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Abstract: Cognitive sensors are embedded in home appliances and other surrounding de-
vices to create a connected, intelligent environment for providing pervasive and ubiquitous
services. These sensors frequently create massive amounts of data with many redundant
and repeating bit values. Cognitive sensors are always restricted in resources, and if careful
strategy is not applied at the time of deployment, the sensors become disconnected, degrad-
ing the system’s performance in terms of energy, reconfiguration, delay, latency, and packet
loss. To address these challenges and to establish a connected network, there is always a
need for a system to evaluate the contents of detected data values and dynamically switch
sensor states based on their function. Here in this article, we propose a reinforcement
learning-based mechanism called “Adaptive Scheduling in Cognitive IoT Sensors for Opti-
mizing Network Performance using Reinforcement Learning (ASC-RL)”. For reinforcement
learning, the proposed scheme uses three types of parameters: internal parameters (states),
environmental parameters (sensing values), and history parameters (energy levels, roles,
number of switching states) and derives a function for the state-changing policy. Based
on this policy, sensors adjust and adapt to different energy states. These states minimize
extensive sensing, reduce costly processing, and lessen frequent communication. The
proposed scheme reduces network traffic and optimizes network performance in terms
of network energy. The main factors evaluated are joint Gaussian distributions and event
correlations, with derived results of signal strengths, noise, prediction accuracy, and energy
efficiency with a combined reward score. Through comparative analysis, ASC-RL enhances
the overall system’s performance by 3.5% in detection and transition probabilities. The
false alarm probabilities are reduced to 25.7%, the transmission success rate is increased by
6.25%, and the energy efficiency and reliability threshold are increased by 35%.

Keywords: reinforcement learning; adaptive scheduling; cognative sensors; energy
efficiency; Internet of Things; latency; false alarm rate; detection; transmission probabilities

1. Introduction
The Internet of Things (IoT) [1–3] plays a vital role in transforming the device-centric

approach to a user-centric approach using seamless connectivity and providing pervasive
services according to context and user mode [4,5]. Integrating cognitive sensors with
IoT infrastructure has brought about a significant change in real applications such as
energy production and transmission, intelligent transportation systems (ITS) [6], healthcare
(E-Health and Telemedicine) [7], agriculture (E-Forming) [8,9], smart homes [10], and smart
cities [11]. Most of the IoT is based on physical sensors embedded in other devices and home

Appl. Sci. 2025, 15, 5573 https://doi.org/10.3390/app15105573

https://doi.org/10.3390/app15105573
https://doi.org/10.3390/app15105573
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6682-7049
https://orcid.org/0000-0003-2227-9797
https://doi.org/10.3390/app15105573
https://www.mdpi.com/article/10.3390/app15105573?type=check_update&version=1


Appl. Sci. 2025, 15, 5573 2 of 23

appliances to create these smart spaces. However, these sensors are resource-restricted and
require a careful strategy in deployment because the intensive use of resources can lead
these systems to stall and disconnect before performing their intended tasks [12,13].

Cognitive IoT sensors collect data from the environment and disseminate it to other
sensors and central authorities for decision making and further processing. A huge vol-
ume of data is produced at frequent intervals at central points [14,15]. These frequent
communications inside the system not only create congestion and buffer overflow, but
also consume a significant amount of energy. The detection of redundant and useless data
communications has greatly affected network performance. Suppose that the same data is
circulated, and the system remains busy with these unwanted packets. In that case, system
resources are used for undesirable data collection, and many useful sensing cycles are
wasted [16–19].

With the emergence of artificial intelligence techniques such as deep learning (DL),
systems have become more resilient, responsive, interactive, and intelligent [20]. DL trains
and learns from available data and responds accordingly to any situation. Typically, it
consists of perception and comprehension, learning and judgment, rationality and planning,
and finally design and resolution [21–23]. With the integration of cognitive sensors, most
IoT devices learn and decide like humans. A cognitive sensor with different controllers
collects data from the environment and transmits it to other devices and central points. All
of these entities collaboratively manage the situation and respond to any event. Based on
an external event with machine learning procedures, cognitive sensors play an important
role in data collection and automation [24]. Using these machine learning procedures, the
devices can optimize according to the situation and the user mode and can provide services
according to the situation based on the external event [25,26]. The main aim is to develop a
novel scheme that uses reinforcement learning to optimize the operations of an IoT network,
according to traffic conditions and sensor functions. Instead of using the static structure of
CAS-IIoT-RL [22], LSTM-RL [27], and AEM-RL [28], ASC-RL has been implemented for
a dynamic IoT. These baseline schemes use vector features, time series, and QoS metrics,
respectively, while ASC-RL uses sensor states and traffic conditions for the optimization
of network operations. In these schemes, no critical infrastructure parameters are found,
while in the proposed method, there are three types of parameters. These changes affect
all performance parameters, including energy enhancement, sensor reconfiguration, and
minimizing delay, latencies, and packet loss.

The main contributions of the ASC-RL are as follows.

• Propose a novel scheme for the use of cognitive techniques in IoT sensors with a
reinforcement learning procedure to dynamically change the state of the sensors. A
sensor state model is established, and each sensor adapts its new state based on three
types of parameters. These changes affect all performance parameters, including
energy enhancement, sensor reconfiguration, and minimizing delay, latencies, and
packet loss.

• Define and utilize three types of parameters to create a reward function in which the
states adaptively switch from current to new states, and the agent learns from the
traffic condition and plays a vital role in changing these states.

• Implement the proposed ASC-RL in Python and check its applicability with various
parameters such as joint Gaussian distributions, event correlations, prediction accuracy,
and energy efficiency with a combined reward score. Finally, a comparative analysis
was performed with the detection and transition probabilities, false alarm probabilities,
and transmission success rate.

Problem Statement and Motivation: Cognitive sensors often create massive amounts
of data with redundant and repeated bit values. Sensing this redundant and useless data
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and broadcasting not only requires a good amount of energy, but it also affects many other
performance parameters such as reconfiguration, delay, latency, and packet loss. To address
these challenges, we need a new method to check and adjust the state of cognitive sensors
according to the roles and functions within these networks. A reinforcement learning-
based approach is useful for dynamically switching states and adjusting sensors. Here,
we propose a novel reinforcement learning-based mechanism called “Adaptive Schedul-
ing in Cognitive IoT Sensors for Optimizing Network Performance using Reinforcement
Learning”. There are three types of parameters: internal parameters (states), environmental
parameters (sensing values), and history parameters (energy levels, roles, and number
of switching states). The mechanism aims to reduce extensive sensing, minimize costly
processing, and control frequent communication, as well as reduce network traffic and
optimize network performance in terms of network energy.

The rest of this paper is arranged as follows: Section 2 is the related work in RL-based
approaches with cognitive IoT networks; Section 3 is the preliminaries and basics of ASC-
RL; Section 4 is the details of the system model of ASC-RL; Section 5 is the simulation
parameters and concerned metric values that are discussed; Section 6 is the evaluation
part; Section 7 compares the proposed scheme with other schemes; and finally, the paper is
concluded in Section 8.

2. Related Work
Combining cognitive awareness with reinforcement learning makes the system more

intelligent and responsive, which is very useful in quicker decision-making. The system
thoroughly checks the contents of the detected data packets and, based on these parameters,
changes the state of the sensors. This switch of state controls regulates communication
functions, and an optimized network is established. The following are some of the works
that have already been published, and they advocate for the effectiveness of reinforcement
learning in cognitive sensing.

Regarding CAS-IIoT-RL [22], various types of applications have been investigated with
extensive simulations based on RL. The decision-making process is improved with adaptive
and dynamic decision controls in demanding industrial situations. The proposed schemes
and results are only applicable and used in industry; they may need further development
to implement in a real-time scenario. Another scheme is RL-IoT [29], a routing-based
RL. It combines CR-IoT and CRCN to decrease delay and collision. It performs better
than AODV-IoT-based schemes and competes with other schemes in using RL methods,
including average data rate, throughput, and packet collision. Another RL-based scheme
is SCA-RL [30], which is a proactive procedure for selecting how long a channel will be
empty, using the Bayesian algorithm. It works on discovering idle channels in descending
order with probabilities, reduces the spectrum handover process, and avoids collisions
in retransmission.

NOMA [31] is a dynamic Q-learning-based spectrum access scheme used to increase
throughput and effective spectrum access. It also learns to use the channels when busy
during peak hours. It transmits power in the form of energy in PUS for interference
tolerance. It is useful in the access channel, but it needs to disrupt the continuity of the
packet flow. Another RL-based scheme is LSTM-RL [27], which learns spatiotemporal
patterns in the collected data. It uses a decision-based agent for physical and sensor data to
optimize energy while maintaining prediction accuracy. It works in two ways: for larger
amounts of data, the deep Q-network-based approach is used, while for smaller amounts
of data, MDP is used. It is useful for maintaining network energy with prediction accuracy,
but costly in terms of calculating the long-term spatiotemporal correlations. MARL [32]
has been proposed to check the state of every cognitive user. It uses the deep recurrent
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Q-network and works on a cooperative approach to increase the cognitive radio network.
The system has been proven analytically and validated with many inputs.

Another RL-based scheme, RL-IoT [33], has been proposed as a routing technique to
minimize EED and avoid data collision due to its decision capacity. In validation, it utilizes
the AODV-IoT and ML-based procedures in sensor-based interaction. MA-DCSS [34] is an
NP-hard stochastic sequential optimization process designed for detection accuracy. The
main problem has to be converted to a Dec-POMDP for solving in a distributed form. It
uses a multi-agent deep deterministic policy gradient technique for finding the optimal
control based on conditional probabilities. Mostly focused on CTDE, which is a centralized
approach, it fails in distributed systems. MICRC [35] is used in heterogeneous sensor data
collection using the multi-objective intelligent cluster routing procedure. RL-based routing
in IoT-based WSNs has been applied to current traffic conditions, and a new design has
been suggested: to divide the entire network into many unequal groups. It works better
in energy enhancement, but is slow in data processing, and communication overhead is
created inside the network. CIRM [36] is based on the brain’s working principle and focuses
mainly on the manufacturing process. The connection between robotics and cognition is
simplified using a sophisticated continual learning method based on an ANN. Informally,
it processes information in parallel with a counter; for unforeseen situations, the movement
of the robot is adjusted.

MRL-CSS [28] has been proposed to enhance the spectrum sharing in CRNs, using the
cooperative spectrum sensing (CSS) method of multi-agent deep reinforcement learning.
It is based on Adaptive Partner CSS and multi-agent deep deterministic policy gradient.
Its main aim is to reduce sensing accuracy and lower the communication overhead. This
scheme has obtained better results in sensing accuracy, but due to greater communica-
tion costs, it is not recommended for large-scale networks. CMRL-DG [37] is based on
MARL and is used in a learning-based strategy for EH-WSNs. It achieves high network
performance by efficiently communicating sensor data. Its agent continuously learns and
effectively utilizes the resources, even when sensor failures are encountered by other nodes.
The scheme works better in EH-WSN, but it is more specific in its structure, and its per-
formance may decline in delay-tolerant networks. SDTVA [38] is a smart city governance
integration system for analyzing big data analytics and cloud computing. It uses sustain-
able development data from 2018 to 2024 using the Shiny app and PRISMA. It further
uses some statistical and analytical results to prove the scheme’s legitimacy and working
procedures on big data. Specifically, it focuses on evidence mapping, machine learning
tools, and bibliometric visualization in data analysis and processing in various procedures.
CPSL-CM [39] is based on a safe decision-making model that combines blockchain tech-
nology with RL. It focuses mainly on communication security, resource constraints, and
routing disturbances. It gets rid of ambiguities and malevolent threats in IoT with flexibility
and better efficiency. It works better in fault detection.

LSTM-DQN [40] is a short-term memory deep Q-network RL-based technique used to
improve energy efficiency in IoT-based target tracking systems. Dynamically selects the
most energy-efficient sensor based on a minimum distance state function. This scheme is
useful in maintaining efficient target tracking with lower energy consumption. It is better
in energy utilization, but requires more calculation in the RL strategy. MOSA-RL [41] is the
combination of multihead self-attention and multiple agents. Channel selection and energy
efficiency benefit from centralized training and a decentralized execution architecture.
The rewards are continuously updated with a dynamic and multi-constraint proportional
function. It also helps in distributing attention using a multihead self-attention mechanism.
It improves throughput, convergence, and flexibility, but experience more delay and latency
in communication. RL-ORI [42] is mainly used to improve individualized healthcare
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services. Due to the use of extensive sensors with RL strategies, it dynamically modifies the
activities based on individual reactions from real-time data to update its position adaptively.
It improves decision-making in the medical processes and increases efficiency. IDR-FRL [43]
has ensured high-speed data routing with frequent node relocations, scalability, and energy
efficiency. With Federated RL, it manages the load balance and localizes with the routing
cost. It has obtained good results in terms of lowering latency and packet loss but has failed
in the large-scale scalability problem.

MURPPO [44] is a multi-UAV reconnaissance proximal policy scheme to identify and
locate radiation sources in urban areas. It is based on distributed RL and on a dual-branch
actor structure for controlling and finalizing decision-making. The reward function and
the agent combined use a task-specific approach. It ensures better results in localizations
and completely ignores the authentication error. DRL-CRS [45] is RL-based for the efficient
use of pulse-agile radar systems in crowded areas of spectrum use. The agent updates the
waveform with different parameters such as network distortion, bandwidth consumption,
and collision avoidance. Improves high-resolution operations due to its careful editing.
It is useful in low operations, changing spectrum-sharing situations, but it is slow due to
its complexity. MDRL-RA [46] was proposed to improve QoS, which includes low latency
and high throughput. It manages all things in the centralized training and decentralized
execution of a multi-agent proximal policy optimization technique. LSTM layers are utilized
to detect errors. It further improves the transmission success, capacity, and payload delivery,
but due to its complex structure, it may cause delay and overhearing. MRL-IPP [47] is
based on Q-RTS with a multi-agent procedure that has been used for robotic applications.
With the increase in agents, the convergence time decreases, allowing for limited training
iterations. It is more scalable and reliable, but more specific, and it needs to be generalized
to other applications.

All of the above schemes have worked in cognitive networks with RL, but most of
them have been applied as a trade-off between different parameters. They implement
specific domains and most of the time implement a passive approach, while we need an
active approach that works under real-time traffic conditions with other environmental
and internal parameters. Table 1 provides an overview of various systems, including their
fundamental ideas, advantages, and limitations.

Table 1. Summary of the literature of RL-based schemes and cognitive IoT networks.

Scheme Parameters Used Advantages Drawback (s)

CAS-IIoT-RL [22] Adaptive, dynamic decision controls Enhanced decision making in
industrial settings

Limited to simulations, lacks
real-time validation

RL-IoT [29] Routing, CR-IoT,
CRCN, retransmission

Decreased delay and collisions,
improved throughput

Specific to routing, generalization may
be limited

SCA-RL [30] Bayesian algorithm, idle
channel prediction

Reduces spectrum handover, avoids
retransmission collisions

Limited adaptability in
dynamic environments

NOMA [31] Dynamic Q-learning, spectrum access Increased throughput and
spectrum utilization Disrupts continuity of packet flow

LSTM-RL [27] Spatiotemporal patterns, DQN, MDP Optimizes energy, maintains
prediction accuracy

High computational cost for
long-term prediction

MARL [32] Deep recurrent Q-network,
cooperative approach

Validated improvement in cognitive
radio networks Requires high-level coordination

RL-IoT [33] EED minimization, AODV-IoT,
ML techniques Avoids data collision, improved routing Dependent on specific

validation scenarios

MA-DCSS [34] Dec-POMDP, CTDE,
conditional probabilities

High detection accuracy,
optimal control Fails in distributed systems

MICRC [35] Multi-objective clustering, RL routing Better energy enhancement, new
network design

High data processing and
communication overhead

CIRM [36] ANN, continual learning,
brain-based model

Adaptive robotic movement in
manufacturing Informal structure may lack robustness

MRL-CSS [28] Multi-agent DDPG, adaptive CSS Improved sensing accuracy,
cooperative sensing

Not scalable due to high
communication cost
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Table 1. Cont.

Scheme Parameters Used Advantages Drawback (s)

CMRL-DG [37] EH-WSNs, MARL, adaptive learning High performance despite
sensor failures

Structure-specific, poor in
delay-tolerant networks

SDTVA [38] Big data, PRISMA, Shiny app Smart city data analytics and
evidence mapping

Complex architecture, requires
real-time support

CPSL-CM [39] Blockchain, secure routing, RL Effective fault detection and
secure communication High computational demand

LSTM-DQN [40] Short-term memory, minimum
distance function Energy-efficient target tracking High RL computation needed

MOSA-RL [41] Multi-head attention, multi-agent RL Flexible, improves throughput
and convergence Delay and latency in communication

RL-ORI [42] Sensor-driven decisions,
healthcare monitoring

Improved decision making in
medical processes Requires extensive real-time sensor data

IDR-FRL [43] Federated RL, node relocation,
load balancing Reduces latency, packet loss Not scalable to large-scale networks

MURPPO [44] Dual-actor structure,
task-specific rewards Effective urban radiation localization Ignores authentication errors

DRL-CRS [45] Pulse-agile radar, waveform updates Efficient in changing spectrum scenarios Computationally complex and slow

MDRL-RA [46] LSTM, multi-agent PPO,
QoS parameters Improved payload delivery and sensing Delay and overhearing due

to complexity
MRL-IPP [47] Q-RTS, multi-agent scalability Reliable, decreases convergence time Needs generalization for wider use

3. Preliminaries
Massive volumes of data with several repetitive and repeating bit values are frequently

produced by cognitive sensors. In addition to consuming a significant amount of energy in
broadcasting, this redundant and useless data also has an impact on other performance
metrics, including reconfiguration, latency, delay, and packet loss. We require a fresh
approach to monitoring and modifying the condition of cognitive sensors based on the
roles and functions inside these networks to overcome these difficulties. We need a method
based on reinforcement learning that helps dynamically change the states and modify
the structure of the network. Here, a novel scheme based on reinforcement learning
is implemented to schedule IoT sensors. The proposed scheme (ASC-RL) must move
memorylessly from one state to the next, meaning that the subsequent state is solely
dependent on the current state and not on past events. In the following subsections, the
basics of ASC-RL are explained in detail. The system works in a way that checks the traffic
conditions with some other parameters, which include internal parameters, environmental
parameters, and historical parameters. The state of the cognitive sensor will change due to
changing parameters, while the RL algorithm applies all these parameters, and a reward
function is created to check the rate of change. A good/bad value decides the change in the
network structure and adjusts the sensor to different states. The following are some of the
basic preliminaries of the proposed system. The basic notations and their meanings are
shown in Table 2.

Table 2. Symbols and their meaning.

Symbols Meaning Symbols Meaning

µn Sensing Data Sn Generic State
SAct Active State SWt Wait State
SRot Route State MPn Microprocessing unit
SMn Sensing Module RMn Radio Module
Acn Actions Pr(St) Probability of stochastic process
ITotal Total Current IRM Current in Radio Module
ISM Current in Radio Link IMP Current in Microprocessor
Rt Reward IRM Current in Radio Module
ISM Current in Radio Link IMP Current in Microprocessor
RL Reinforcement Learning PA Prediction Accuracy
CR Combined Reward Score EE Energy Efficiency
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3.1. System Model for ASC-RL

A cognitive sensor can be adjusted in various states according to its intrinsic com-
ponents. A sensor consists mainly of three primary parts that participate in energy con-
sumption. These are a microprocessor (MPn), sensing module (SMn), and radio module
(RMn) for communication. Consider a cognitive sensor already existing in any state (Sn)

and an action (ACn) needed to switch to another state. To represent this state and action,
a real number vector is used as F(Sn, Acn). The agent, in the form of F(Sn, Acn), will
provide a reward. The reward is responsible for changing Sn depending on the internal,
environmental, and historical parameters. The Markov Decision Process is used for timely
decision making in changing states from one state to another.

3.2. Four State Model

A four-state transition model based on sensor internal components was developed to
ensure that no events are missed while the states change dynamically. Combining these
modules generates a total of sixteen possible states. However, in this case, only four states
are employed to increase energy efficiency and avoid missing any important events. In
other words, when the four-state model is used, the sensor never misses an event and may
change states without compromising network performance. After calculating a reward
function F(Sn, Acn), the state can change to another based on the agent’s values. The
sensing data slices are marked as µ; using the Markov process of changing states, this can
be represented as follows: A state will remain the same if the detected data slice µ remains
the same. The values of each state will change if the change is based on the number of times
it is shown as 1 − µ. The four states with symbols and transitions are shown in Figure 1.
This figure also shows the distributions of the states that change from one state to another
based on the detected data packets µ.

Figure 1. Four state model.

The Markov Decision Process is used to calculate the state-changing policy due to the
stochastic nature of dynamic state change using a four-state model. Using the above, we
have the four-state model with different probabilities because ASC-RL moves from one
state to another, and these transitions may occur simultaneously or asynchronously among
multiple nodes. With the above state transition values, the probabilities of each row in
ASC-RL, the states changing, can be modeled as

Pr(St) =


µ

1−µ
3

1−µ
3

1−µ
3

1−µ
3 µ

1−µ
3

1−µ
3

1−µ
3

1−µ
3 µ

1−µ
3

1−µ
3

1−µ
3

1−µ
3 µ

 (1)
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Based on the probability distribution over these four states, the system must move
somewhere; the total probability of all transitions from any given state must equal one.
In Equation (1), the valid value of the stochastic matrix is 1 in each row; otherwise, the
probability is marked as erroneous. For this matrix, the sums are 1.

µ + 3 · 1 − µ

3
= µ + (1 − µ) = 1 (2)

For each cognitive sensor, it measures the surroundings and processes the data using
its RMn, and based on these values, it will adjust the state of the sensor. These values of µ

in the n-th slot can be written as

µ(n)St = µ(1)St1, µ(2)St2, ..., µ(n − 1)Stn−1, ...µ(n + 1)Stn+1 ∈ {0, 1})i×j (3)

where µ(n)St = µ(1)St1, µ(2)St2, ..., µ(n − 1)Stn−1, ...µ(n + 1)Stn+1 are the values sensed by
different sensors at different times.

3.3. Component-Based Cognitive Sensor

A typical sensor consists of five main components: microprocesssor (MPn), sensing
module (SMn), radio-link module (RMn), memory, and built-in power source. Here, in
ASC-RL, the three components are used in the energy calculations, while the other two are
assumed to be ignored. The other three components are used to calculate the energy levels
in any transaction in dynamic scheduling. The current flow inside the sensor is the amount
of energy that these three components use. The total current in the form of energy is shown
in Figure 2, where Equation (8) is the total charge with internal components.

Figure 2. State changing in the ASC-RL function.

ITotal = IMP + ISM + IRM (4)

Here, “I” represents the current flow inside the cognitive sensor, and each module
consumes an amount of energy in the system. This energy in the form of power can be
discretized into many power levels that exactly match the four states. These states use
different amounts of energy. It can be expressed for all sensors with states as

ITotal = f (qth It−1
q /qth) (5)

Here, function f (Xn) represents the discrete power levels that depend on the state of
the sensor. The function can be expressed as f (xn) if ITotal is closest to xn.
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3.4. States in ASC-RL

The states are the energy levels that the cognitive sensor applies during working
conditions. These four states can be represented by Sn; these are (SAct), (SWt), (SRot),
and (SSlp). With the combination of the internal components, many other states may be
possible, but due to the structure and functionality of these networks, in ASC-RL, only
four states are used and implemented. To decide on the change in the cognitive network,
many parameters are needed, but the state of the sensor is one of them. The states are the
energy levels that any sensor can use depending on its current state and the contents of the
detected data packets. This finalizes the relevant information that the agent needs to make
a decision.

SASC-RL = (SAct) + (SWt) + (SRot) + (SSlp) (6)

3.5. Actions in ASC-RL

The states change with actions that meet the conditions of the reward function. These
actions affect the status, and they are all set up by traffic conditions and other parameters
(internal, environmental, and historical). Actions can be represented with Acn= Acn1, Ac2,
. . . , Acn+1. The action space is the combination of these states for these sensors.

Acn = Acn1 + Ac2 + . . . ,+Acn+1 (7)

3.6. Rewards in ASC-RL

The agent receives feedback for an Acn, based on the scope of the performance of Acn.
It may be either good/better or bad/worse in that specific scenario. Its main aim is to learn
about the state change and other parameters to maximize the cumulative reward. The
feedback works like a reward function and depends on many parameters.

Rt = R(Ss) + R(β) + RE(P) + Ac(n) (8)

Equation (8) is the combination of five tuples for a reward function Rt. These values
influence the final reward value. RSs is the environment state space (states: Sn) for event
detection and obtaining µ, Rβ is the observed space, RE(P) is the action space for the
same event, and Ac(n) is explained in Equation (7). After the preliminaries above, in the
subsequent section, we will present a detailed model of ASC-RL.

4. Adaptive Scheduling in Cognitive IoT Sensors for Optimizing
Network Performance Using Reinforcement Learning (ASC-RL)

RL-based scheduling in cognitive sensors is a promising idea, implementing different
types of parameters, including internal, environmental, and historical. These parameters
mainly constitute the policy of state change and create a dynamic and adaptive sensor state
system applied in real-world IoT networks.

4.1. Working Procedure of the ASC-RL

The dynamic state change process for optimizing network performance is divided
into two phases: the training phase and the deployment phase. In the training phase, the
system is trained using sensor data (µn), which is a real-time collection of data, while three
other parameters are used in this phase. These are internal parameters, including the state
of the sensors (Sn) and historical parameters such as energy level, remaining energy, and
role in detection.

The environmental parameters are similar to the sensor values. During the deployment
phase, the trained agent (Ant) is deployed and uses a reward function F(s, n) to generate
various actions (Acn). The sensors are set to different states based on Acn. These Sn will
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be sent back to F(s, n) to be Ant reconfigured in the form of a circle. Figure 3 illustrates
the main phases of training and deployment, including the parameters and transitions
between them.

Figure 3. Generic model of ASC-RL.

4.2. Sensor Data Collection

Cognitive sensors are deployed for the data collection from any environment. Let
(i, j) be two variable values, where i = i1, i2, i3, . . . in and j = j1, j2, j3, . . . jn. These are vector
values of length n. in and jn are sensor readings at any time Tn. The prediction probability
of reading values from cognitive sensor Pr(I/J) is defined as

Pr(I/J) = Pr(I/j1, j2, j3, .., jn) (9)

Pr(I/J) =
n+1

∑
n=1

Pr(jn/j1, j2, j3, .., jn; i1, i2, i3, .., in) (10)

These values are random and are obtained from the environmental parameters. These
values depend on the state, as shown in Figure 3. They can be written for each changing
state as

Pr(I/J) =
n+1

∑
n=1

Pr(jn/j1, j2, j3, .., jn; i1) (11)

4.3. Problem Formulation

Using the MDP, the problem is derived based on the values collected from differ-
ent resources, including environmental, internal, and system history. Based on these
parameters, the states and actions are defined and used. The states are defined as s ∈ S,
while actions are denoted as n ∈ Ni. The state-changing probabilities are defined by
Pr(s′/s, n) = Pr(St+1) = s, At = n. Based on these values, an expected reward can be
obtained as r(S, s, n). The required reward depends on the state that changes from s to S
on the expected action n. All these values are provided to the agent for persistent action.
The reward Rt+1 is in R, and this reward is the indication of a better or worse prediction.
The reward is the amount of energy that is consumed by the sensor in any transaction. All
sensors are in SAct, and after some cycles, the network adjusts itself using traffic conditions.
Other parameters can also help calculate these values. These values are defined over a
range 1 − Ni for each sensor. Other factors are the accuracy parameter (AP) and the energy
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parameter (EP) for each sensor. Both are used to balance accuracy and energy. When a
sensor is in SAct, the agent gains a level of accuracy in the form of an event detection ratio.
Four states with their reward functions are depicted in the equations below:

Rt =

{
AP

n+1

∑
n=1

k<i>
i − NEP, :: I f Sn = SAct (12)

Rt =

{
N.EP + AP.

n+1

∑
n=1

(k<i>
i × k′<i>

i )− AP.
n+1

∑
n=1

(k<i>
i − k′<i>

i ) :: I f Sn = SWt (13)

Rt =

{
N.EP + AP.

n+1

∑
n=1

(k<i>
i × k′<i>

i )− AP.
n+1

∑
n=1

(k<i>
i + k′<i>

i ) :: I f Sn = SRot (14)

Rt =

{
N.EP + AP.

n+1

∑
n=1

(k<i>
i × k′<i>

i )− AP.
n+1

∑
n=1

(k<i>
i × k′<i>

i ) :: I f Sn = SSlp (15)

In Equations (12)–(15), the agent obtains accuracy based on the sum of the detected
values, µ, which starts from any value n = 1 and can end at n + 1. For k<i>

i = 1, k<i>
i is the

ith element of vector ki. Here, N is the total number of sensors at the time of state transition
in a specific state Sn. When all sensors are in the SSlp state, the agent receives all the gains
in Ep. But in other cases, the gain in precision depends on the prediction of the µ terms
of events, which is k′<i>, in contrast to ki = 1. The states are Sn = SAct, SWt, SRot, and SSlp.
These equations ensure that the four states are based on the different parameters that are
used in the state-changing policy. The three SAct, SRot, and SWt ensure that the probability
is 1, while in the case of SSlP, Pr(s/S, n), it will be 0 as given in the following equation:

Pr(s/S, n) =


1 if Pr(ji/ji−1; hi) :: Sn = SAct

1 if s = Sst and Sn = SRot

1 if Pr(ki/ki−1; hi) :: Sn = SWt

0 otherwise

(16)

4.4. Reinforcement Learning-Based Optimum Solutions

For dynamic state change in an IoT-based network, an optimum action results in
several states that ensure two main requirements: (1) never missing an event and (2) having
optimum number of SAct, SWt, SRot, and SSlp sensors adaptively in the whole network. For
the uniform and adaptive strategy, an optimal policy (ϕ∗) is defined. ϕ∗ is based on the
Acn taken by Ag. The latter is a mapping from the current state to the action to be taken by
the Ant. This Ant is responsible for maximizing the discounted cumulative reward (Rt).
The discount rate is always marked as Drate ∈ [0.1].

The new states will be decided soon on the basis of this cumulative reward. f (Sn, Acn)

has already been defined, from which an output is returned, Acn, for the next state. The
(ϕ∗) can be defined as

ϕ∗ = F(ϕ∗)[Sn, Acn] (17)

This function operates iteratively and updates with increasing epochs and can con-
verge to the optimal action value.

ϕ∗ = Fn+1(ϕ∗)[S′
n+1, Ac,n+1 ] (18)

For ϕi → ϕi∗ and i → ∞,
ϕSt = F(ϕ∗)[St, Act] (19)
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ϕSt =
S

∑
s′

Pr(s′/S, Acn)[Rt + DRate + ϕ(st)] (20)

Equation (20) is the function that manages the sensor state under policy ϕ∗n. The
outcomes from Ag are based on Acn and Sn, and all these make up the policy for changing
the state of the sensor dynamically.

4.5. Derivation in Baseline for ASC-RL Agent

The energy consumption limits in the baselines are defined with some precision. Let
any value xn ∈ Xn be a binary value for an optimal decision at any time tn. Then, xn = 1,
which means that the sensor is in any of three states, SAct, SWt, or SRot, for any slot tn. The
optimization is derived based on Equation (20). Some prediction errors can be expressed as

n+1

∑
n=1

(1 − xn)
n+1

∑
n=1

(k<i>
i − k<i>

i )2 ≤ T, :: in ∈ {0, 1} (21)

where “n” is any random/increasing order value, starting from 3, . . . , n, and “i” is the
prediction error, either 0 or 1. If “i” is 1, the sensor is in a firing state (SAct, SWt, or SRot),
and when “i” is 0, the sensor is in a sleep state SSlp. This equation expresses the overall
prediction error as a weighted binary vector. Exact value prediction is feasible in three
states, except for SSlp, where no communication happens.

5. Experimental Setup and Performance Metrics
ASC-RL was implemented in a particular setting using the PPO algorithm [48] and

various metric values. The system was established with the right operating methods,
principles, and procedures. In Table 3, different parameters, network topology, sensor
count, and data generation processes are listed.

Python was used in the development of ASC-RL, using the basic concept of the
PPO algorithm for reinforcement learning. It is useful because it supports the adaptive
scheduling solution for IoT cognitive sensors. The Gym library was used to model the
IoT scheduling environment, and PyTorch and stable − baselines3 were used for different
reinforcement learning modules. The NumPy and pandas libraries have support for nu-
merical calculations, and we used them for sensor data handling, and matplotlib was used
to visualize performance.

Table 3. Simulation parameters, symbols, and metric values.

Parameter Symbol Matric Value

RL-Algorithm AlRL PPO “(Proximal Policy Optimization)”
Learning Rate τ 0.0003/0.0004
Discount Factor λ 0.998/0.989
Clip Range δ 0.2/0.3
Epochs Eephocs 10 Eephocs
No. of Sensors Nsn 4–6, 10–16
Network NT IoT
Dimension |S| 64–128
Data Generation Pattern DPD Poisson distribution (λ = 2–5 packets/s)
Sensor Dynamics – static
Communication Topology NT clustered
Transmission Range R 100–250 m
Simulation Episodes Es/e 5000–10,000
Framework FW OpenAI Gym + PyTorch
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6. Performance Evaluation of ASC-RL
Different methods are used to evaluate the performance of the RL-based scheme. Here,

many parameters are used to verify performance evaluation, including joint Gaussian
distributions and event correlation.

6.1. Joint Gaussian Distributions in ASC-RL

For measuring the actual energy flow in cognitive sensors, the joint Gaussian distribu-
tions (JGDs) over energy, noise, and signal strengths were measured. These parameters
are statistically correlated, and their behavior is visually mapped. JGD was calculated for
real-time network scenarios, and here in ASC-RL, it is used for these three interdependent
variables. In ASC-RL, the total cognitive sensors in these experiments consisted of four
states: SAct, SWt, SRot, and SSlp. Different messages were sent, and the network was dy-
namically adjusted for optimal data flow with fully connected sensors. In Figure 4, the
JDC for signal strengths and energy is visually mapped, with the x-axis showing the signal
strength and the y-axis showing the energy with reward Rt. In this figure, the award (Rt)

values are reflected by colored points at different locations. More color points at a higher
order mean good/better Rt values, and that ASC-RL performs better. These colored values
indicate strong signals with optimized or minimum energy consumption.

Figure 4. JDC for energy and signal strengths.

Based on the reward function, the JGD over-energy and noise are compared with the
attributed values of the award Rt. In Figure 5, the JGD values are mapped at different
points. The colored points at different positions depict the values of the reward function.
This figure suggests lower noise values, moderate energy consumption, and a good Rt

value. On the other hand, when the usage of noise and energy is considered, Rt decreases.
When comparing the values of the signal strength JGD with the noise and signal

strength in Figure 6, the noise is inversely related to the signal strength, with low Rt. This
suggests that low signals ultimately lead to poor communication with a low average Rt. In
Table 4, a summary of the three graphs is shown with the appropriate attributes.

Table 4. ASC-RL using different parameters in JGD.

Figure Parameters Key Observations Optimal Condition

Figure 4 Signal–Energy

Good signal strength and energy
result in a good Rt, while lowering or
raising energy consumption may
result in a bad Rt

Better signal strengths,
moderate energy
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Table 4. Cont.

Figure Parameters Key Observations Optimal Condition

Figure 5 Energy–Noise
Lesser noise with optimum energy
improves Rt, higher noise results in
bad Rt

Lower noise, moderate energy

Figure 6 Signal–Noise
Good signal and lower noise result in
better Rt, a weaker signal or high
noise reduces Rt

High signal, low noise

Figure 5. JDC for noise and energy.

Figure 6. JDC for noise and signal strength.

6.2. Event Correlations Inside ASC-RL

This parameter is used to predict the next state and depends on various factors.
Probabilistic temporal logic is applied to check the contents of bit values in different sensing
cycles, and event correlation was derived from cognitive sensors. As shown in Figure 7,
correlations between different cognitive sensors were derived and mapped with high and
low correlations. The range of values is from “−1” to “+1”, in which “+1” is a complete
positive correlation with increasing and decreasing correlating values. A 0 correlation
means that these sensor values have no dependency, and they have no bits that correlate
with each other. A “−1” correlation is an inverse correlation; as one increases, the other
decreases. If there is a strong correlation, like 0.85, it means that these sensors sense similar
nature data with the same bit repetitions. In weak correlations, such as 0.05, these sensors
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sense rare types of data, or they are deployed very far apart from each other. In a negative
correlation, such as −0.05, it works inversely; when one increases, the other decreases. In
ASC-RL, this correlation is helpful in state change based on the correlation.

Figure 7. ASC-RL event correlation.

In correlating the values in Figure 7 with the values in Figure 1, four states for any
sensor are shown with a structured Markov transition matrix. The probability of a sensor
remaining in its current state is defined by the diagonal element µ, but the off-diagonal ele-
ments are defined as 1−µ

3 . This equally divides the remaining probability among transitions
to the other three states. Higher values of µ suggest stronger persistence in the current state.
This means that each node has a constant and balanced probability of changing states. On
the other hand, Figure 7, illustrates the relationships between event patterns in ten sensors.
Some sensors show stronger correlations, such as CS1, CS4, CS7, and CS10, as they share
a base signal. It can be correlated with Figure 1, as this phenomenon is consistent, which
states that sensors with high µ and similar functions are more likely to exhibit state changes
over time. The heatmap in Figure 7 illustrates that organized transitions in a Markov model
can result in visible correlations between sensors.

6.3. Prediction Accuracy and Energy Efficiency with Combined Reward Score

ASC-RL has been tested with using three performance metrics: prediction accuracy
(PA), energy efficiency (EE), and a combined reward score (CR). The values start with a
range of 0.0 to 1.0 with increments of 0.01, as shown in Figure 8. This means that 0 values
indicate that the sensors are inactive in saving energy. On the other hand, the value of
1 confirms that sensors are in any of the three states, with a maximum of SAct state sensors.
With the increasing SAct states of multiple sensors, the PA increases (blue color) because
more SAct sensors collect more data and information, resulting in more accurate results. But
the results do not follow linear growth, with little fluctuation. This deviation in obtained
values may be due to some environmental factors like noise and interference. The weighted
accuracy and efficiency (red color) is the reward score over EP = 0.3 and AP = 0.7, and
indicates that the expected PA is approximately 70%. However, at this stage, EE is around
30%, which reveals a balance between resource conservation and predictive performance.
With increasing activation of many SSlp sensors, it increases the PA, but a broad activation
of all sensors may affect the EE due to continuous sending. First, the reward curve increases
up to a peak level and then starts declining in the region of 0.6 and 0.8 activation levels
inside the network.
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Figure 8. Prediction accuracy and energy efficiency with combined reward score.

7. Comparative Analysis
ASC-RL was experimented with and compared with other schemes to ensure its

authenticity and efficiency. ASC-RL was compared to CAS-IIoT-RL [22], LSTM-RL [27],
and AEM-RL [28] for various metrics. These experiments are described in more detail in
the following sections.

7.1. Detection and Transition Probabilities

In the first experiment, ASC-RL was tested with other schemes in detection and
transition probabilities. At the start of the experiment, at low transition probabilities of
0.0, all schemes work in the same way with an average detection probability of 0.55, as
shown in Figure 9. With the increasing trend of transition probability around 0.4, ASC-RL
shows better results than other schemes. This increase in detection probability suggests
that ASC-RL can detect better, and it dynamically changes the states where other schemes
(CAS-IIoT-RL, LSTM-RL and AEM-RL) have no such four-state policy, and their detection
probability is lower. In analyzing the average percentage increase in the three schemes
with the proposed scheme, as depicted in Table 5, increasing transition probabilities is
shown to enhance overall performance by 3.5%. These experiments cover the transition
probabilities from 0.0 to 1.0, but do not include the confidence intervals. These experiments
are deterministic without repeated sampling. In the future, we want to improve the system’s
robustness and reproducibility by testing it with repeated trials.

Figure 9. Detection probability and transition probability comparison of ASC-RL with CAS-IIoT-RL,
LSTM-RL, and AEM-RL.



Appl. Sci. 2025, 15, 5573 17 of 23

Table 5. Detection probability comparison of ASC-RL with CAS-IIoT-RL, LSTM-RL, and AEM-RL.

PrSt CAS-IIoT-RL LSTM-RL AEM-RL ASC-RL % Increase

0.0 0.55 0.55 0.55 0.55 0.00%
0.2 0.56 0.57 0.58 0.59 5.41%
0.4 0.61 0.63 0.64 0.66 6.84%
0.6 0.73 0.75 0.77 0.80 6.25%
0.8 0.86 0.89 0.92 0.95 6.93%
1.0 0.92 0.96 0.98 1.00 5.43%

7.2. False Alarm Probabilities

In comparing the values of the false alarm rate of ASC-RL with those of other schemes,
initially, they exhibit the same values but increase with more episodes, as shown in Figure 10.
The ASC-RL performs differently, with values decreasing due to frequent state changes
based on the reward function and the training of Ag. Toward episode 100, ASC-RL achieves
a 0.296 false alarm rate with an average of 0.335 for the other three schemes, representing
a 10.10% increase. Similarly, upon reaching 500 episodes, the proposed scheme reduces
the false alarm rate to 0.112, with an average of 0.1506 for the other schemes. Compared
with the average of the three schemes, the proposed scheme accounts for around 25.7%,
which shows its ability to learn the ratio of the reward function to decrease false alarm
rates. These values are displayed in Table 6.

Figure 10. False alarm probability comparison of ASC-RL with CAS-IIoT-RL, LSTM-RL, and AEM-RL.

Table 6. False alarm probability of ASC-RL with CAS-IIoT-RL, LSTM-RL, and AEM-RL.

Episode CAS-IIoT-RL LSTM-RL AEM-RL ASC-RL Improvement (%)

100 0.355 0.336 0.315 0.296 10.10%
200 0.305 0.292 0.275 0.252 13.54%
300 0.255 0.248 0.235 0.208 16.96%
400 0.205 0.200 0.195 0.160 19.61%
500 0.155 0.152 0.145 0.112 24.06%

7.3. Transmission Success Rate

For the transmission success rate, ASC-RL was implemented in different settings with
the other three schemes, and it was found that the proposed scheme obtained a better
transmission success rate with maximum latency thresholds. It performed better than the
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other schemes, achieved about 5.73% on average, and finally reached 6.25%, as shown in
Figure 11. This steady improvement suggests that ASC-RL is more suited for high-latency
dynamic settings where performance is greatly affected by clever adaptive techniques, as
shown in Table 7.

Figure 11. False alarm probability comparison.

Table 7. Transmission success probability with increasing latency threshold.

Latency Th (ms) CAS-IIoT-RL LSTM-RL AEM-RL ASC-RL % Increase

100 0.65 0.64 0.63 0.69 6.25%
200 0.68 0.67 0.66 0.72 6.06%
300 0.71 0.70 0.69 0.75 5.71%
400 0.73 0.72 0.71 0.77 5.48%
500 0.75 0.74 0.73 0.79 5.17%

7.4. Energy Efficiency and Reliability Threshold

ASC-RL was tested with another energy parameter related to the reliability threshold.
It outperforms all three schemes because LSTM-RL is based on temporal learning through
recurrent networks; AEM-RL works on adaptive energy distribution, and CAS-IIoT-RL
is based on context-aware sensing, which delimits the balanced energy consumption
and reliability, as shown in Figure 12. ASC-RL uses a multi-objective reward function
that maximizes reliability and energy efficiency. It improves the energy usage, with the
reliability factor of the other three schemes being 35% and marked at each point in Table 8.

Table 8. Energy efficiency comparison of schemes with ASC-RL improvement.

Reliability CAS-IIoT-RL LSTM-RL AEM-RL ASC-RL % Increase
Threshold (bits/Hz) (bits/Hz) (bits/Hz) (bits/Hz) Over Avg

0.600 0.7550 0.7217 0.7176 0.8833 20.77%
0.644 0.6983 0.6844 0.6692 0.8328 21.76%
0.688 0.6849 0.6714 0.6502 0.8310 24.24%
0.732 0.6669 0.6661 0.6364 0.8313 26.63%
0.777 0.6461 0.6392 0.6311 0.8214 28.58%
0.822 0.6544 0.6381 0.6173 0.7991 25.53%
0.866 0.6261 0.6100 0.6103 0.8082 31.31%
0.910 0.6306 0.6161 0.5934 0.8146 32.81%
0.955 0.6111 0.6065 0.5937 0.8177 35.43%
1.000 0.6238 0.6087 0.5841 0.8040 32.77%
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Figure 12. Energy efficiency and reliability threshold of ASC-RL with CAS-IIoT-RL, LSTM-RL,
and AEM-RL.

7.5. Training Performance with Comparative Evaluation

In these experiments, the ASC-RL was compared with other baseline schemes (CAS-
IIoT-RL, LSTM-RL, and AEM-RL) in an equal number of episodes with a median success
rate. In fixing some hyperparameters like the discount rate and exploration strategy, the
proposed scheme achieves high success rates, while the other schemes, with moderate
adaptation, exhibit low success rates. In Figure 13, the behavior of these schemes is shown
with 90% up to 50 epochs and less noise for ASC-RL. CAS-IIoT-RL with a delay component
of up to five epochs exhibits slightly slower convergence. The other two, LSTM-RL and
AEM-RL, have more noise and delayed convergence. The success rate is 85–90% and
80–88%, respectively. The statistical values of this experiment are shown in Table 9, in
which ASC-RL training performance is shown with the other three baseline schemes. A total
of 200 epochs, with different success rates, were used for the main metric. In this table, it is
shown that ASC-RL has the highest success rate of 0.997, while the other schemes’ highest
success rate is 0.862, with the lowest standard deviation of 0.205. In this experiment, it is
observed that a success rate greater than 0.8 is observed in just 36 epochs, demonstrating
faster convergence. As far as hardware details are concerned, we intend to implement it
in hardware in the future. Our published work implemented the off-the-shelf “CC2420”
module with some APIs to simulate IoT-based communication.

Table 9. Training performance of ASC-RL in 200 epochs with success rate with CAS-IIoT-RL, LSTM-
RL, and AEM-RL.

Method Success Rate Mean Success Rate Standard Dev Epoch@0.8+ SR

ASC-RL 0.997 0.865 0.207 36.21
CAS-IIoT-RL 0.966 0.823 0.227 43.56

LSTM-RL 0.945 0.782 0.241 49.12
AEM-RL 0.936 0.778 0.256 48.34

To verify the overall efficiency and optimization in IoT networks, ASC-RL was thor-
oughly compared with all known parameters with other baseline schemes, as shown in
Table 10. Each scheme has its implementation, creating specific results based on the environ-



Appl. Sci. 2025, 15, 5573 20 of 23

ment. Most of the parameters in this table are types of algorithms, action spaces, state spaces,
confidence intervals, discount factors, the number of episodes, and implementation tools.

Figure 13. Compartive Performance of ASC-RL with CAS-IIoT-RL, LSTM-RL, and AEM-RL
(Success Rate).

Table 10. Comparison of ASC-RL and CAS-IIoT-RL, LSTM-RL, and AEM-RL.

Parameter CAS-IIoT-RL LSTM-RL AEM-RL ASC-RL

Algorithm DQN LSTM A2C PPO
Space Feature Vc Time-Series QoS Metrics Ssn, µ

Acn Discrete Discrete Continuous Discrete
τ 0.001 0.0005 0.0003 0.0003
λ 0.9 0.95 0.98 0.99

Archeteture 2-layer NN LSTM + Dense 3-layer NN 3-layer NN + ReLU
Episodes 5000 7000 8000 10,000

Reward Rt Delay, Energy Latency, PDR Latency, Energy Energy, Delay
Environment Static IIoT Edge IIoT Edge+ Fog Dynamic IoT

Implementation Python-2 TensorFlow 1.x Python + Keras PyTorch + Gym

8. Conclusions
Cognitive sensors have limited resources, and if no appropriate approach is used

during deployment, the sensors are disconnected due to redundant sensing of the same
data. The collection of redundant information in IoT networks has an impact on system
performance, including energy efficiency, reconfiguration time, latency, and packet loss. To
address these issues, we suggest a new reinforcement learning-based technique, “Adaptive
scheduling in cognitive IoT sensors to optimize network performance using reinforcement
learning (ASC-RL)”. It constructs a function for a state-changing policy from three kinds of
parameters: internal parameters (states), environmental parameters (sensing values), and
historical parameters (energy levels, roles, and number of switching states). These states
eliminate extensive sensing, reduce processing costs, and minimize communication over
the radio link. The suggested system minimizes network traffic while improving network
performance in terms of energy. The primary parameters assessed are joint Gaussian
distributions and event correlations, with the resulting signal intensities, noise, prediction



Appl. Sci. 2025, 15, 5573 21 of 23

accuracy, and energy efficiency with a combined reward score. In a comparative analysis,
ASC-RL improves the overall system performance by 3.5% in detection and transition
probability. The probability of false alarms is reduced by 25.7%, the transmission success
rate increased by 6.25%, and the energy efficiency and reliability thresholds are increased
by 35%.

In future work, we intend to create a Q-learning approach combined with reinforce-
ment learning and apply the transfer learning procedures that allow rewards and agents to
apply generic knowledge in the same tasks, reducing time and functional cost. To obtain
high learning performance, we intend to incorporate prioritized sampling, experience
replay, and adaptive exploration.
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