder structure deepens and becomes more complex. Due to this parameter proliferation, applying PMVnet 
to the same architecture without structural modifications may impede model optimization. Furthermore, 
the highest performance of VGGnet16, the shallowest and simplest structure in this study, indicates that it 
is optimized for extracting feature maps from data owing to its structural characteristics. Therefore, in this 
study, we show that the model size and depth are not necessarily correlated to the performance of the networks 
and data. Numerous studies indicate no direct correlation between model size and performance. To enhance 
performance, various strategies have been employed, including modifying the activation function, refining the 
loss function, and adjusting factors such as the resolution of the input image, the depth of the model layers, and 

ImageNet weight Model DSC (95% CI) Precision (95% CI) Recall (95% CI)

w/o.

VGGnet16 based-PMVnet 0.709 (0.671–0.748) 0.693 (0.652–0.734) 0.782 (0.742–0.821)

VGGnet16 based-SMVnet 0.579 (0.531–0.627) 0.590 (0.542–0.639) 0.653 (0.601–0.705)

Resnet50 based-PMVnet 0.652 (0.608–0.696) 0.638 (0.592–0.683) 0.712 (0.665–0.758)

Resnet50 based-SMVnet 0.643 (0.598–0.688) 0.624 (0.578–0.670) 0.730 (0.682–0.778)

EfficientnetB5 based-PMVnet 0.707 (0.666–0.748) 0.692 (0.651–0.734) 0.765 (0.722–0.808)

EfficientnetB5 based-SMVnet 0.709 (0.669–0.750) 0.688 (0.646–0.730) 0.792 (0.750–0.833)

w.

VGGnet16 based-PMVnet 0.690 (0.648–0.732) 0.687 (0.643–0.731) 0.739 (0.695–0.783)

VGGnet16 based-SMVnet 0.644 (0.599–0.689) 0.655 (0.609–0.701) 0.699 (0.651–0.747)

Resnet50 based-PMVnet 0.677 (0.635–0.720) 0.676 (0.632–0.719) 0.734 (0.689–0.779)

Resnet50 based-SMVnet 0.658 (0.614–0.703) 0.658 (0.613–0.703) 0.729 (0.682–0.776)

EfficientnetB5 based-PMVnet 0.743 (0.707–0.779) 0.725 (0.686–0.763) 0.801 (0.763–0.839)

EfficientnetB5 based-SMVnet 0.733 (0.695–0.772) 0.715 (0.675–0.756) 0.810 (0.772–0.849)

Table 1.  Performance results of semantic segmentation. w with, w/o. without.
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the number of channels in the extracted feature map44,45. In the future, we must develop a model with an optimal 
architecture by considering components such as the size of the input data and the number of channel layers.

Moreover, to verify the suitability of the PMVnet for sharing significant positional information between 
the two standard views, we analyzed the detection performance by converting it into breast lesion inclusion 
regions. For all models, the recall value of the detection performance was proportional to the DSC value of the 
segmentation result; however, in contrast to the segmentation performance of the EfficientnetB5 model, the 
model with PMVnet showed higher performance. Figure 7 shows examples of conversion to breast lesion areas 

Fig. 6.  Example of segmentation results from models utilizing encoders based on VGGnet16, Resnet50, and 
EfficientnetB5 for the Hologic (left) and GE (right) cases. (a) Original image. (b) Ground truth. (c) SMVnet-
based model results. (d) PMVnet-based model results.
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by the EfficientnetB5-based PMVnet model, which showed a low DSC performance below 0.7; however, the 
detection performance was measured as TP. The results demonstrated that the large size of the model and the 
excessive number of parameters in PMVnet did not significantly affect the extraction of feature maps required 
for details in pixels but were significant in extracting effective feature maps for localization. Additionally, the 
lower segmentation performance compared to detection is attributed to the challenges in accurately predicting 
the boundaries and shape of the breast lesion.

Breast lesions on mammography can be subdivided according to shape, margin, and density according to 
the Breast Imaging Reporting and Data System (BI-RADS), and there are significant differences between each 
type. However, in this study, the type of breast lesion type was not considered when constructing the training 
data, and all lesion types were classified as a single lesion. Thus, the prediction of the center of the lesion, which 
shows a relatively high contrast for most lesion types in mammograms, was successful; however, the prediction 
of the boundaries of various lesion types was not. The distinction between benign and malignant lesions is 
crucial in diagnosing breast cancer, and the type of lesion is a significant indicator of this distinction. Therefore, 
in future studies, a higher accuracy performance can be achieved by subdividing the types and developing data 
distribution and learning models that consider them. Moreover, the classification of benign and malignant 
lesions is an essential process in breast cancer diagnosis, and it is expected that the development of additional 
models for the classification of such indicators will be crucial in assisting breast cancer diagnosis.

Fig. 7.  Example of lesion-containing region detection results from a PMVnet-based model utilizing the 
EfficientB5 encoder, where the Dice similarity coefficient (DSC) is less than or equal to 0.707 (average) but is 
rated as a true positive (TP) in the detection region performance evaluation. Red squares represent regions the 
model estimates; green squares represent ground truth.

 

ImageNet weight Model Recall (95% CI) Precision (95% CI) FPPI (95% CI)

w/o.

VGGnet16 based-PMVnet 0.950 (0.912–0.988) 0.900 (0.859–0.941) 0.156 (0.092–0.220)

VGGnet16 based-SMVnet 0.813 (0.749–0.876) 0.747 (0.684–0.809) 0.188 (0.118–0.257)

Resnet50 based-PMVnet 0.900 (0.854–0.946) 0.868 (0.819–0.916) 0.175 (0.102–0.248)

Resnet50 based-SMVnet 0.888 (0.839–0.936) 0.834 (0.783–0.886) 0.225 (0.149–0.301)

EfficientnetB5 based-PMVnet 0.919 (0.874–0.964) 0.906 (0.863–0.950) 0.113 (0.060–0.165)

EfficientnetB5 based-SMVnet 0.906 (0.862–0.951) 0.906 (0.862–0.951) 0.100 (0.053–0.147)

w.

VGGnet16 based-PMVnet 0.906 (0.862–0.951) 0.884 (0.838–0.931) 0.144 (0.087–0.201)

VGGnet16 based-SMVnet 0.856 (0.802–0.911) 0.793 (0.736–0.849) 0.181 (0.119–0.244)

Resnet50 based-PMVnet 0.922 (0.877–0.967) 0.884 (0.839–0.930) 0.156 (0.090–0.223)

Resnet50 based-SMVnet 0.888 (0.839–0.936) 0.853 (0.803–0.903) 0.188 (0.111–0.264)

EfficientnetB5 based-PMVnet 0.931 (0.892–0.971) 0.903 (0.861–0.945) 0.131 (0.076–0.187)

EfficientnetB5 based-SMVnet 0.938 (0.901–0.974) 0.909 (0.870–0.949) 0.131 (0.073–0.189)

Table 2.  Performance results of lesion detection. w with, w/o. without.
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Except for VGGnet16, utilizing ImageNet weights resulted in an overall improvement in the segmentation 
and detection performance compared with the unweighted cases. Using ImageNet weights hindered feature 
map extraction in the best-optimized model for the medical data used in this study by initializing the weights 
fitted in real-world images. The detection performance results mirrored the improvement pattern seen in 
segmentation. However, models based on EfficientnetB5 exhibited lower performance in Precision and FPPI for 
detection, indicating that initializing to ImageNet did not universally enhance performance across all models in 
this study. This result indicates that a comparative study on initializing the optimal weights and the optimized 
model structure is necessary in the future. In addition, because breast cancer diagnosis uses mammograms as 
well as breast ultrasound and magnetic resonance imaging data, we plan to develop PMVnet-based algorithms 
optimized for breast lesion detection by fusing data from various modalities.

While this study presents a novel approach for effectively merging dual-view mammographic information 
through the proposed PMVNet, certain limitations exist. First, since this study mainly focused on the structural 
and methodological aspects of integrating paired mammography views to improve diagnostic accuracy, we did 
not analyze the computational efficiency. This lack of processing time and efficiency is important for real-world 
clinical applications. In future work, we will evaluate and optimize the computational efficiency of the proposed 
method to increase its effectiveness in real-world settings. In addition, the dataset used in this study consisted of 
only abnormal cases, which limits the generalizability to datasets containing both normal and abnormal cases. 
In future studies, incorporating a balanced dataset will help ensure the proposed model’s broad applicability and 
robustness. Finally, although this study’s performance analysis was objectively validated based on quantitative 
evaluation, it did not include subjective evaluation by expert radiologists, which affects real-world usability. 
Incorporating expert feedback in future studies would provide valuable insights into the proposed method’s 
clinical validity and utility. Furthermore, the effectiveness of PMVNet needs to be validated in more extensive 
and diverse populations to ensure its applicability in real-world clinical settings. Testing the model across varied 
demographic groups will help assess its generalizability and robustness in diverse patient populations, which is 
an essential next step for ensuring the clinical utility of the proposed method.

Conclusion
In this study, we proposed a PMVNet, paired mammogram view images-based breast mass detection algorithm, 
considering that both CC and MLO views are utilized as reference images in clinical diagnosis. The PMVNet 
applied the SE method and cosine similarity to the feature maps extracted from the two view images to share the 
weights so that the feature information of the two images can be employed by each other. To verify PMVNet, we 
compared it to the performance of the single-view-based algorithm, and the results showed overall improved 
detection performance compared to the contrast algorithm. However, as the model’s size increased, the proposed 
algorithm’s effectiveness decreased, and the Efficientnet-based model showed the same or even relatively lower 
performance values. This is because many more parameters are extracted from the PMVNet structure, and the 
more complex encoder structure does not help improve performance due to excessive parameters unsuitable for 
fitting the data. In future work, we will develop a structured algorithm to optimize it. In addition, applying the 
clinical diagnostic approach utilized in this study to mammograms and 3D-based digital breast tomosynthesis 
data is expected to help clinicians diagnose breast cancer as a computer-aided diagnosis system.

Data availability
The data used to support the findings of this study are available upon request from the corresponding author.
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