
Academic Editor: Jae-Ho Han

Received: 8 January 2025

Revised: 10 February 2025

Accepted: 10 February 2025

Published: 12 February 2025

Citation: Kim, Y.J.; Hwang, S.H.;

Kim, K.G.; Nam, D.H. Automated

Imaging of Cataract Surgery Using

Artificial Intelligence. Diagnostics 2025,

15, 445. https://doi.org/10.3390/

diagnostics15040445

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Automated Imaging of Cataract Surgery Using Artificial Intelligence
Young Jae Kim 1,† , Sung Ha Hwang 2,†, Kwang Gi Kim 3,* and Dong Heun Nam 2,*

1 Gachon Biomedical & Convergence Institute, Gil Medical Center, Gachon University,
Incheon 21565, Republic of Korea; kimyj10528@gmail.com

2 Department of Ophthalmology, Gil Medical Center, College of Medicine, Gachon University,
Incheon 21565, Republic of Korea; sungha@gilhospital.com

3 Department of Biomedical Engineering, Gil Medical Center, College of Medicine, Gachon University,
Incheon 21565, Republic of Korea

* Correspondence: kimkg@gachon.ac.kr (K.G.K.); eyedawns@gilhospital.com (D.H.N.);
Tel.: +82-32-458-2818 (K.G.K.)

† These authors contributed equally to this work.

Abstract: Objectives: This study proposes a state-of-the-art technology to estimate a set
of parameters to automatically display an optimized image on a screen during cataract
surgery. Methods: We constructed an architecture comprising two stages to estimate the
parameters for realizing the optimized image. The Pix2Pix approach was first introduced
to generate fake images that mimic the optimal image. This part can be considered a
preliminary step; it uses training datasets comprising both an original microscopy image
as the input data and an optimally tuned image by ophthalmologists as the label data.
The second part of the architecture was inspired by ensemble learning, in which two
ResNet-50 models were trained in parallel using fake images obtained in the previous step
and unprocessed images. Each set of features extracted by the ensemble-like scheme was
exploited for the regression of the optimal parameters. Results: The fidelity of our method
was confirmed through relevant quantitative assessments (NMSE 121.052 ± 181.227, PSNR
29.887 ± 4.682, SSIM 0.965 ± 0.047). Conclusions: Subsequently, surgeons reassured that
the objects to be highlighted on the screen for cataract surgery were faithfully visualized by
the automatically estimated parameters.

Keywords: cataract surgery; parameter estimation; Pix2Pix; ensemble learning; ResNet-
50; regression

1. Introduction
Cataract surgery is one of the most common surgeries performed worldwide [1].

Owing to the help of several ophthalmologists and biomedical engineers, the technology
and equipment associated with cataract surgery have remarkably improved, and 3D heads-
up visualization systems are now being used [2]. This system has several advantages over
traditional methods performed through a microscope and can provide a three-dimensional
appearance of the crystalline lens and a far more enhanced depth of focus, which greatly
improves visibility [3–5]. In addition, medical assistants and nurses can check the progress
of the operation on the same screen as the operator, allowing smoother communication
during the surgery. It can also be appreciated as an advanced piece of equipment in
terms of ergonomics because the operator is able to watch the video with his head up
comfortably [6,7].

In cataract surgery using a 3D heads-up visualization system, it is crucial to appro-
priately adjust the screen parameters so that the lens and surrounding structures can be
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clearly observed [8,9]. However, a uniformly imaged screen cannot guarantee optimal
visibility, because the types and grades of cataracts vary from person to person. In addition,
the process of obtaining an optimized image by manipulating various sets of parameters in
real time is time-consuming and cumbersome. Considering the limitations and inconve-
niences stated previously, it would be of great help to introduce a system that automatically
calculates and applies parameters optimized for image visibility according to the type and
grade of each individual’s cataract.

Recently, deep learning-based medical image reconstruction has been extensively
studied, and many studies have been dedicated to the field of ophthalmology [10–14].
Nevertheless, to the best of our knowledge, there has been a lack of research related to
optimizing surgical images based on deep learning in 3D heads-up visualization systems for
cataract surgery. This study proposes an approach to extract and apply image parameters
optimized for individuals through raw images before commencing cataract surgery using a
deep learning-based optimal image visualization prediction model.

Predicting the parameters consisting of continuous values is equivalent to solving a lin-
ear regression problem using features extracted from raw microscopic images. Accordingly,
our ultimate goal to construct a model that faithfully maps a feature domain to a parameter
domain, eliciting only significant features that effectively represent the characteristics of the
raw datasets could be viewed as a key process for enhancing the accuracy of the regression
model to be built. This objective was attained by regressing a predefined parameter set
on the features extracted from two independently trained individual residual networks;
each output yielded by the two networks was combined into a one-dimensional array
and sent to a fully connected layer to estimate the optimal parameters. The parameters
determined using the proposed regression framework reproduced a surgical image that
was perceptually and numerically comparable to a reference image optimally tuned by
surgeons. To acquire promising results, we leveraged the aforementioned ensemble-like
model by concurrently analyzing two heterogeneous datasets, i.e., raw images and fake
images produced by generative adversarial networks (GANs).

The remainder of this paper is organized as follows: In Section 2, coupled with an
explanation of the comprehensive experimental procedure, the key concepts supporting
the neural network devised in this study are detailed. Afterwards, Section 3 delivers a
qualitative and quantitative assessment of the resulting images, followed by Section 4 that
discusses the contribution, novelty, and limitations of our work. Finally, we conclude this
paper with a summary and suggestions for future research.

2. Materials and Methods
2.1. Data Preparation

This study was approved by the Institutional Review Board (GDIRB2023-179) of
Gachon University and was performed in accordance with the tenets of the Declaration of
Helsinki. All the participants provided written informed consent.

A total of 1199 ocular microscopic images from 95 patients were acquired during
ocular surgery at Gachon University. Ocular microscopic images were acquired using the
NGENUITY 3D visualization system (Alcon, Fort Worth, TX, USA) combined with a Leica
M844 microscope (Leica Microsystems, Wetzlar, Germany). For further validation, 67 data
points from 29 patients taken with different microscopes were collected at the Gachon
University Gil Hospital. Data for further validation were acquired using a Leica Proveo-8
microscope (Leica Microsystems, Wetzlar, Germany), which is a newer model than the
M844 (Figure 1).
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image, respectively. 

Figure 1. Flowchart of the parameter estimation process for optimized imaging in cataract surgery.

From these images, ophthalmologists recorded eight control parameters: brightness,
saturation, contrast, cyan, gamma, magenta, hue, and yellow, enabling the realization of an
optimal visual configuration for highlighting the retinal areas by manually adjusting the
microscope, as shown in Figure 2.
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Figure 2. The leftmost panel contains scroll bars to adjust the eight parameters, and the two photos
positioned in the middle and the right display an unprocessed image and a manually optimized
image, respectively.

The manual tuning procedures for acquiring optimal surgical images were performed
by a physician (D.H.N.) using the NGENUITY 3D visualization and operating microscope.
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The surgical technique described in our previous studies was used in all cataract surgeries
with an illuminated chopper (Nam illumination probe with chopper, Oculight, Republic of
Korea) [15–17].

The 1199 sets of parameters collected served as the reference for estimating the optimal
parameter set. To address overfitting during the training process, 1199 pairs of images
and parameter sets were split into a validation set and a training set with a ratio of 1 to
9 equivalent to 10-fold cross-validation.

2.2. Segmentation of Region of Interest

First, to enhance the estimation accuracy of the parameters, we segmented only the
retinal area of interest from an entire image by excluding unwanted information such as the
sclera, trocars, and user interface (UI) texts. For the implementation of the process, we took
advantage of relevant built-in functions provided in OpenCV and scikit-image libraries.
The protocol for obtaining the region of our interest (ROI) is described as follows.

Color images were first converted to grayscale images, using which we determined
a threshold value to distinguish the distribution of the retinal area from the background
by means of histogram analysis [18]. Using the threshold, the grayscale images were
again transformed to binary images expressed in white, including the ROI, and black,
representing the areas to be removed. Subsequently, the adjacent white pixels merge with
each other, and consequently, several chunks of white shapes appear in the entire image.
Among the multiple white objects, the greatest one was considered the retinal area, and
other white pieces were turned into black pixels, where identifying the size of objects and
screening the most probable retinal area were performed using the remove small objects
method provided in the morphology computation package of scikit-image open-source
libraries [19]. Finally, the right, left, top, and bottom coordinates of the white single object
representing the ROI were used to crop the retinal area in the color images. The cropped
images were uniformly resized to a resolution of 512 × 512 pixels, and the pixel intensity
was set in the range of 0 to 255. However, because the values of each parameter were scaled
in different ranges, we normalized the ranges of individual types of parameters from zero
to one [20].

2.3. Proposed Framework

Various deep learning architectures that have evolved based on a convolutional neural
network have demonstrated the possibility of their application as a reliable solver in
diverse fields, such as image classification, semantic image segmentation, and medical
image analysis, and their success is known as being attributed to their efficient and powerful
feature extraction ability [21–23]. We adopted ResNet-50 for feature extraction from input
images. ResNet, which is a short residual neural network, is able to learn more complex
features because it enables models to train in far deeper layers by introducing residual
blocks that mitigate gradient vanishing [24].

On the other hand, to form a more robust feature domain, we trained the identical
ResNet-50 model in parallel to the one stated above, which uses fake images produced
by the Pix2Pix approach as input datasets. This approach was developed to address the
image-to-image translation problem as a member of the GAN family. Our study exploited
the model to replicate manually tuned optimal images [25,26]. Table 1 provides the layers
and parameters for the Pix2Pix model. We expected that concurrently using the features
acquired from the fake images would lead to a more desirable parameter estimation than
using features only taken from the raw microscopic images because the fake images are
capable of successfully mimicking images adjusted by the optimal parameters.
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Table 1. Summary of the Pix2Pix model architecture.

Layer Type Output Shape Activation Parameters

0 Input Layer (512, 512, 3) - 0
1 Conv2D (256, 256, 64) LeakyReLU 3136
2 Conv2D (128, 128, 128) LeakyReLU 131,200
3 Conv2D (64, 64, 256) LeakyReLU 524,544
4 Conv2D (32, 32, 512) LeakyReLU 2,097,664
5 Conv2D (16, 16, 512) LeakyReLU 4,194,816
6 Conv2D (8, 8, 512) LeakyReLU 4,194,816
7 Conv2D (4, 4, 512) LeakyReLU 4,194,816
8 UpSampling2D (8, 8, 512) - 0
9 Conv2D (8, 8, 512) ReLU 4,194,816
10 UpSampling2D (16, 16, 512) - 0
11 Conv2D (16, 16, 512) ReLU 8,389,120
12 UpSampling2D (32, 32, 512) - 0
13 Conv2D (32, 32, 512) ReLU 8,389,120
14 UpSampling2D (64, 64, 512) - 0
15 Conv2D (64, 64, 256) ReLU 4,194,560
16 UpSampling2D (128, 128, 256) - 0
17 Conv2D (128, 128, 128) ReLU 1,048,704
18 UpSampling2D (256, 256, 128) - 0
19 Conv2D (256, 256, 64) ReLU 262,208
20 UpSampling2D (512, 512, 64) - 0
21 Conv2D (512, 512, 3) Tanh 6147

The features extracted from the two ResNet-50 models independently trained were
integrated into a single vector, which was subsequently fed into the fully connected layer
via linear regression. The design of the proposed architecture can be viewed as an ensemble
technique in the sense that the output from two independent models simultaneously
contributes to the estimation of the parameters.

The overall workflow is depicted in Figure 3, and the changes in the loss function
during the training process for each cross-validation fold are shown in Figure 4.
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2.4. Metrics

In this study, the performance of the proposed algorithm was evaluated using normal-
ized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR), and structural
similarity index measure (SSIM). The NRMSE measures the difference between the raw
and restored images, with values close to zero indicating little or no difference. PSNR
measures the signal-to-noise ratio between the raw and restored images, with higher values
indicating a smaller difference. The SSIM measures the structural similarity between raw
and restored images, with values close to 1 indicating little to no difference [27].

Furthermore, for quantitative analysis of visualization, brightness, contrast, and sharp-
ness were measured and compared. Brightness represents the overall brightness level of an
image, with higher values indicating brighter images and lower values indicating darker
images [28]. The contrast represents the difference in brightness between adjacent pixels in
an image, with higher values indicating greater contrast and lower values indicating less
distinct differences in brightness [29]. Sharpness indicates the clarity and crispness of an
image; higher values indicate sharper edges and boundaries [30].

The following equations show the calculation process for each metric: N represents
the total number of pixels. I represents the reference image obtained by applying the
eight parameters manually adjusted by an ophthalmologist, and P represents the resulting
image obtained by applying the eight predicted parameters to the original image using
the proposed method. Imax and Imin represent the brightest and darkest values in image I,
respectively. L(I, P) represents the brightness similarity between I and P, C(I, P) represents
the contrast similarity between I and P, and S(I, P) represents the structural similarity
between I and P. α is the weighting parameter. µI and µP are the means of the brightness
of images I and P, respectively. σI and σP are the standard deviations of the contrast
of images I and P, respectively. σIP is the covariance of images I and P. C1, C2, and C3

represent constants.

NRMSE =

√
∑(I−P)2

N
Imax + Imin

(1)

PSNR =
Imax

2

1
N ∑(I − P)2 (2)

SSIM = [L(I, P)× C(I, P)× S(I, P)]α (3)

L(I, P) =
2µIµP + C1

µI2µP2 + C1
(4)

C(I, P) =
2σIσP + C2

σI2σP2 + C2
(5)

S(I, P) =
2σIP + C3

σIσP + C3
(6)

3. Results
In this study, we utilized eight parameters that were manually adjusted by an ophthal-

mologist (reference images) and eight parameters predicted using our proposed method.
These parameters were applied to raw images of a distinct test set. Subsequently, a com-
parative analysis of the resulting images was performed. The images generated by the
proposed method exhibited results that were visually similar to the reference images across
both the M844 and Proveo-8 datasets. Figures 5 and 6 show the resulting images on the
M844 and Proveo-8 datasets, respectively.
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To evaluate the performance of the proposed model, we measured NRMSE, PSNR,
and SSIM using a separately constructed test set (Table 2). The results demonstrate that
the M844 dataset achieved good performance across all three metrics, with NRMSE, PSNR,
and SSIM values of 0.09 ± 0.06, 29.89 ± 4.68, and 0.97 ± 0.05, respectively. Conversely, the
Proveo-8 dataset exhibited lower performance compared to the M844 data, with NRMSE,
PSNR, and SSIM values of 0.23 ± 0.09, 22.63 ± 2.99, and 0.92 ± 0.05, respectively.

Table 2. Quantitative performance evaluation of the proposed model on a test set.

NRMSE PSNR SSIM

M844 0.09 ± 0.06 29.89 ± 4.68 0.97 ± 0.05
Proveo-8 0.23 ± 0.09 22.63 ± 2.99 0.92 ± 0.05

For a quantitative analysis of the visualization, we measured the brightness, contrast,
and sharpness and compared them to the raw and reference images (Table 3). The results
indicate that, in the M844 dataset, the reference image shows significantly higher brightness,
contrast, and sharpness values than the raw image (p < 0.001). Furthermore, the proposed
model exhibited significantly higher values for all metrics compared with the raw image
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(p < 0.001). When compared with the reference image, the proposed model performed
similarly, with no statistically significant differences in brightness (p = 0.306), contrast
(p = 0.368), or sharpness (p = 0.203). In the case of the Proveo-8 dataset, the reference image
demonstrated significantly higher values than the raw image in terms of contrast and
sharpness (p < 0.001), but not brightness (p = 0.097). Additionally, the proposed model
displayed significantly higher values for all metrics compared to the raw image (p < 0.001).
Notably, in contrast to the M844 dataset, the proposed model exhibited significantly higher
or lower values (p < 0.001) in terms of brightness, contrast, and sharpness compared with
the reference image.

Table 3. Quantitative analysis of three visualization metrics: brightness, contrast, and sharpness.

Raw Reference Proposed p * p # p †

Brightness
M844 28.02 ± 9.51 37.70 ± 13.23 38.28 ± 14.22 <0.001 <0.001 0.306

Proveo-8 14.30 ± 3.71 13.95 ± 4.14 17.52 ± 4.66 0.097 <0.001 <0.001
Contrast

M844 37.03 ± 6.48 45.86 ± 8.39 46.16 ± 8.02 <0.001 <0.001 0.368
Proveo-8 28.66 ± 4.37 30.20 ± 5.45 33.90 ± 5.58 <0.001 <0.001 <0.001

Sharpness
M844 0.94 ± 0.06 4.65 ± 1.39 4.72 ± 1.14 <0.001 <0.001 0.203

Proveo-8 3.64 ± 0.87 5.25 ± 1.18 4.91 ± 1.13 <0.001 <0.001 <0.001

* t-test between the raw and reference images. # t-test between the raw image and the proposed method. † t-test
between the reference image and the proposed method.

4. Discussion
Cataract surgery is performed in several stages, each of which requires a dedicated,

optimized image. More specifically, for continuous curvilinear capsulorhexis, the region
of the anterior capsule should be displayed with an obvious contrast to other objects. For
phacoemulsification, it is necessary to highlight the thickness and structure of the lens.
However, when performing lens capsule polishing, the anterior and posterior capsules
should be clearly visualized [31–33]. We successfully revealed that tedious parameter-
tuning processes relying only on manual work could be automated while ensuring a
quality equivalent to the level of hand operation. Moreover, the most promising benefit of
this study is that the optimization process is instantaneously realized.

One of the main limitations of our model is that it was exclusively trained on data
captured using the M844 equipment. This dependency on training data poses a potential
weakness. To address this limitation, we conducted an evaluation using images from
a different equipment, namely, the Proveo-8. This dataset was not utilized during the
training process and served as a means of assessing the generalization capabilities of
our model. The results indicate that our model achieved a high level of similarity with
the reference images for both the M844 (SSIM: 0.97 ± 0.05) and Proveo-8 data (SSIM:
0.92 ± 0.05). In the quantitative analysis of visualizations aimed at assessing the visibility
improvement, our model exhibited higher brightness, contrast, and sharpness values than
the raw images in both the M844 and Proveo-8 datasets. However, the high values alone
do not guarantee optimal visibility. The objective of our model is to closely approximate
a manually manipulated image of optimal quality. Therefore, the closer the brightness,
contrast, and sharpness values align with those of the reference image, the closer we achieve
optimal quality.

For the M844 dataset, our model demonstrated minimal differences in brightness
(p = 0.306), contrast (p = 0.368), and sharpness (p = 0.203) compared with the reference
image. Conversely, for the Proveo-8 dataset, significant differences were observed in
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brightness (p < 0.001), contrast (p < 0.001), and sharpness (p < 0.001) compared to the
reference image. These findings suggest that the proposed model successfully replaces the
traditional manual manipulation of the M844 data, indicating optimal quality. However,
the results did not meet the expectations of the Proveo-8 data in terms of achieving optimal-
quality images. Nevertheless, the relatively good SSIM scores indicate the potential of the
proposed model for new equipment and third-party equipment data. The limitations can
be addressed in the future by collecting training data from various types of equipment.

These limitations can be addressed by collecting training data from a broader range
of equipment in the future and further training the model. Data obtained from various
types of devices and diverse patient populations can foster more generalized learning.
Accordingly, we plan to acquire and train additional data from multiple institutions using
different equipment and subsequently validate the performance of our model.

Our model has the advantage of being deployable in real surgical environments at
any time, provided the equipment used matches that employed during training. Although
it can be applied to devices not included in the training dataset—such as the Proveo-8
microscope used in this study—it is challenging to guarantee performance levels that
meet expectations. Therefore, to deploy the model in an environment other than the
M844 microscope, additional training must be conducted using images captured from the
new equipment.

Furthermore, deploying the model on the surgical equipment itself (i.e., on-device)
typically requires collaboration with the manufacturer, which may pose limitations due
to conflicts of interest or other constraints. To circumvent these issues, one can instead
use a dedicated computer or laptop. By connecting an external computer to the micro-
scope to receive real-time images, the model can predict and provide optimal parameters.
This approach allows indirect use of our model without direct collaboration from the
equipment manufacturer.

5. Conclusions
We propose a deep learning-based model for predicting parameters, aiming to provide

optimized images for cataract surgery. The results demonstrated a high level of perfor-
mance and visualization quality. If the limitations concerning model generalization can
be addressed through further research, it holds the potential for application in cataract
surgery, offering valuable assistance to numerous ophthalmic surgeons.
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