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Leveraging paired mammogram
views with deep learning for
comprehensive breast cancer
detection

Jae Won Seo?, Young Jae Kim? & Kwang Gi Kim%3"*

Employing two standard mammography views is crucial for radiologists, providing comprehensive
insights for reliable clinical evaluations. This study introduces paired mammogram view based-
network(PMVnet), a novel algorithm designed to enhance breast lesion detection by integrating
relational information from paired whole mammograms, addressing the limitations of current
methods. Utilizing 1,636 private mammograms, PMVnet combines cosine similarity and the
squeeze-and-excitation method within a U-shaped architecture to leverage correlated information.
Performance comparisons with single view-based models with VGGnet16, Resnet50, and
EfficientnetB5 as encoders revealed PMVnet's superior capability. Using VGGnet16, PMVnet achieved a
Dice Similarity Coefficient (DSC) of 0.709 in segmentation and a recall of 0.950 at 0.156 false positives
per image (FPPI) in detection tasks, outperforming the single-view model, which had a DSC of 0.579
and a recall of 0.813 at 0.188 FPPI. These findings demonstrate PMVnet'’s effectiveness in reducing
false positives and avoiding missed true positives, suggesting its potential as a practical tool in
computer-aided diagnosis systems. PMVnet can significantly enhance breast lesion detection, aiding
radiologists in making more precise evaluations and improving patient outcomes. Future applications
of PMVnet may offer substantial benefits in clinical settings, improving patient care through enhanced
diagnostic accuracy.

Keywords Mammogram, Breast, Artificial intelligence, Detection, Computer-aided diagnostic system

Background

Breast cancer is a formidable challenge in the realm of public health, significantly influencing mortality statistics
worldwide!. However, from a clinical perspective, approximately 90% of cancers can be cured if detected and
treated at an early stage, thus emphasizing the importance of early diagnosis of breast cancer?. Detecting breast
lesions, which are the principal indicators of breast cancer, during the nascent stages is crucial for improving
survival probabilities and the efficacy of therapeutic interventions. Therefore, there is a continuous demand
for improving the accuracy of breast lesion diagnosis based on high sensitivity and low false positive rates>.
Mammography is an indispensable primary diagnostic modality in breast cancer screening, providing multiple
images depending on the angle of view?!. Among the various views, the craniocaudal view (CC view), obtained
by compressing the breast up and down, and the mediolateral oblique view (MLO view), obtained by adjusting
the angle to include the pectoralis muscles, are used as standard views for screening>®. The use of these two
views in the clinical interpretation of patients with suspected breast cancer has been reported to be clinically
advantageous in reducing false positives (FPs) and improving sensitivity compared with using only a single
view’ 10,

In the contemporary era, advances in artificial intelligence (AI) have led to remarkable progress in medical
imaging as well as computer vision. This has significantly reduced the burden on clinicians by accelerating
the diagnosis process. Moreover, Al-based CAD has proven its worth by providing consistent and objective
indicators, demonstrating its reliability and efficiency. This is evident in its positive impact on inter- and intra-
observer!!1, Deep learning-based convolutional neural networks (CNN), a field of artificial intelligence,
extract features as filter maps based on convolutional operations. This approach, which preserves the location
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information of the extracted feature values, has found widespread use in computer vision and has demonstrated
excellent efficiency in medical image data'>!®. As a result, it has become a key tool in the development of breast
lesion detection algorithms for early diagnosis of breast cancer from mammography data.

Related works

Al algorithms for breast lesion detection have been mainly based on single images. The Faster R-CNN model is
an object detection algorithm that sequentially divides region detection and detected region classification based
on convolutional neural networks!’. This model has been used variously through application and structural
modification to detect the location of breast lumps with relatively high detection accuracy and to classify lesions
as benign or malignant'®-%°. In addition, the YOLO model, which has the advantage of fast inference speed while
simultaneously detecting the location of candidate regions for the target object and classifying the detected
regions, has been used mainly by using the model structure as it is or by modifying its layers? 2. The Retinanet
model, proposing to improve the loss function to train about small objects efficiently, has been utilized in various
breast lesion detection studies®*. However, these studies were single view-based algorithms, where the lesion
detection was performed separately for each image, and the correlated information between the two reference
images, which could potentially enhance the accuracy of the detection, was not considered.

Some studies have utilized patches for breast lesion regions to apply the matching information of the
two standard images. There is an experiment that extracted feature maps through a convolutional layer for
the manually extracted patches from each image and performed patch-by-patch classification of whether the
patches are for the same lesion by measuring the similarity of the neighboring values for each pixel in the
two feature maps?°. Some studies used deep learning-based detection models to extract patches for the lesion
region individually and then similarly classified the two patches’ matching. One study utilized Unet to extract
individual patches from two images. For each patch, a feature map was extracted using a convolutional filter, and
each feature map was combined in a fully connected layer to share the features of the two images?®. In addition,
another study extracted patches using the YOLO model. It calculated cosine similarity between the two feature
maps extracted through the convolutional layer from the patches to classify the matching®”. These experiments
aimed to remove false positives by determining the matching at the patch level. In this case, the positional
information of the whole image was not considered in the feature extraction process for matching between
patches. Nevertheless, when the two standard images employed the similarity of the lesion patches, they showed
improved results in terms of quantitative performance indicators, demonstrating the validity of utilizing both
images.

Another way to enhance performance has been conducted by using multi-view mammograms. One study
attempted to employ the two views using the distance between the nipple and lesion and considering the location
information from the CC view; however, in these studies, the MLO view image was not applied to detect breast
lesions and was only used as an auxiliary input for detection in the CC view?. Other studies attempted to
reconcile the two or four multi-view mammograms using an ensemble network across whole feature maps.
However, they only employed the multi-views simultaneously for classification problems (abnormality or benign
and malignant), not for extracting the feature map when detecting mass®*-3!.

Contributions

Therefore, in this study, we aimed to improve the detection performance by proposing an Al lesion detection
algorithm that utilizes paired standard mammograms. The key points of the proposed contributions in this
paper are as follows:

1. We propose a deep learning based PMVnet (paired mammogram view based-network) that simultaneously
utilizes the whole mammogram image’s paired craniocaudal and mediolateral oblique views.

2. To evaluate the proposed algorithm, we compared its performance with single mammogram view-based
networks(SMVnet), which are original standard Unet-based models.

3. We analyzed localization results to investigate whether the PMVnet effectively extracts feature maps correlat-
ed with two views.

Materials and methods

Data collection

Due to the retrospective nature of the study, the Institutional Review Board (IRB) of Gachon University Gil Medical
Center (IRB Number: GCIRB2020-477) waived the need for obtaining informed consent. All experimental
protocols were performed in accordance with the relevant guidelines and regulations in compliance with the
Declaration of Helsinki. We collected data acquired from devices produced by two different manufacturers:
Lorad Selenia 2D Digital Mammography model, referred to as “Hologic” in this paper, from Hologic Inc. based
in Lesionachusetts, USA; Senographe Essential model, referred to as “GE” in this paper, from General Electric
Healthcare based in Illinois, USA. Figure 1 shows an example of the four standard views (RCC, LCC, RMLO, and
LMLO) obtained from a single patient. To simultaneously utilize paired images, we grouped two standard views
(RCC and RMLO) for the right side and two standard views (LCC and LMLO) for the left side into a unified set.
The dataset comprises 818 sets of left and right views (1,636 images), with 525 sets (1,050 images) sourced from
Hologic devices and 293 sets (586 images) obtained from GE. The Hologic data had a resolution of 2,560 x 3,328
pixels, whereas GE data had a resolution of 3,328 x 4,096 pixels. Of the entire dataset, 738 cases (1,476 images)
were allocated to train the models, and the remaining 80 cases (160 images) served as the evaluation data to
validate the performance. In the training dataset, the average age of patients was 51.255 years (+11.651), with
99.6% female and 0.4% male. For performance assessment, the patients were all female and had an average age
of 54.263 years (+11.392). All identifiable information was anonymized for privacy purposes, except for age
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Fig. 1. Examples of standard mammogram views in the left and right directions. LCC left craniocaudal view,
LMLO left mediolateral oblique view, RCC right craniocaudal view, RMLO right mediolateral oblique view.

and sex. All the data used in this research consisted of cases diagnosed as abnormal(malignant and/or benign
lesions).

Data preprocessing

Breast lesions have vague outlines when they overlap with fibroglandular tissue, particularly in high-density
breast tissue’>¥. To address this issue, various studies have demonstrated that using pseudo-color images as a
preprocessing technique can improve contrast and enhance the detection performance of masses, particularly in
high-density breast tissue®*~3¢. Therefore, we generated pseudo-color images as a preprocessing step to increase
the contrast of the surrounding breast lesions, as shown in Fig. 2. Using pixel intensity, the window settings were
adjusted in three different manners. Three adjusted grayscale images were assigned to each of the three channels
(channels 0, 1, and 2), and synthesized to create a pseudo-colored image. In channel 0, an image set to the default
window width and window level at the time of acquisition using the machine’s internal algorithm was inserted.
Channel 1 was set to the window width and level for the range of the maximum and minimum values of the
pixel value distribution for the breast region. Finally, Channel 2 was set by adjusting the pixel values by setting
the window level to the most pixel value in the breast region.

We undertook a resizing process to enhance the utility of the collected mammogram images, which possess
resolutions of 2,560 x 3,328 pixels or 3,328 x4,096 pixels. The high resolution of these images posed potential
challenges related to computational demand and memory usage. As a solution, we reduced the height of the
images to 512 pixels, with the width adjusted correspondingly to maintain the original aspect ratio through zero-
padding, resulting in a final image size of 512 x 512 pixels. Furthermore, acknowledging the critical relationship
between the volume of training data and model performance, we applied data augmentation techniques to
enrich our dataset. By utilizing the padded images, we resized them to ratios of 4/3 and 2 times the original
reference image. This approach enabled us to generate additional variations through both horizontal and vertical
transitions, effectively increasing our dataset fourfold. An example of the data augmentation methodology is
presented in Fig. 3.
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Fig. 2. Example of pseudo-color image generation process to enhance the contrast between the lesion and
surrounding area. (a) Original image. (b) The denoised and background-removed breast region. (c) The
pseudo-color image generation process and the synthesized pseudo-color image. (d) The input image with
padding and scaling for training a network.

Paired standard mammogram views network

The Unet is a prominent CNN-based semantic segmentation model widely applied in medical image
segmentation due to its exceptional performance, as noted across various studies®’~*°. This research introduces a
PMVnet structure with a Unet comprising two core components: a contracting path (encoder) and an expanding
path (decoder) with a multi-input design®!.

To clearly understand the baseline model used for comparison, we define SMVnet as a single-view
mammography network. Unlike PMVnet, which utilizes paired views to improve performance, SMVnet is a
traditional Unet-based model that processes only one mammography view at a time. The SMVnet model in this
study leverages the Unet architecture with various encoders such as VGG, ResNet, and Efficientnet to ensure a
fair and thorough performance evaluation. By comparing the SMVnet-based model with PMVnet, we aim to
directly evaluate the benefits of integrating paired-view information.

Figure 4 shows an example of the proposed model structure. This approach involves sharing weights by
treating two standard images as a unified representation of one breast. We employed cosine similarity and an
attention mechanism based on squeeze and excitation (SE) techniques®?, effectively integrating the feature maps
between the two images. The models trained on an Nvidia V100 GPU with configurations as follows: 4 batch
sizes; 100 epochs; learning rate of 0.0001; focal loss; the learning rate was set to decrease by a factor of 0.1 if the
loss did not decrease for 15 epochs on the validation data.

Let the outputs extracted from the encoders of each view be O.. and Omio, respectively, and the
concatenation of the two outputs be O. Let the size of the feature map of the O be HxWxC, the ¢ feature
map by F¢, squeezing the spatial information be Sc, the output applied the SE technique to the O be Or, the
operation by the fully connected layer with n outputs be Cn (z), the sigmoid function be ¢ (x) and the Relu
function be R (z), and the following operations are applied. In this study, the reduction ratio was set to 4.

1
Se= T 2o o 2 ik (”
Or =0 (Cu (R(Cz (S0)))) )

Therefore, we let the feature maps activated by the SE technique be O/ cc and O/ 0, respectively, they can be
represented as follows:

O/ cc = Occ . O/ (3)
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Fig. 3. Examples of augmented images with the data scaling process applied. The final preprocessed image
was zero-padded to be 512 x 512 in size. (a) Resized by keeping the original aspect ratio centered on the center
of the image and applying padding on either side. (b) Resized to 512 x 512, ignoring the original proportions.
(c) Resized to 4/3 times the original aspect ratio and flipped up and down. (d) Resized to 2 times the original
aspect ratio and flipped left and right.
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Fig. 4. The proposed PMVnet structure connects two U-shaped based models to form multiple inputs, and the

feature maps extracted through each CC and MLO encoder are combined and fused, and then the squeeze-
and-excitation method is applied to each feature map at the decoder to measure the cosine similarity based on

dot product.
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Equation (5) is applied to the results extracted using Egs. (3) and (4), and the result is applied to the feature map
for each image through a scalar product to ensure that the similarity between the two images contributes to the
feature extraction.

FATIBI vl A2, B

fcos (A7 B) = (5)

Performance assessment

The performances of the models were evaluated and compared to verify their effectiveness. The data used for the
performance evaluation were 80 mammograms of the CC view and 80 mammograms of the MLO view that were
not used for training. The performance of each model was evaluated using the same data. TP indicates that the
model predicted a lesion area as a lesion area, FP indicates that the model predicted a no-lesion area as a lesion
area, and FN indicates that the model predicted a lesion area as not a lesion area. TN indicates that the model
predicted a no-lesion area as not a lesion area. The TP, FP, FN, and TN were calculated by comparing the ground
truth generated by the radiologist. The breast lesion area was predicted by each model on a pixel-by-pixel basis
for semantic segmentation assessment using dice similarity coefficient (DSC), recall (same as sensitivity), and
precision.

To evaluate lesion detection performance for investigating localization results, we generated a bounding box
that included the lesion area (Fig. 5). The intersection of union (IoU) is an evaluation metric based on the
overlap between two regions. In this study, we measured the IoU for the ground truth and the predicted region
using a model based on the region containing the lesion and defined the measured IoU value for the predicted
region as TP if it was above 0.1, FP if it was below 0.1, and FN if there was no predicted region to compare
with the reference image region. Using these metrics, we calculated the recall, precision, and false positives per
image (FPPI) to derive and analyze the performance of the model in detecting lesion-containing regions. The
evaluation formulae are as follows:

(b) (c) (d)

Fig. 5. Example of generating lesion regions for detection performance evaluation from semantic
segmentation results. In (c) and (d), the red rectangle represents the converted rectangular format of the
detection result containing the lesion. (a) Segmented lesions extracted from the model. The red-blended areas
represent lesion regions predicted using the proposed model. (b) The converted area includes lesions generated
by morphological operations from the segmentation results. (c) Conversion to the lesion detection format.

The red squares represent the lesion-containing regions detected by the morphology operation based on the
model predictions. (d) the final format of the lesion region reconstructed from the image size changes during
preprocessing, considering the proportion and position of the original image.

Scientific Reports |

(2025) 15:4406 | https://doi.org/10.1038/s41598-025-88907-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

2TP

D =
5¢ 2P+ FP+ FN ©
TP
RSCCL” = m (7)
.. TP
Precision = TP+ FP (8)
FPPI = FpP 9)

the Number of images

Results

In this study, VGGnet16, Resnet50, and EfficientnetB5 were employed as encoder networks in the proposed
U-shaped SMVnet and PMVnet-based models. The study aimed to assess the effectiveness of the proposed
models and understand the underlying reasons by evaluating the performance of each configuration. In addition,
a pretrained model with ImageNet weights was applied to the encoder structure of each model, and the results
were compared??.

Table 1 lists the performance evaluation results for semantic segmentation, detailing how variations in
the encoding stage of each model influenced the outcomes, as observed across different experiments. In the
models without pretrained weights (plain), the proposed PMVnet resulted in a DSC of 0.709 for the VGGnet16
encoder-based model, 0.652 for the Resnet50-based model, and 0.707 for the EfficientnetB5 model. Except for
based on EfficientnetB5, the PMVnet-based model showed higher performance in all the values. However, when
the models were initialized by ImageNet weights, overall values in PMVnet outperformed SMVnet. Figure 6
illustrates the semantic segmentation outcomes of both SMVnet and PMVnet with frameworks that employ
VGGnet16, Resnet50, and EfficientnetB5 models as the encoder.

Table 2 compares the detection performance of each model for the region containing the lesion. It shows
that the VGGnet16-based model achieved an overall performance improvement of 0.137 for recall and 0.032
for FPPI, and the Resnet50-based model achieved an improvement of 0.012 for recall and 0.050 for FPPI for
the PMVnet. The EfficientnetB5-based model showed an improvement in sensitivity of 0.013 and a decrease in
FPPI of 0.013. In the pixel-to-pixel comparison of semantic segmentation, the EfficientnetB5-based paired view
model performed worse than the single-view model across all performance metrics but better in sensitivity in
the region containing the lesion.

Discussion

To investigate the effectiveness of PMVnet in improving the performance of breast lesion detection, we analyzed
the performance assessment results for segmentation and detection with and without ImageNet weights. The
segmentation results show that the VGGnet16-based encoders exhibit the largest performance improvement
when using PMVnet, followed by Resnet50 and EfficientnetB5, and that the performance improvement decreases
as the model structure becomes more complex. PMVnet, designed to extract individual feature maps for each
view image and concatenate the feature maps, experiences a rapid increase in the number of parameters as the
encoder structure deepens and becomes more complex. Due to this parameter proliferation, applying PMVnet
to the same architecture without structural modifications may impede model optimization. Furthermore,
the highest performance of VGGnet16, the shallowest and simplest structure in this study, indicates that it
is optimized for extracting feature maps from data owing to its structural characteristics. Therefore, in this
study, we show that the model size and depth are not necessarily correlated to the performance of the networks
and data. Numerous studies indicate no direct correlation between model size and performance. To enhance
performance, various strategies have been employed, including modifying the activation function, refining the
loss function, and adjusting factors such as the resolution of the input image, the depth of the model layers, and

w/o.

ImageNet weight | Model DSC (95% CI) Precision (95% CI) | Recall (95% CI)
VGGnet16 based-PMVnet 0.709 (0.671-0.748) | 0.693 (0.652-0.734) | 0.782 (0.742-0.821
VGGnet16 based-SMVnet 0.579 (0.531-0.627) | 0.590 (0.542-0.639) | 0.653 (0.601-0.705

Resnet50 based-PMVnet

0.652 (0.608-0.696

0.638 (0.592-0.683)

0.712 (0.665-0.758

Resnet50 based-SM Vnet

0.643 (0.598-0.688

0.624 (0.578-0.670)

0.730 (0.682-0.778

EfficientnetB5 based-PM Vnet

0.692 (0.651-0.734)

0.765 (0.722-0.808

EfficientnetB5 based-SMVnet

0.709 (0.669-0.750

0.688 (0.646-0.730)

0.792 (0.750-0.833

VGGnet16 based-PMVnet

0.690 (0.648-0.732

0.687 (0.643-0.731)

VGGnet16 based-SMVnet

0.644 (0.599-0.689

0.655 (0.609-0.701)

0.699 (0.651-0.747

Resnet50 based-PMVnet

)
)
)
)
0.707 (0.666-0.748)
)
)
)
)

0.677 (0.635-0.720

0.676 (0.632-0.719)

0.734 (0.689-0.779

Resnet50 based-SM Vnet

0.658 (0.614-0.703)

0.658 (0.613-0.703)

0.729 (0.682-0.776

EfficientnetB5 based-PMVnet

0.743 (0.707-0.779)

0.725 (0.686-0.763)

0.801 (0.763-0.839

EfficientnetB5 based-SMVnet

0.733 (0.695-0.772)

0.715 (0.675-0.756)

(
(
(
(
(
0.739 (0.695-0.783
(
(
(
(
(

0.810 (0.772-0.849

Table 1. Performance results of semantic segmentation. w with, w/o. without.
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EfficientnetBS based models results

Fig. 6. Example of segmentation results from models utilizing encoders based on VGGnet16, Resnet50, and
EfficientnetB5 for the Hologic (left) and GE (right) cases. (a) Original image. (b) Ground truth. (c) SMVnet-
based model results. (d) PMVnet-based model results.

the number of channels in the extracted feature map***°. In the future, we must develop a model with an optimal
architecture by considering components such as the size of the input data and the number of channel layers.
Moreover, to verify the suitability of the PMVnet for sharing significant positional information between
the two standard views, we analyzed the detection performance by converting it into breast lesion inclusion
regions. For all models, the recall value of the detection performance was proportional to the DSC value of the
segmentation result; however, in contrast to the segmentation performance of the EfficientnetB5 model, the
model with PMVnet showed higher performance. Figure 7 shows examples of conversion to breast lesion areas
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DSC: 0.685

DSC: 0.513

ImageNet weight | Model Recall (95% CI) Precision (95% CI) | FPPI (95% CI)
VGGnet16 based-PMVnet 0.950 (0.912-0.988) | 0.900 (0.859-0.941) | 0.156 (0.092-0.220)
VGGnet16 based-SMVnet 0.813 (0.749-0.876) | 0.747 (0.684-0.809) | 0.188 (0.118-0.257)
Resnet50 based-PMVnet 0.900 (0.854-0.946) | 0.868 (0.819-0.916) | 0.175 (0.102-0.248)

wlo Resnet50 based-SMVnet 0.888 (0.839-0.936) | 0.834 (0.783-0.886) | 0.225 (0.149-0.301)
EfficientnetB5 based-PMVnet | 0.919 (0.874-0.964) | 0.906 (0.863-0.950) | 0.113 (0.060-0.165)
EfficientnetB5 based-SMVnet | 0.906 (0.862-0.951) | 0.906 (0.862-0.951) | 0.100 (0.053-0.147)
VGGnet16 based-PMVnet 0.906 (0.862-0.951) | 0.884 (0.838-0.931) | 0.144 (0.087-0.201)
VGGnet16 based-SMVnet 0.856 (0.802-0.911) | 0.793 (0.736-0.849) | 0.181 (0.119-0.244)
Resnet50 based-PM Vnet 0.922 (0.877-0.967) | 0.884 (0.839-0.930) | 0.156 (0.090-0.223)

v Resnet50 based-SMVnet 0.888 (0.839-0.936) | 0.853 (0.803-0.903) | 0.188 (0.111-0.264)
EfficientnetB5 based-PMVnet | 0.931 (0.892-0.971) | 0.903 (0.861-0.945) | 0.131 (0.076-0.187)
EfficientnetB5 based-SMVnet | 0.938 (0.901-0.974) | 0.909 (0.870-0.949) | 0.131 (0.073-0.189)

Table 2. Performance results of lesion detection. w with, w/o. without.

DSC: 0.429

DSC: 0.441 DSC: 0.683 DSC: 0.375 DSC: 0.695 DSC: 0.589

Fig. 7. Example of lesion-containing region detection results from a PMVnet-based model utilizing the
EfficientB5 encoder, where the Dice similarity coefficient (DSC) is less than or equal to 0.707 (average) but is
rated as a true positive (TP) in the detection region performance evaluation. Red squares represent regions the

model estimates; green squares represent ground truth.

by the EfficientnetB5-based PMVnet model, which showed a low DSC performance below 0.7; however, the
detection performance was measured as TP. The results demonstrated that the large size of the model and the
excessive number of parameters in PMVnet did not significantly affect the extraction of feature maps required
for details in pixels but were significant in extracting effective feature maps for localization. Additionally, the
lower segmentation performance compared to detection is attributed to the challenges in accurately predicting
the boundaries and shape of the breast lesion.

Breast lesions on mammography can be subdivided according to shape, margin, and density according to
the Breast Imaging Reporting and Data System (BI-RADS), and there are significant differences between each
type. However, in this study, the type of breast lesion type was not considered when constructing the training
data, and all lesion types were classified as a single lesion. Thus, the prediction of the center of the lesion, which
shows a relatively high contrast for most lesion types in mammograms, was successful; however, the prediction
of the boundaries of various lesion types was not. The distinction between benign and malignant lesions is
crucial in diagnosing breast cancer, and the type of lesion is a significant indicator of this distinction. Therefore,
in future studies, a higher accuracy performance can be achieved by subdividing the types and developing data
distribution and learning models that consider them. Moreover, the classification of benign and malignant
lesions is an essential process in breast cancer diagnosis, and it is expected that the development of additional
models for the classification of such indicators will be crucial in assisting breast cancer diagnosis.
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Except for VGGnet16, utilizing ImageNet weights resulted in an overall improvement in the segmentation
and detection performance compared with the unweighted cases. Using ImageNet weights hindered feature
map extraction in the best-optimized model for the medical data used in this study by initializing the weights
fitted in real-world images. The detection performance results mirrored the improvement pattern seen in
segmentation. However, models based on EfficientnetB5 exhibited lower performance in Precision and FPPI for
detection, indicating that initializing to ImageNet did not universally enhance performance across all models in
this study. This result indicates that a comparative study on initializing the optimal weights and the optimized
model structure is necessary in the future. In addition, because breast cancer diagnosis uses mammograms as
well as breast ultrasound and magnetic resonance imaging data, we plan to develop PMVnet-based algorithms
optimized for breast lesion detection by fusing data from various modalities.

While this study presents a novel approach for effectively merging dual-view mammographic information
through the proposed PMVNet, certain limitations exist. First, since this study mainly focused on the structural
and methodological aspects of integrating paired mammography views to improve diagnostic accuracy, we did
not analyze the computational efficiency. This lack of processing time and efficiency is important for real-world
clinical applications. In future work, we will evaluate and optimize the computational efficiency of the proposed
method to increase its effectiveness in real-world settings. In addition, the dataset used in this study consisted of
only abnormal cases, which limits the generalizability to datasets containing both normal and abnormal cases.
In future studies, incorporating a balanced dataset will help ensure the proposed model’s broad applicability and
robustness. Finally, although this study’s performance analysis was objectively validated based on quantitative
evaluation, it did not include subjective evaluation by expert radiologists, which affects real-world usability.
Incorporating expert feedback in future studies would provide valuable insights into the proposed method’s
clinical validity and utility. Furthermore, the effectiveness of PMVNet needs to be validated in more extensive
and diverse populations to ensure its applicability in real-world clinical settings. Testing the model across varied
demographic groups will help assess its generalizability and robustness in diverse patient populations, which is
an essential next step for ensuring the clinical utility of the proposed method.

Conclusion

In this study, we proposed a PMVNet, paired mammogram view images-based breast mass detection algorithm,
considering that both CC and MLO views are utilized as reference images in clinical diagnosis. The PMVNet
applied the SE method and cosine similarity to the feature maps extracted from the two view images to share the
weights so that the feature information of the two images can be employed by each other. To verify PMVNet, we
compared it to the performance of the single-view-based algorithm, and the results showed overall improved
detection performance compared to the contrast algorithm. However, as the models size increased, the proposed
algorithm’s effectiveness decreased, and the Efficientnet-based model showed the same or even relatively lower
performance values. This is because many more parameters are extracted from the PMVNet structure, and the
more complex encoder structure does not help improve performance due to excessive parameters unsuitable for
fitting the data. In future work, we will develop a structured algorithm to optimize it. In addition, applying the
clinical diagnostic approach utilized in this study to mammograms and 3D-based digital breast tomosynthesis
data is expected to help clinicians diagnose breast cancer as a computer-aided diagnosis system.
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