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Abstract 
Esophageal cancer is one of the most common cancers worldwide, especially esopha-

geal squamous cell carcinoma, which is often diagnosed at a late stage and has a poor 

prognosis. This study aimed to develop an algorithm to detect tumors in esophageal 

endoscopy images using innovative artificial intelligence (AI) techniques for early diag-

nosis and detection of esophageal cancer. We used white light and narrowband imaging 

data collected from Gachon University Gil Hospital, and applied YOLOv5 and RetinaNet 

detection models to detect lesions. The models demonstrated high performance, with 

RetinaNet achieving a precision of 98.4% and sensitivity of 91.3% in the NBI dataset, and 

YOLOv5 attaining a precision of 93.7% and sensitivity of 89.9% in the WLI dataset. The 

generalizability of these models was further validated using external data from multiple 

institutions. This study demonstrates an effective method for detecting esophageal tumors 

through AI-based esophageal endoscopic image analysis. These efforts are expected to 

significantly reduce misdiagnosis rates, enhance the effective diagnosis and treatment of 

esophageal cancer, and promote the standardization of medical services.

Introduction
Esophageal cancer is the eighth most common cancer worldwide and ranks among the top 10 
fatal cancers [1]. However, almost all patients with esophageal adenocarcinoma are diag-
nosed at the end of the disease, and their prognosis is poor [2]. Currently, most diagnoses of 
esophageal squamous epithelial cell carcinoma are made using white-light imaging (WLI) 
endoscopy, and if dysplastic tissue is detected early, it can be treated with endoscopic muco-
sal resection and radio-frequency ablation [3]. Therefore, early detection and diagnosis are 
important for the survival and prognosis of patients with esophageal cancer [4]. Early diag-
nosis using WLI alone is difficult [5]. Instead of the iodine staining method, which induces 
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problems such as chest pain, discomfort, and increased procedure time, a useful technique 
was used to identify the structure by emphasizing the microvessels on the surface of the 
esophageal squamous cell carcinoma using narrowband imaging (NBI) [6]. NBI can help 
detect and diagnose early esophageal squamous epithelial cell carcinoma [7]. The complexity 
of esophageal squamous epithelial cell carcinoma, characterized by its much more refined 
and intricate shape compared to polypoid lesions, makes its accurate detection all the more 
challenging [8]. The use of conventional endoscopes is limited because they cannot easily 
discern the subtle changes in the initial lesion nor the number of biopsies, and lack high- 
definition imaging [9]. In addition, variability arises because of repeated and varied factors 
(experience, condition, fatigue, and mistakes) for the most important lesions [10]. Hence, the 
diagnostic accuracy of endoscopy may be reduced, and variations may occur depending on 
the diagnosis made by an inexperienced specialist [11,12]. Thus, diagnostic assistance using 
artificial intelligence (AI) technology is needed to improve the quality of healthcare services 
and reduce the occurrence of medical errors by diagnosing and assisting medical staff in the 
medical field [13].

Recently, AI technology utilizing deep learning (DL) with Convolutional Neural Net-
works (CNNs) has been applied in the medical field for the detection of various lesions in 
endoscopic images [14]. It has shown excellent results in the diagnosis and detection of 
lesions in the stomach, small intestine, and colon. Diagnosis using AI can help medical staff 
detect lesions early [15–17]. Wang et al. developed a deep learning algorithm to evaluate the 
difference in polyp and adenoma detection performance through colonoscopy and validated 
its effectiveness, achieving a sensitivity of 94.3% and specificity of 95.9% [18]. Similarly, Xu 
et al. designed an architecture for real-time classification and detection of gastric polyps 
through gastroscopy, achieving 100% sensitivity and 95.4% specificity, with excellent per-
formance in detecting small polyps [19]. For oesophageal cancer, Goda et al. showed that 
magnified endoscopy with narrow-band imaging had a sensitivity of 78% and specificity of 
95%, comparable to non-magnified high-resolution endoscopy (sensitivity 72%, specificity 
92%) and high-frequency endoscopic ultrasound (sensitivity 83%, specificity 89%), and 
predicted the depth of invasion of superficial oesophageal squamous cell carcinoma, reduc-
ing the risk of overestimation by 25% compared to other techniques [20]. Nakagawa et al. 
found that an AI system using a single-shot multi-detector architecture to assess superficial 
squamous cell carcinoma achieved a sensitivity of 90.1%, specificity of 95.8%, and accuracy 
of 91%, which was similar to that of an experienced endoscopist, who achieved a sensitivity 
of 89.8, specificity of 88.3%, and accuracy of 89.6% [21]. Although there have been many 
CNN-based studies on lesion detection and diagnosis in various organs, medical data for 
esophageal squamous cell carcinoma is still limited compared to other datasets, which 
has led to problems such as overfitting and poor performance on new lesion images [22]. 
Wang et al. reported that Linked Colour Imaging had a specificity of 92.4% and sensitivity 
of 83.7% for oesophageal squamous cell carcinoma screening, which was similar to Lugol 
Chromoendoscopy with a specificity of 87% and sensitivity of 90.7%, and was promising 
for screening for squamous cell carcinoma and precancerous lesions in the general popula-
tion with a much shorter procedure time [23]. However, due to these technical difficulties, 
few studies have compared and evaluated white-light and narrowband images by applying 
deep learning for esophageal squamous epithelial cell carcinoma. Therefore, the usefulness 
of applying detection methods needs to be evaluated and analyzed by collecting various 
esophageal squamous epithelial cell cancer data on white-light and narrowband images of 
AI-based multicenters.

In this study, we propose an AI algorithm that assists medical staff in the early detection 
and diagnosis of esophageal squamous epithelial cell carcinoma by analyzing esophageal 
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endoscopy information based on collected data. In addition, to evaluate generalizability, the 
performance of the system was verified using multicenter data [24]. This system can be a 
useful tool for warning medical staff when dysplastic lesions are detected during esophageal 
endoscopy by overcoming the lack of generalizability compared with the results detected by 
endoscopy in one institution [25]. A deep learning algorithm for early detection of esopha-
geal cancer, utilizing multicenter data from narrowband and white-light imaging, can be an 
excellent method with the potential to enhance the efficiency and accuracy of diagnosis and 
treatment.

Materials and methods

Data acquisition and preprocessing
The data used in this study were obtained from 2,674 still images of 619 patients who under-
went esophageal endoscopy (WLI) from January 2016 to June 2020 at Gachon University Gil 
Hospital and 480 still images of 121 patients who underwent esophageal endoscopy (NBI). 
This study received approval from the Gachon University Gil Hospital Clinical Research 
Ethics Review Committee, and the need for informed consent was waived due to the retro-
spective nature of the study (IRB No. GDIRB2020-316). The data access date for research 
purposes began on January 15, 2023, and continued until the end of the study. All experimen-
tal protocols were performed in accordance with the relevant guidelines and regulations of the 
Declaration of Helsinki.

To prevent patient-level data leakage, all images from a single patient were assigned 
exclusively to one of the training, validation, or test sets. Patient IDs were used to group 
images, ensuring no overlap between datasets. This approach guarantees that the model’s 
performance metrics reflect its ability to generalize to unseen patient data. In the case of 
the WLI learning dataset, 2,674 sheets of normal, tumor-free, and tumor data from 619 
patients were analyzed in a ratio of 8:1:1, divided into 1,925 sheets of learning data from 477 
patients, 347 sheets of verification data from 60 patients, and 402 sheets of evaluation data 
from 82 patients, as shown in Table 1. In the case of the NBI learning dataset, based on the 
collected data, the dataset consisted of 480 sheets of 121 patients with tumors, divided into 
374 sheets of learning data from 97 patients, 37 sheets of verification data from 12 patients, 
and 69 sheets of evaluation data from 12 patients, as shown in Table 1. As the WLI and NBI 
data had different horizontal and vertical ratios, all the images were resized to 640 × 640 
pixels and used in the experiment.

To learn and verify the deep learning model, the ground truth was obtained by labeling the 
location of the lesion. In this study, the regions of interest (ROIs) were annotated by a gastro-
enterologist with more than 10 years of clinical experience to ensure accuracy and reliability. 
Using the ImageJ labeling software, a region of interest in the form of a rectangle, including 
the entire shape of the tumor, was displayed through a specialized inspection process. Among 
the collected data, one image was randomly selected for each image type and is presented in 
Fig 1 with labels.

Table 1.  Number of images collected for WLI/NBI data.

White-light imaging Narrowband imaging
Normal Cancer Total Cancer Total

Train 238 (1,037) 239 (888) 477 (1,925) 97 (374) 97 (374)
Validation 30 (178) 30 (169) 60 (347) 12 (37) 12 (37)
Test 53 (201) 29 (201) 82 (402) 12 (69) 12 (69)

https://doi.org/10.1371/journal.pone.0321092.t001

https://doi.org/10.1371/journal.pone.0321092.t001
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Configuration of deep learning detection models
The YOLOv5 model, which is a single-stage object detection framework, was applied to detect 
tumors in esophageal endoscopy images, as shown in Fig 2 [26]. YOLO, which was used as a 
feature extraction model, predicts multiple areas in an image simultaneously using one con-
volution network and analyzes the class probability through a single regression. Its learning 
speed is faster because there is no complex pipeline in the model, and its detection perfor-
mance is better than that of the R-CNN series model [27]. The parameters were normalized as 
the width and height of the image based on the ratio of the width and height of the bounding 
boxes. The prediction result of YOLO determines the final prediction label based on the pre-
diction annotation coordinates and class probability.

Second, the RetinaNet model of the single-stage object detection framework, which intro-
duced the concept of focus loss for the first time, was applied, as shown in Fig 2 [28]. Reti-
naNet comprises a backbone network and two subnetworks that perform classification and 
bounding-box regression, respectively. The backbone, which is a publicly available open con-
volution network, calculates a convolution feature map for the entire area of the input image. 
The first subnet performed object classification using the convolution output of the backbone. 
The second subnet obtained the coordinates of the bounding box (offset between the anchor 
and the reference point) through convolution at the backbone output.

Experiment setup
The experimental environment of this study used a system consisting of two NVIDIA 
GeForce GTX 2080 Ti (NVIDIA, Santa Clara, CA, USA) graphics processing units and an 
Intel® Xeon® Gold 6238 CPU @ 2.10 GHz and 32 GB of RAM and was executed on the 
Ubuntu 16.04 operating system. TensorFlow (version 1.14.0), PyTorch (version 1.7.1), Keras 
(version 2.2.4), and Python (version 3.6.12) were used for the deep learning.

Fig 1.  Labeling data for regions of interest. (a) white-light imaging (WLI). (b) narrow-band imaging (NBI).

https://doi.org/10.1371/journal.pone.0321092.g001

https://doi.org/10.1371/journal.pone.0321092.g001
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Deep learning model parameters and evaluation index
In this study, YOLOv5l was used among five model sizes, from YOLOv5sl to YOLOv5xl. The 
prediction and learning conditions of YOLOv5 were set to 200 epochs and a batch size of 16 
using an image size optimization algorithm of 640 × 640 and a learning rate of 1e-3 (Adam). 
An early stopping algorithm was applied to prevent overfitting. To compute the final loss in 
YOLOv5, we used the ComputeLoss function, which integrates class loss, objectivity loss, 
and bounding box loss. The prediction and learning conditions of RetinaNet were set to 200 
epochs and a batch size of 1 using an image size (learning rate) optimization algorithm of 
640 × 640 and a learning rate of 1e-5. To address class imbalance in RetinaNet, we employed 
Focal Loss. An early stopping algorithm was applied to prevent overfitting. Furthermore, we 
utilized the ReLU activation function in the backbone layer and the Sigmoid activation func-
tion in the final layer for classification.

The learned detection model was compared and analyzed using performance evaluation 
indicators such as precision, sensitivity, and false positives per image (FPPI). The confi-
dence score is an index that can determine the class classification and position detection 
results of the detected boundary box and is obtained by multiplying the probability of the 
class predicted by the model to be correct for the object detected with the intersection over 
union (IoU) value. A true positive (TP) is the case of correctly detecting the tumor loca-
tion obtained through the tumor location detection model; a false positive (FP) is the case 
of detecting the location without the tumor; and a false negative (FN) is the case of failure 
to detect the tumor. Using the confusion matrices, several performance indicators were 
calculated as (1), (2), (3), and (4). Precision is the ratio of what the model correctly identifies 

Fig 2.  Architecture for Tumor detection in esophageal Endoscopy images. (a) YOLOv5. (b) RetinaNet.

https://doi.org/10.1371/journal.pone.0321092.g002

https://doi.org/10.1371/journal.pone.0321092.g002
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among the predictions of a lesion, and sensitivity is the ratio of what the model predicts 
among the data with actual lesions. The ratio of the number of FP images detected per image 
was used for the FPPI, which indicates that the scale fluctuation was very wide, depending on 
the data. To compare and evaluate the detection performance, the change according to the 
adjustment of the parameter through the precision–recall curve with an exchange relation-
ship was graphically represented.

	 Precision TP
TP FP
=

+
	 (1)

	 Sensitivity TP
TP FN
=

+
	 (2)

	 FPPI FP
Number of images

=
  

	 (3)

	 IoU
Avea of Overlap
Area of Union

=
  
  

	 (4)

Additional experiments
To test the generalizability of the model, external validation was performed using images 
acquired from patients who underwent esophageal endoscopy (WLI and NBI) at Kyung-
hee Medical Center, Korea University Anam Hospital, and Hallym University Sacred Heart 
Hospital. For the WLI dataset, the detection performance of the model was tested using data 
from 112 tumors from Kyunghee Medical Center, 353 tumors from Korea University Anam 
Hospital, and 23 tumors from Hallym University Sacred Heart Hospital. For the NBI learning 
dataset, the detection performance of the model was tested using data from 29 tumors from 
Kyunghee University Hospital, 192 tumors from Korea University Anam Hospital, and 13 
tumors from Hallym University Sacred Heart Hospital.

Results and discussion

Performance comparison of detection network models
Based on the presence or absence of lesions in the esophageal endoscopy image, two classes 
of data—normal and with lesions—were designated, and the results detected by the AI model 
were analyzed. Esophageal lesions were defined as true, and no esophageal lesions were 
defined as false. When the IoU value between the prediction and correct answer areas was 0.5, 
the prediction was considered successful.

To confirm the precision, sensitivity, and FPPI according to the compliance threshold, 
the performances of the esophageal cancer detection models YOLOv5 and RetinaNet were 
compared and analyzed for the detection results with a threshold value of 0.1 or more, as 
shown in Table 2. In the WLI dataset, the YOLOv5 model detected images with a precision 
of 93.7%, a sensitivity of 89.9%, and an FPPI of 6%. The RetinaNet model detected images 
with a precision of 96.1%, a sensitivity of 88.4%, and an FPPI of 3.5%. In the NBI dataset, 
the YOLOv5 model detected images with a precision of 86.5%, a sensitivity of 84.0%, and an 
FPPI of 13%. The RetinaNet model detected images with a precision of 98.4%, a sensitivity of 
91.3%, and an FPPI of 1.4%. From the WLI dataset, 402 evaluation data points were obtained, 
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composed of 201 normal data points without tumors and 201 data points with tumors, and 
the performance of the detection model was evaluated. In the YOLOv5 model, 179 of the 201 
data points with tumors were determined as data with tumors (TP), and 20 were determined 
as data without tumors (FN). Moreover, 12 of the 201 normal data points without tumors 
were determined to have tumors (FP). In the RetinaNet model, 176 of the 201 data points with 
tumors were determined as data with tumors (TP), and 23 were determined as data without 
tumors (FN). Moreover, 7 of the 201 normal data points without tumors were determined as 
data with tumors (FP). By showing an example of image detection in Fig 3, the true detection 
results of the tumor location predicted by the detection model and the actual tumor location 
can be confirmed. In the NBI dataset, 69 evaluation data points with tumors were constructed 
to evaluate the performance of the detection model. In the YOLOv5 model, 58 of the 69 data 
points with tumors were determined as data with tumors (TP), and 11 were determined as 
data without tumors (FN). Nine normal data points without tumors were identified as data 
points with tumors (FP). In the RetinaNet model, 63 of the 69 data points with tumors were 

Table 2.  Performance evaluation metrics for detection models based on confidence thresholds from internal data.

Model TP FN FP Precision
(95% CI)

Sensitivity
(95% CI)

FPPI
(95% CI)

White-light imaging YOLOv5 179 20 12 0.937
(0.892–0.951)

0.899
(0.857–0.924)

0.06
(0.043–0.075)

RetinaNet 176 23 7 0.961
(0.88–0.984)

0.884
(0.80–0.954)

0.035
(0.016–0.043)

Narrowband imaging YOLOv5 58 11 9 0.865
(0.824–0.913)

0.840
(0.763–0.88)

0.13
(0.07–0.267)

RetinaNet 63 6 1 0.984
(0.951–0.99)

0.913
(0.842–0.944)

0.014
(0.008–0.035)

https://doi.org/10.1371/journal.pone.0321092.t002

Fig 3.  TP predictions from a trained model for tumor location detection. (a–d) YOLOv5, (e–h) RetinaNet. (blue color: ground truth, red color: predicted result).

https://doi.org/10.1371/journal.pone.0321092.g003

https://doi.org/10.1371/journal.pone.0321092.t002
https://doi.org/10.1371/journal.pone.0321092.g003
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determined as data with tumors (TP), and six were determined as data without tumors (FN). 
A normal datum without tumors was determined to be a datum with tumors (FP). As shown 
in Fig 4, the detection of FP and FN results for the tumor location predicted by the detection 
model and the actual tumor location can be confirmed from the internal data. FP results were 
obtained because of the prediction of shadows from normal data as lesions, which accounted 
for almost all cases. In addition, as shown in Fig 4b, when the lesion was very small and 
far away, the nearby crystal area was predicted to be an FP. The main cause of the FN pre-
dicted results was esophageal inflammation in the mucous membrane, as shown in Fig 4c. In 
addition, even when the lesion occupied the entire area, as shown in Fig 4d, it could not be 
predicted. Fig 5 shows the overall performance of the model with a precision–recall curve for 

Fig 5.  Precision–recall curves obtained using the detection model for internal data. (a) YOLOv5. (b) RetinaNet.

https://doi.org/10.1371/journal.pone.0321092.g005

Fig 4.  Prediction results of a trained model for detecting the location of a tumor. (a, b) False positive, FP. (c, d) 
False negative, FN. (blue color: ground truth, red color: predicted result).

https://doi.org/10.1371/journal.pone.0321092.g004

https://doi.org/10.1371/journal.pone.0321092.g005
https://doi.org/10.1371/journal.pone.0321092.g004
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the internal data. In general, the closer the curve is to the upper-right corner, the better the 
performance of the model. The two detection models identify the positive classes well and 
simultaneously consider the number of negative classes incorrectly classified as positive. In the 
detection model, recall with a low FN ratio was more important.

Through external verification, according to the presence or absence of lesions in the 
esophageal endoscopic image, two classes of data were designated as normal without lesions 
and with lesions, and the results detected by the AI model were analyzed. To confirm the 
precision, sensitivity, and FPPI according to the compliance threshold, the performances of 
the esophageal cancer detection models YOLOv5 and RetinaNet were compared and analyzed 
for the detection results with a threshold value of 0.1 or more, as shown in Table 3. In the WLI 
dataset, the YOLOv5 model detected images with a precision of 83.4%, a sensitivity of 79.4%, 
and an FPPI of 15.8%. The RetinaNet model detected images with a precision of 88.3%, a sen-
sitivity of 70.2%, and an FPPI of 9.2%. In the NBI dataset, the YOLOv5 model detected images 
with a precision of 85.6%, a sensitivity of 71.3%, and an FPPI of 11.9%. The RetinaNet model 
detected images with a precision of 88.3%, a sensitivity of 81.1%, and an FPPI of 10.6%. In the 
WLI dataset, 488 evaluation data points with tumors were constructed to evaluate the perfor-
mance of the detection model. In the YOLOv5 model, 387 of the 488 tumors were identified as 
data with tumors (TP) and 100 as data without tumors (FN). Moreover, 77 normal data points 
without tumors were identified as data with tumors (FP). In the RetinaNet model, 342 of 
the 488 tumors were determined as data with tumors (TP), and 145 were determined as data 
without tumors (FN). Moreover, 45 normal data points without tumors were identified as 
data with tumors (FP). By showing an example of image detection in Fig 6, the true detection 
results of the tumor location predicted by the detection model and the actual tumor location 
can be confirmed.

In the NBI dataset, 288 evaluation data points with tumors were constructed to evaluate the 
performance of the detection model. In the YOLOv5 model, 167 of the 288 tumors were iden-
tified as data with tumors (TP), and 67 were determined as data without tumors (FN). More-
over, 28 normal data points without tumors were identified as data points with tumors (FP). 
In the RetinaNet model, 190 of the 288 tumors were determined as data with tumors (TP), 
and 44 were determined as data without tumors (FN). Moreover, 25 normal data points with-
out tumors were identified as data points with tumors (FP). As shown in Fig 7, the detection 
of FP and FN results for the tumor location predicted by the detection model and the actual 
tumor location can be confirmed from external data. FP results were obtained because of the 
prediction of shadows from normal data as lesions, which accounted for almost all cases. In 
addition, as shown in Fig 7b, the overall lesion was predicted as an FP. The main cause of the 
result predicted as an FN was the presence of only a part of the lesion, as shown in Fig 7c. 
The case of esophageal inflammation of the mucous membrane shown in Fig 7d could not be 

Table 3.  Performance evaluation metrics for detection models based on confidence thresholds from external data.

Model TP FN FP Precision
(95% CI)

Sensitivity
(95% CI)

FPPI
(95% CI)

White-light imaging YOLOv5 387 100 77 0.834
(0.761–0.88)

0.794
(0.756–0.85)

0.158
(0.086–0.194)

RetinaNet 342 145 45 0.883
(0.82–0.956)

0.702
(0.657–0.782)

0.092
(0.057–0.18)

Narrowband imaging YOLOv5 167 67 28 0.856
(0.817–0.893)

0.713
(0.68–0.76)

0.119
(0.007–0.142)

RetinaNet 190 44 25 0.883
(0.853–0.947)

0.811
(0.766–0.89)

0.106
(0.08–0.181)

https://doi.org/10.1371/journal.pone.0321092.t003

https://doi.org/10.1371/journal.pone.0321092.t003
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predicted to be a lesion. Fig 8 shows the overall performance of the model with a precision–
recall curve for external data. In general, the closer the curve is to the upper-right corner, the 
better the performance of the model. The two detection models identify the positive classes 
well and simultaneously consider the number of negative classes incorrectly classified as pos-
itive. In the detection model, recall with a low FN rate is more important. High precision can 
lead to low recall, indicating that the model misses most of the tumor data.

Fig 6.  TP predictions from a trained model for tumor location detection. (a–d) YOLOv5, (e–h) RetinaNet. (blue color: ground truth, red color: predicted result).

https://doi.org/10.1371/journal.pone.0321092.g006

Fig 7.  Prediction results of a trained model for detecting the location of a tumor. (a, b) False positive, FP. (c, d) 
False negative, FN. (blue color: ground truth, red color: predicted result).

https://doi.org/10.1371/journal.pone.0321092.g007

https://doi.org/10.1371/journal.pone.0321092.g006
https://doi.org/10.1371/journal.pone.0321092.g007
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Conclusion
In this study, an AI algorithm was proposed to detect the location of esophageal tumors using 
multicenter data from esophageal endoscopic WLI and NBI tests. Normal data without areas 
of interest were also learned so that the AI learning model could reduce FPs and increase 
sensitivity in normal data. To increase sensitivity, which is particularly important in detection 
research, it is necessary to find as many objects as possible in the data. Some images have no 
special elements; hence, the FPPI is 0. However, other images have several objects that can 
be recognized as objects; hence, the FPPI can have a large value. The study was conducted 
by carefully analyzing the performance indicators. The confidence threshold was set to 0.25, 
and the IoU threshold was set to 0.5, to prevent the removal of additional bounding boxes. 
The detection model showed high precision and sensitivity, and normal and tumor data were 
classified with high accuracy. In addition, data were collected from various institutions to 
verify the relatively high generalization performance. The established database can be used as 
important data for CAD research and algorithm development for future endoscopies. Most 
of the related cases mentioned were mainly polyps to detect and diagnose lesions in various 
organs; however, in this study, lesion detection was performed in white-light and narrow- 
band images by analyzing not only polyps but also superficial esophageal cancer [14–21].

This revised section highlights the advantages of the proposed method, including its strong 
generalization capabilities across multicenter datasets, its high precision and sensitivity for 
both WLI and NBI data, and its significant contribution to the early diagnosis of esophageal 
cancer. However, the limitations of the study are also addressed, particularly the potential 
decline in model performance when encountering unseen datasets with novel artifacts or rare 
tumor types. These challenges are acknowledged, and potential strategies for overcoming 
them are discussed.

To improve the performance of the model in the future, relearning through additional data 
collection and cross-verification processes is required to improve its reliability. In addition, 
the performance needs to be optimized by fine-tuning the parameters of the AI algorithm 
based on feedback from the verification [29]. It is determined that the area of the tumor 
location will stand out owing to the mitigation or overcoming of the limitations of the exist-
ing pre-processing, which will be helpful in learning performance. To detect morphological 

Fig 8.  Precision–recall curves obtained using the detection model for external data. (a) YOLOv5. (b) RetinaNet.

https://doi.org/10.1371/journal.pone.0321092.g008

https://doi.org/10.1371/journal.pone.0321092.g008
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tumors, the performance of the tumor detection model can be improved by increasing its 
clinical suitability by performing post-treatment separately [30].

Future research directions include extending the proposed approach to applications such as 
dermatological disease detection and abdominal organ segmentation. These extensions aim to 
demonstrate the versatility and effectiveness of the method in addressing challenges in other 
medical imaging domains. As a future work, the performance of the proposed method can be 
tested for the classification of dermatological diseases from dermoscopy images because detec-
tion of skin lesions is challenging and an AI-based effective method is still desired in this field 
despite some recent approaches [31–33]. Also, as another future work, the proposed method 
can be modified to achieve abdominal organ segmentation, such as the liver and kidneys, from 
grayscale medical images because noise and low contrasts make their segmentations difficult, 
and atlas or level set-based methods [34–39] are not always effective.

Incorporating synthetic algorithm technology, such as generative adversarial networks, 
to generate data from narrowband images could further improve the model by enabling 
predictions of lesion invasion depth. These efforts are expected to contribute to the effec-
tive diagnosis and treatment of esophageal cancer and promote the standardization of 
medical services.

This study demonstrated the feasibility of an effective method for detecting esophageal 
tumors in AI-based esophageal endoscopy images. By applying division and processing in 
frames based on real-time videos, the proposed method can be advantageously utilized in the 
current endoscopy environment. Algorithmic weight reduction and optimization technologies 
can also be implemented to enable real-time processing by improving the processing speed of 
each algorithm. These findings are expected to enhance the quality of medical services, enable 
more precise and rapid diagnosis, and reduce the misdiagnosis rate by providing robust diag-
nostic support to medical staff.
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