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A B S T R A C T

This study presents a comprehensive analysis of rarefied heat transfer in cryogenic chambers with implications 
for infrared detector applications, using physics-informed neural networks (PINNs). Steady-state and transient 
heat transfer are analyzed to evaluate the steady cooling load and cooldown time as performance metrics in 
cryogenic chambers. We first developed a PINN-based framework to solve forward problems in rarefied gas heat 
transfer, presenting results by varying material properties and operating conditions such as thermal conductivity, 
emissivity, specific heat, rarefied gas pressure, and environmental temperature. The proposed framework is then 
extended to solve inverse problems, determining thermal conductivity and rarefied gas pressure based on 
operational requirements for steady cooling load and cooldown time in cryogenic chambers. Systematic analysis 
confirms that the proposed PINN-based framework successfully resolves both forward and inverse problems in 
rarefied gas heat transfer. We expect that the framework can be employed for the design of reliable cryogenic 
chambers and performance predictions under various environmental conditions.

1. Introduction

Infrared detector (IR) technology has various practical applications, 
including fire detection [1,2], robotics [3,4], industrial equipment [5,6], 
thermoelastic stress analysis [7,8], and medical diagnosis [9,10], owing 
to its ability to recognize long-wave electromagnetic radiation. One of 
the major areas in IR technology is photonic detectors, which are prized 
for their exceptional sensitivity and specificity to wavelengths around a 
few microns [6], enabling high-resolution imaging and accurate tem
perature measurements even in low-light environments [11]. However, 
to maintain these precise detection capabilities, photonic detectors must 
be cooled to temperatures below 80  K using specialized cryogenic 
chambers and cooling systems. A significant challenge within these 
cryogenic systems is efficiently insulating the IR detector to minimize 
heat transfer and cooling capacity leakage. Additionally, the IR detector 
must be quickly brought down to its operational temperature to ensure 
reliability under normal environmental conditions.

The challenging requirements of cryogenic cooling systems have 
prompted systematic investigations. One notable research direction fo
cuses on the cooling characteristics of cryogenic chambers, aiming to 

propose optimal parameter designs and material properties in terms of 
cooling capacity [12]. These studies emphasize the importance of 
optimal design and operational conditions, particularly highlighting the 
critical role of gaseous conduction in influencing the cooling load 
[12–16]. Parametric analysis presents the effects of design parameters 
on both steady and transient cooling characteristics. Numerical models 
for predicting the behavior of an infrared cryochamber under transient 
conditions have been developed to design cooling strategies for specific 
scenarios such as target acquisition and tracking of projectile systems, 
thermal efficiency analysis, remote temperature sensing, and short- 
range wireless communication [17,18]. Furthermore, by incorporating 
radiation shields, the heat transfer in the cryogenic chamber becomes 
dominated by rarefied gas conduction, which significantly impacts the 
overall efficiency of the cryochamber [19].

In addition to chamber design, the development of cryogenic cooling 
systems, such as the Joule-Thomson cryocooler, is another primary focus 
of these investigations. The thermodynamic cycles of Joule-Thomson 
coolers have been extensively explored, with particular emphasis on 
optimizing the geometry of the cryocooler for enhanced performance in 
defense applications [20–24]. Numerical investigations into the steady- 
state thermal behavior of infrared detector cryochambers have 
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facilitated effective thermal analysis, thus improving the design of IR 
cryochambers [25]. Experimental investigations and thermophysical 
analysis of a Joule-Thomson cooler applicable to infrared imaging have 
been conducted [26], aiming to optimize the cooler’s geometry for 
efficient performance [27].

The practical implementation of cryocooler systems requires sys
tematic evaluation across various scenarios, including long-term dura
bility, effective thermal analysis with integrated operational controls, 
and micro-scale applications. Modeling approaches that assess perfor
mance degradation and predict the operational lifetime of thermal de
vices under cyclic loading conditions provide valuable insights into the 
long-term reliability of cryogenic systems [28]. A related study on the 
steady-state thermal behavior of infrared detector cryochambers has 
contributed to the development of stable numerical models for effective 
thermal analysis [29]. Furthermore, the development and application of 
micro cryogenic coolers for infrared imaging have been highlighted, 
demonstrating their potential to significantly enhance the performance 
and miniaturization of IR detection systems [24].

The heat transfer analysis of a cryogenic chamber can be summarized 
by optimizing the following factors: 1) material properties such as 
thermal conductivity and emissivity, 2) design parameters such as the 
thickness and length of the cold well, and 3) operating conditions, 
including rarefied gas pressure. These parameters must be optimized to 
achieve the following objectives: minimizing steady cooling load and 
cooldown time. Mechanical analysis for this objective largely relies on 
numerical simulations that incorporate rarefied gas conduction in a 
vacuum vessel. Although the numerical simulation provides a thermo
dynamic assessment of the given cryogenic chamber, the optimized 
design must be iteratively updated based on parameters from previous 
experiments. Furthermore, the control system for cooling capability 
cannot be directly implemented based on the results of experimental 
simulations. The available experimental data are hard to incorporate 
into the numerical simulations. Therefore, this study aims to explore a 
complementary approach for analyzing the cryogenic chamber and 
rarefied gas conduction by employing the recently proposed strategy 

based on physics-informed neural networks (PINNs).
PINNs leverage deep learning architectures to incorporate physical 

laws into the neural networks’ loss function. This capability enables the 
construction of solution curves for governing equations, data- 
conforming solution curves, and addresses inverse problems for 
parameter optimization [30]. Recent applications of PINNs have 
demonstrated their effectiveness in resolving coupled physics in thermal 
systems with spatially varying material properties, radiative boundaries, 
and heterogeneous media. For example, the ability of neural networks to 
approximate solutions to ordinary differential equations (ODEs) pro
vides foundational insights supporting the application of PINNs in 
complex heat transfer problems [31]. These networks have also been 
used to solve conductive heat transfer partial differential equations 
(PDEs), with convective heat transfer PDEs included as boundary con
ditions, demonstrating improved efficiency and accuracy in modeling 
heat transfer processes [32]. In applications involving distinct material 
properties, PINNs have shown high precision in predicting temperature 
distributions, highlighting their effectiveness in heat conduction prob
lems involving materials such as wood and steel [33]. The PINNs 
approach has also shown potential to partially replace traditional 
methods such as the finite element method (FEM), enhancing both ac
curacy and computational efficiency in heat conduction analyses [34]. 
Furthermore, a physics-informed hybrid learning framework has been 
introduced to improve predictions of critical heat flux in boiling systems. 
By embedding governing equations and domain constraints into a data- 
driven model, this approach enables more reliable safety margin eval
uations across a broad range of operating conditions [35].

In addition, a major advantage of PINNs lies in their ability to 
address inverse problems in mechanical systems. An inverse problem 
involves directly optimizing input parameters to meet specific opera
tional requirements. This capability is not readily achievable using 
conventional numerical simulations or experiments, as such approaches 
typically require numerous iterative simulations with varying inputs 
while monitoring the resulting target variables. For example, an inverse 
PINN architecture was proposed to estimate spatiotemporally varying 

Nomenclature

Fundamental physical quantities
a,b coefficients of the linear cooling capacity model
Ac cross-sectional area of the cryochamber (m2)
ΔAs surface area of the cryochamber tip (m2)
c specific heat capacity (J/kg•K)
db outer diameter of the cryochamber (m)
h, htotal total heat transfer coefficient (W/m2•K)
hgc heat transfer coefficient for gaseous conduction (W/m2•K)
hlocal local heat transfer coefficient (W/m2•K)
hrad heat transfer coefficient for radiative heat transfer (W/ 

m2•K)
k thermal conductivity (W/m•K)
kair thermal conductivity of air (W/m•K)
k0 thermal conductivity of air at room pressure and 

temperature (W/m•K)
Kn Knudsen number
L cryochamber length (m)
m characteristic parameter in the fin equation
p perimeter of the cold well (m)
P gas pressure
Pfm threshold pressure for free molecular flow
Q heat flux (W/m2)
Qrad radiative heat flux (W/m2)
ri cold well radius (m)
ro vacuum vessel radius (m)

t time (s)
T temperature (K)
Td detector temperature (77 K)
Tm mean temperature (K)
T∞ ambient temperature or reference temperature (K)
ΔV volume of the cryochamber tip (m3)
x position inside the cryochamber (m)
α thermal diffusivity (m2/s)
αi tapering rate of cold well radius
ε emissivity (dimensionless)
ρ density (kg/m3)
σ Stefan-Boltzmann constant
ω weighting factor in the loss function

Acronyms
Adam adaptive moment estimation (optimizer)
FDM finite difference method
FEM finite element method
IR infrared
J-T Joule-Thomson
L-BFGS-B limited-memory Broyden-Fletcher-Goldfarb-Shanno with 

Box constraints (optimization algorithm)
MSE mean squared error
ODE ordinary differential equation
PDE partial differential equation
PINNs physics-informed neural networks
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thermal conductivity from sparse temperature measurements, achieving 
robust performance in reconstructing time-dependent conductivity 
profiles—even in the presence of noise and without prior knowledge of 
material distributions [36]. These studies collectively demonstrate that 
PINNs can not only approximate direct solutions but also infer hidden 
parameters from sparse or noisy observational data. Another notable 
implementation integrates PINNs with analytical heat conduction so
lutions to reconstruct three-dimensional temperature distributions from 
limited data, offering reliable inverse design capabilities under 
nonlinear boundary conditions [37].

Although increasing research has adopted PINNs for thermal engi
neering problems, the capability of PINNs to simulate and optimize 
rarefied gas heat transfer in cryogenic chambers has not yet been tested. 
This study develops PINNs for constructing the solution curve of heat 
transfer in a cryogenic chamber system. We then tested the capability of 
the developed PINNs for optimizing the design and operating conditions 
of the cryogenic chamber by considering inverse problems related to 
heat transfer. Consequently, design parameters including the thickness 
and length of the cold well, and the cooling capability of the cryocooler, 
are directly optimized based on the desired conditions of the cryogenic 
chamber such as steady cooling load and cooldown time.

In the following sections, we first present the heat transfer model of 
the cryogenic chamber. We then construct PINNs for resolving rarefied 
gas heat transfer in the cryogenic chamber in both steady and transient 
cases. The simulation results are discussed and validated in comparison 
with previous studies [12]. Finally, we integrate the PINNs model for 
steady and transient heat transfer into a single model, enabling the so
lution of inverse problems based on optimization. Example cases for the 
inverse design parameters optimization have been demonstrated.

2. Thermal modeling and PINN-based solutions

2.1. Modeling heat transfer in a cryogenic chamber

The thermal process in the cryogenic chamber is schematically 
illustrated in Fig. 1(a). An IR detector is placed onto the cold well and is 
encapsulated by the cryogenic chamber to minimize the leakage of 
cooling capacity. The inside of the chamber is vacuumed to reduce heat 
transfer. A J-T cryocooler is inserted into the cold vessel to maintain the 
IR detector at cryogenic temperatures, typically below 77 K. Cooling 
within the chamber occurs through the inner surfaces of the cold well, 
including the top surface and side walls. Consequently, three different 
heat transfer mechanisms are observed: 1) solid body conduction along 

the cold well, 2) radiative heat transfer, and 3) rarefied gas conduction 
from the cold well to the vacuum vessel. The main concerns with this 
system are the steady cooling load and the cooldown time. The steady 
cooling load refers to the necessary elimination of heat under nominal 
operating conditions, while the cooldown time corresponds to the 
response time from the environmental temperature to the operating 
temperature. The material properties of the cryogenic chamber are 
summarized in Table 1.

The steady-state heat transfer in cryogenic cooling systems focuses 
on solid body conduction, radiative heat transfer, and rarefied gas 
conduction. The steady-state heat transfer model is defined as follows 
[38]: 

d2T
dx2 −

ph
kAc

(T − T∞) = 0 (1) 

where T is the temperature profile along the cold well, T∞ is the base 
temperature corresponding to the ambient temperature, x is the axial 
position, p is the perimeter of the cold well, expressed as πdb with the 
outer diameter db. Ac is the cross-sectional area, k is the thermal con
ductivity and ℎ accounts for both rarefied gas conduction and radiative 
heat transfer. For transient analysis, the governing equation expands to: 

∂2T
∂x2 −

ph
kAc

(T − T∞) = ρc
∂T
∂t

(2) 

where ρ is density, and c is specific heat capacity.
The thermal characteristics of the cryochamber are determined by 

the heat transfer coefficient h, which represents the leakage of cooling 
capacity. The total heat transfer to the cold well surface comprises both 
gaseous conduction and thermal radiation from the cryochamber vessel 
wall, represented as h = hgc + hrad. The heat transfer coefficients in the 

Fig. 1. (a) Schematic illustration of the heat transfer process in a cryogenic chamber where red arrows indicate heat transfer from solid conduction, rarefied gas 
conduction, and radiation, and a blue arrow denotes the cooling capability of the cryocooler. (b) Schematic illustration of PINN architecture for integrating both 
steady-state and transient-state heat transfer analysis. The diagram highlights the neural network structure, input variables x and t, and the respective governing 
equations and boundary conditions for each type of analysis.

Table 1 
Material properties of the cryogenic chamber.

Elements Material Dimensions Properties

Vacuum 
vessel

Stainless steel Inner diameter 
= 25 mm

∊ ≈ 1

Cold well Borosilicate glass 
(outer surface 
electroplated with 
gold)

Outer diameter 
= 9 mm 
Thickness = 1 
mm 
Length = 48 mm

∊ = 0.02ρ = 2640 
kg/m3 

c = 800 J/kg•K 
k = 0.8 W/m•K
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cryochamber are discussed in Kim et al. [12], which is reproduced as 
follows. The heat transfer coefficient for gaseous conduction hgc is rep
resented, depending on the gas pressure Pa:
hgc= 1.48⋅Pa for P < 4 × 10− 4 Torr

1.48⋅Pa
1 + 0.34⋅Pa

for 4× 10− 4 Torr ≤ P < 1Torr

4.35 for P ≥ 1Torr

Further, the radiation heat transfer coefficient hrad depends on the 
emissivity of the surfaces: 

hrad ≈ 3ε [W/m2K] (3) 

This radiation heat transfer becomes significant in low-pressure or 
vacuum conditions where gaseous conduction is minimal, and radiative 
heat transfer dominates. The detailed derivation of hgc and hrad is 
referred to in section 2.3.

The boundary conditions for the models are constructed as follows: 
In the steady-state model, boundary conditions are Tb = T∞ which is 
temperature of the base identical to the ambient temperature and T(L)
= Td where Td is the detector temperature (77 K) and L the length of the 
cold well. For the transient-state model, initial condition T(x,0) = T∞ 

are set, and for boundary conditions T(0, t) = T∞ and energy balance at 
the tip of the cold well are applied. The energy balance at the tip of the 
cold well is given by Kim et al. [12]: 

ρcΔV
∂T
∂t

= − kAc
∂T
∂x

⃒
⃒
⃒
⃒
x=L

− hΔAs(T − T∞) − (aT + b) (4) 

where ΔV and ΔAs are the volume and the surface area of the tip, a and b 
are specific to each cryocooler model. In this work, we used a = 0.039 
W/K and b = − 2 W. This equation ensures the energy balance at the tip 
of the cold well, accounting for conductive, convective, and radiative 
heat transfer mechanisms.

2.2. Thermal conductance in rarefied gas conduction and radiative heat 
transfer

In low-pressure environments where the gas pressure ranges from 10- 

5 to 1 Torr, the molecular mean free path (λ) becomes comparable to the 
characteristic length scale (gap distance, l). This leads to the necessity of 
considering heat transfer under the rarefied gas regime. In this regime, 
heat conductance is described based on the Knudsen number (Kn), a 
dimensionless quantity defined as: 

Kn = λ/l (5) 

This number classifies the heat transfer regimes such as free molecular 
flow (Kn > 10), transition regime (10 > Kn > 0.1), slip regime 
(0.1 > Kn > 0.01), and continuum regime (Kn < 0.01) [39].

Heat conductance for rarefied gases, denoted hgc, is influenced by the 
gas pressure and falls into different regimes based on Kn and the mo
lecular mean free path. At very low pressures, free molecular flow 
dominates, while higher pressures cause the gas to behave as a contin
uum.

The heat transfer coefficient for gaseous conduction depending on 
the gas pressure P (Pa), is described by three different formulas 
depending on the pressure regime. In the low-pressure regime where 
P < 4⋅10− 4 Torr, molecular collisions with the chamber walls dominate 
heat transfer, and the conductance is directly proportional to the gas 
pressure: 

hgc = 1.48⋅Pa (6) 

This linear relationship shows that as the pressure decreases, the 
mean free path increases, thus reducing conductance. In the interme
diate pressure regime where 4⋅10− 4 Torr ≤ P < 1 Torr, heat is trans
ferred through both molecular collisions and wall collisions. The 

conductance becomes nonlinear and can be expressed as: 

hgc =
1.48⋅Pa

1 + 0.34⋅Pa
(7) 

Nonlinear behavior arises due to the increasing role of intermolecular 
collisions as pressure increases. The term 1+0.34 • Pa accounts for this 
transition [12,40]. At higher pressures, P ≥ 1 Torr, the gas behaves like 
a continuous medium, and the thermal conductance is no longer sensi
tive to pressure changes, reaching a steady value: 

hgc = 4.35 (8) 

In this regime, molecular collisions dominate, and heat transfer is pri
marily governed by conduction, similar to the behavior in solid mate
rials [40].

The molecular mean free path λ can be calculated using the following 
formula: 

λ =
kBT
̅̅̅
2

√
πd2P

(9) 

where kB is Boltzmann constant, T is the gas temperature, d is the 
effective molecular diameter of air (approximately 0.37 nm), and P is 
the gas pressure [41]. Free molecular flow dominates when the gas 
pressure is below the threshold Pfm, defined as: 

Pfm ≈ 4⋅10− 4 Torr (10) 

assuming a temperature range of 300 K to 77 K [12]. For pressures above 
this threshold, gas behavior transitions toward the continuum regime.

Radiative heat transfer occurs between surfaces at different tem
peratures, governed by the Stefan-Boltzmann law. The radiative heat 
flux between two surfaces can be written as: 

Qrad = σε
(
T4

∞ − T4) (11) 

where σ is Stefan-Boltzmann constant, and ε is the emissivity of the cold 
well. For small temperature differences, the expression can be linearized 
using a first-order Taylor expansion around the mean temperature (Tm =

237K) [12]. The radiative thermal conductance hrad can then be 
expressed as the ratio of the radiative heat flux to the temperature dif
ference ΔT: 

hrad =
Qrad

ΔT
= 4σεT3

m ≈ 3ε [W/m2⋅K] (12) 

The approximation follows from typical values for Tm and simplifying 
the constants [12,42].

2.3. Constructing PINN for cryogenic chamber heat transfer analysis

Fig. 1(b) exhibits the schematic illustration of the PINNs for resolving 
heat transfer in a cryogenic chamber. The PINN architecture is con
structed as an integration of two independent neural network architec
tures that address steady-state and transient heat transfers. Both models 
use spatial variables (x) as input, which are normalized to improve 
learning stability and performance. The transient-state model addi
tionally includes temporal variables (t) as input, reflecting the time- 
dependent nature of the analysis. The PINN model consists of four 
fully connected layers, each with 20 neurons, and employs the tanh 
activation function. Training is conducted in two stages: first, the Adam 
optimizer with a learning rate of 0.01 facilitates rapid convergence, 
followed by the L-BFGS-B optimizer for fine-tuning and ensuring smooth 
loss reduction. This hybrid optimization approach effectively balances 
convergence speed and accuracy. Additionally, for the transient-state 
model, the architecture is enhanced by integrating an anti-derivative 
approximator based on Fourier series expansion after the dense layers 
[43], improving the model’s ability to capture transient thermal 
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behavior more accurately.
The last output layer provides the temperature prediction at each 

input point, scaled by a factor of 100 to match typical thermal gradients. 
The weights throughout the network are initialized using the Glorot 
normal initializer to prevent issues such as vanishing or exploding gra
dients during training. The tanh activation function maps real-valued 
inputs to the range [-1, 1], which is then scaled to the expected tem
perature range. For the sampling of collocation points, to accurately 
represent the spatial and temporal domains, the spatial variable (x) is 
discretized more finely near the boundaries: the initial 98 % of the 
domain is divided into 500 grid points, while the remaining area is 
divided into 1000. Similarly, the temporal variable is divided into three 
segments: the first 20 %, 30 %, and 50 %, each represented by 100 
points, with finer resolution in the initial phase. This fine-grained dis
cretization near the boundaries ensures higher resolution where it is 
most needed.

The loss functions include terms for differential equation constraints 
and boundary conditions to ensure physical accuracy. For the steady- 
state model, the governing equation (1) loss JODE and the boundary 
condition losses, with JBC, start representing the loss at x = 0 and JBC, end 

representing the loss at x = L, are calculated as follows: JODE =

1
n
∑n

i=1

(

d2T
dx2 −

ph
kAc

(T − T∞)

)2

, Jx=0 = 1
n
∑n

i=1(T(0) − T∞ )
2, Jx=L =

1
n
∑n

i=1(T(L) − Td )
2. Thus, the total loss for the steady-state model is a 

weighted sum of these losses:JTotal = JODE + ω2⋅JBC, start + ω2⋅JBC, end 

where ω =
ph
kAc

. This weighting approach prioritizes the accuracy of the 
boundary condition constraints slightly more than the differential 
equation.

In the transient-state model, the loss function includes several com
ponents to ensure the model accurately captures the dynamics of heat 
transfer over time. These components include the mean squared error 
(MSE) for the governing equation, initial conditions, and boundary con
ditions, including the energy balance equation at the tip grid (x = L). The 
governing equation loss, denoted as JPDE, is calculated by evaluating the 
discrepancy between the time derivative of the temperature and the 
spatial derivative terms, captured by the following expression: JPDE =

1
n
∑n

i=1

(

d2T
dx2 −

ph
k2Ac

(T − T∞) −
ρc
k

∂T
∂t

)2

. This ensures that the transient heat 

conduction is modeled accurately according to the physical laws by 
considering both spatial and temporal changes in temperature, as well as 
the material properties of the system. Additionally, the total loss function 
JTotal incorporates other critical terms. JIC accounts for the error in the 
initial condition. It ensures that the model’s predicted temperature dis
tribution at the initial time (t = 0) matches the known initial temperature 
distribution, which is T∞. The loss function for the initial condition is 
expressed as: JIC = 1

n
∑n

i=1(T(x,0) − T∞ )
2. For boundary conditions, Jx=0 

and Jx=L represent the losses at the base and the end of the cryochamber. 
These are defined as: Jx=0 = 1

n
∑n

i=1(T(0, t) − T∞ )
2, Jx=L =

1
n
∑n

i=1

(

ρcΔV ∂T
∂t + kAc

∂T
∂x

⃒
⃒
⃒
⃒
x=L

+ hΔAs(T − T∞) + (aT + b)
)2

. The total 

loss function is then expressed as: JTotal = ω⋅JPDE + JIC + Jx=0 + ω2⋅Jx=L. 
By using ω as the weight, the model emphasizes the importance of 
accurately capturing the transient dynamics of heat conduction and the 
critical boundary conditions. This unified weighting approach ensures 
that the most influential terms in the heat transfer process are prioritized, 
particularly in systems where the heat transfer coefficient plays a domi
nant role.

The training begins with the Adam optimizer [44] with a learning 
rate of 0.01 for a specified number of epochs. After the initial training 
via the Adam optimizer, the optimizer is switched to the L-BFGS-B 
method from SciPy [45]. This optimizer configuration was adopted after 
systematic experiments to achieve convergence in the PINNs, the details 
of which are demonstrated in Appendix A.

3. Resolving forward problems

3.1. Steady state analysis

Fig. 2 demonstrates the capability of the PINN solution in describing 
the steady state for the benchmark problem under the condition of 
rarefied gas pressure. The contour plot of the steady-state temperature 
profile in the cold well is shown in Fig. 2(a). This visualization highlights 
the spatial temperature gradients throughout the system, offering a clear 
view of how heat is distributed and managed within the cryogenic 
chamber. The training procedure begins with the Adam optimizer 
(depicted in blue), followed by the L-BFGS-B optimizer (depicted in 
yellow), as presented in Fig. 2(b). The sharp decrease in the loss curve 
confirms the convergence of the PINN solution. We compare the pre
dicted temperature profile with the analytic solution of the fin equation, 
expressed as T(x) = T∞ − (T∞ − Td)

sinhmx
sinhmL, described by Eq. (1) in Fig. 1

(c). The prediction from the PINN solution corresponds well to the an
alytic solution, presenting L1 and L2 norm errors of 5.90 × 10− 4 and 
7.81× 10− 4, respectively. The steady cooling load is then expressed by 
the conduction rate at the top surface where the IR detector is located, 

which is expressed as: Q = kAc
dT
dx

⃒
⃒
⃒
⃒
x=L

.

We systematically evaluated the cooling characteristics of the cryo
chamber by varying the material properties of the chamber, such as 
thermal conductivity and emissivity, as well as the operating condition 
of the rarefied gas pressure, as shown in Fig. 3. First, thermal conduc
tivity determines the solid body conduction through the cold well, 
which is the most dominant factor leading to the leakage of cooling 
capacity. We analyzed the steady cooling load by varying the thermal 
conductivity from 0.1 to 2, as shown in Fig. 3(a), when the rarefied gas 
pressure ranged from 10-4 to 1. The range of thermal conductivity cor
responds to the material properties of heat-resistant glass (Table 1), 
which is adopted as an insulating material having structural strength. 
Higher conductivity results in an increased cooling load because mate
rials with higher thermal conductivity significantly exacerbate cooling 
loss. This effect is more pronounced at higher gas pressures where 
convective heat transfer becomes more significant.

Furthermore, the influence of emissivity on the steady cooling load is 
discussed in Fig. 3(b). The emissivity of the surface has a limited impact 
on the steady cooling load within the range of emissivity from 10-2 to 10- 

1, corresponding to the actual material properties of the cold well made 
of borosilicate glass [12]. However, the contribution of radiation heat 
transfer to the total steady cooling load is significant, especially when 
the inside of the cold well is maintained under a vacuum pressure below 
10-3 Torr. In a highly vacuumed state (extremely low rarefied gas 
pressure), radiative heat transfer dominates the heat transfer from the 
cold well to the vacuum vessel. Thereby, radiative heat transfer is the 
second dominant factor leading to cooling leakage, following cooling 
loss via solid conduction.

As the steady cooling load varies insignificantly with the emissivity 
of the order of 10− 2, the overall cooling characteristics of the cryo
chamber system can be depicted in the plot of steady cooling load versus 
rarefied gas pressure as shown in Fig. 3(c). The different curves in Fig. 3
(c) highlight the variation in the thermal conductivity, from 0.2 to 1.1, 
of the cold well. As the gas pressure increases, the cooling load also rises, 
due to enhanced conduction in the presence of higher gas pressures, 
which contributes to the overall heat load that must be managed by the 
cooling system. Higher thermal conductivity leads to a greater cooling 
load across all pressures, reflecting the increased ability of the material 
to conduct heat. The combined effects of rarefied gas conduction and 
radiation are demonstrated in the temperature distribution plot in Fig. 3
(d), the total heat transfer coefficients approximately from 7.97 × 10− 2 

to 4.41. The temperature gradient becomes steeper as the heat transfer 
coefficient ℎ increases, indicating more efficient heat removal from the 
cold well. The temperature profile severely deviates from the linear 
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Fig. 2. Results of the steady-state analysis: (a) 3D visualization of the temperature distribution within the cold well, (b) loss reduction during training with Adam and 
L-BFGS-B optimizers, and (c) temperature profile along the cold well compared with the analytical solution.

Fig. 3. Effects of material properties (conductivity and emissivity) and operating conditions (rarefied gas pressure) on the steady cooling load. Steady cooling load 
versus (a) conductivity, (b) emissivity, and (c) rarefied gas pressure. (d) Temperature distribution along the cold well, with blue indicating the combined effects of 
rarefied gas conduction and radiation on the heat transfer coefficient.

Fig. 4. Results of the transient-state analysis: (a) temperature distribution over time along the cold well, (b) loss convergence during training with Adam and L-BFGS- 
B optimizers, and (c) temperature evolution at the tip compared with the analytic solution.
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trend as the heat transfer coefficient increases.

3.2. Transient state analysis

Next, we considered the transient-state heat transfer in a cryo
chamber as described by Eq. (2), the temporal variation of heat capacity 
influences the cooldown time of the IR detector, and the linearized 
cooling capacity model is represented by Q = aT(x = L, t) + b. To 
validate the PINN solution, we first examined the trivial case in which 
the side wall of the cold well is adiabatic (i.e., h = 0), for which analytic 
solutions are available [46]. The solutions are given by: 

Ts =

(

T∞ +
b
a

)

exp

((
a

kAc

)2

αt

)

erfc
(

a
kAc

̅̅̅̅̅
αt

√
)

−
b
a

(13) 

Fig. 4(a) presents the predicted contour plot for the temporal variation 
of the temperature profile over x, and Fig. 4(b) shows the convergence of 
the PINN solution. Fig. 4(b) illustrates how the Adam optimizer effec
tively reduced the loss during the initial training phase, with further 
optimization achieved through the L-BFGS-B optimizer, as indicated by 
continued loss reduction over more iterations. By comparing the PINN 
predictions with the analytic solutions (Fig. 4(c)), we can assess the 
suitability of the PINN approach for solving heat transfer problems in 
cryogenic cooling systems. These experiments confirm that the PINN 
model produces accurate solutions compared to the analytic solutions, 
capturing the transient behavior effectively.

The transient cooling characteristics of the cryogenic chamber are 
illustrated in Fig. 5(a) and (b). In Fig. 5(a), the temperature distribution 
is shown for the cold well over time, focusing on specific intervals along 
the axial length of 32 to 48 mm. This visualization spans from 6 s to 30 s, 
starting from a nominal operating temperature of 300 K. By capturing 
discrete snapshots at various points along the cold well, Fig. 5(a) high
lights how the temperature gradient and the associated cooling front 
propagate through the system as time progresses. Meanwhile, Fig. 5(b) 
concentrates on the cooldown of the infrared (IR) detector located at the 
tip of the cold well (x = L), offering insight into the final stage of the 
cooling process. The temperature evolution at this critical location re
veals that the IR detector typically reaches the desired operating tem
perature between approximately 27.65 and 27.85 s. We note that the 
experimental results agree with the test data from cryochamber exper
iments (GEC-Marconi type 66RPW/T2982) of corresponding dimensions 
reported in previous research [12].

Additionally, we investigated the cooling characteristics of a cryo
genic chamber by varying its material properties and operating condi
tions, as shown in Fig. 5(c–h). The influence of the chamber’s material 
properties—thermal conductivity, density, and specific heat capacity
—on cooldown time was examined under rarefied gas pressures of 10− 4, 
10− 2, and 100 Torr, as illustrated in Fig. 5(c–e). Among these properties, 
thermal conductivity showed the most critical influence on cooldown 
time (Fig. 5(c)). Specifically, the cooldown time increased from about 
15 s to 55 s as the thermal conductivity rose from 0.2 W/m⋅K to 1.4 W/ 
m⋅K. Higher material densities also significantly lengthened the 

Fig. 5. Effects of material properties (conductivity, density, and specific heat capacity) and operating conditions (rarefied gas pressure, relative thermal capacity, and 
ambient temperature) on the cooldown time. Cooldown time versus (a) conductivity, (b) density, (c) specific heat capacity, (d) rarefied gas pressure, (e) relative 
thermal capacity, and (f) ambient temperature.
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cooldown period, because denser materials possess greater thermal mass 
and therefore retain heat for longer. This effect was especially pro
nounced at higher gas pressures, underscoring the importance of 
selecting lower-density materials for systems that require rapid cooling 
(Fig. 5(d)). Fig. 5(e) demonstrates that an increase in specific heat ca
pacity similarly prolongs the cooldown time. Materials with higher 
specific heat capacity store more thermal energy, slowing the overall 
cooling process. Taken together, these findings highlight the trade-offs 
among thermal conductivity, density, and specific heat capacity, 
emphasizing the need for careful selection of material properties in 
cryogenic applications.

The influence of operating conditions, including gas pressure, the 
thermal capacity of the detector, and ambient temperature, on cooldown 
time has been investigated in Fig. 5(f–h) under varying thermal con
ductivities of 0.2, 0.8, and 1.4 W/m⋅K. Fig. 5(f) demonstrates that 
cooldown time increases with gas pressure, as higher pressures reduce 
the effectiveness of conductive heat transfer. The effects of the thermal 
capacity of the IR detector on cooldown time were then examined, with 
a relative thermal capacity of 1 corresponding to a reference condition 
where the top plate has a thickness of 1 mm. Higher relative thermal 
capacity leads to longer cooldown times due to the increased energy 
required for cooling. Fig. 5(h) highlights the relationship between 
ambient temperature and cooldown time, showing that higher ambient 
temperatures slow the cooling process. Across all these factors, materials 
with higher thermal conductivity consistently exhibit better cooling 
performance, underscoring the importance of optimizing both material 
properties and environmental conditions in cryogenic systems.

Finally, we present the temperature distribution over time and po
sition for the transient cooling state of the cryogenic chamber, as shown 
in Fig. 6. The three-dimensional surface plot illustrates how the tem
perature decreases from an initial value of 300 K at t = 0 to a lower 
steady-state value over time. The horizontal axis represents the position 
along the system, while the depth axis represents time. The color 
gradient indicates the temperature, with red representing higher tem
peratures and blue representing lower temperatures. Initially, the entire 
system is at a uniform temperature of 300 K. As time progresses, the 
cooling effect from the cold tip (x = L) propagates along with the po
sition axis, leading to a gradual decrease in temperature. This visuali
zation effectively captures the transient behavior of the system, the 
temperature dynamically evolves in both space and time until equilib
rium is reached. Such a representation is crucial for understanding heat 
transfer mechanisms and for designing systems that require precise 
thermal management.

3.3. Impact of material properties on cooling performance

Although cooling characteristics are among the most critical con
siderations when designing a cryogenic chamber, structural robustness 
and shock resistance are equally essential for applications in military 
and extreme environments. These additional requirements ensure that 
the cryogenic chamber can withstand harsh conditions, such as vibra
tions, impacts, and sudden temperature changes, without compromising 
its performance. To address this, we further investigated how the cool
ing characteristics vary depending on the cold well materials under 
different rarefied pressures for a range of materials, including stainless 
steel (304), copper oxide coating, titanium, carbon fiber reinforced 
plastic (CFRP), and alumina. The mechanical properties of examined 
materials are summarized in Table 2.

Fig. 7(a) and (b) illustrate the steady cooling load and cooldown 
time, respectively, for a range of materials. Alumina and CFRP, which 
exhibit higher steady cooling loads, tend to have significantly longer 
cooldown times due to their higher thermal mass or lower thermal 
conductivity. Materials with high thermal mass retain more heat energy, 
slowing the cooling process even if they place greater demands on the 
cooling system. Similarly, low thermal conductivity reduces the rate of 
heat dissipation, further extending the cooldown duration. These results 
highlight that a low steady cooling load does not necessarily correlate 
with faster cooling. Therefore, both steady cooling load and cooldown 
time must be carefully considered when selecting materials to ensure 
optimal performance in cryogenic applications, especially for systems 
operating in demanding environments. It is worth noting that further 
discussions on the optimal materials for the cryogenic chamber, 
considering structural and reliability requirements, are beyond the 
scope of this work, which focuses specifically on thermal characteristics.

Investigations into variations in material properties extend the dis
cussion of cryochamber design to account for practical operational re
quirements. In this study, three additional scenarios are examined. The 
first scenario considers the mechanical strength of the cryochamber 
under conditions of high vibration and mechanical stress, requiring 
materials with higher thermal conductivity to ensure structural stability. 
The second scenario evaluates the impact of increased surface emissivity 
to assess the relative importance of radiative heat transfer compared to 
rarefied gas conduction. The third scenario involves an extreme vacuum 
environment, representing an ultra-low rarefied gas pressure achieved 
through advanced vacuum devices. The material properties used in each 
scenario are summarized in Table 2.

A controlled sensitivity analysis was conducted by varying one 
parameter at a time—thermal conductivity, surface emissivity, or rare
fied gas pressure—while keeping the others constant as summarized in 
Table 3. Fig. 8(a) and (b) illustrate the resulting temperature distribu
tions for steady-state and transient conditions, respectively. In the 
steady-state case shown in Fig. 8(a), higher thermal conductivity results 
in a smoother axial temperature gradient along the cold well due to 
improved heat transport. An increase in surface emissivity enhances 
radiative losses, slightly lowering the temperature near the detector. In 

Fig. 6. 3D contour plot of temperature as a function of position and time.

Table 2 
Mechanical properties of possible cryochamber materials.

Materials Conductivity 
(W/m•K)

Density 
(kg/m3)

Specific heat 
capacity (J/ 
kg•K)

Emissivity

Stainless 
steel (304)

16.0 8000 500 0.30

Copper oxide 
coating

33.0 6400 380 0.75

Titanium 21.9 4500 523 0.40
CFRP 25.0 1600 800 0.70
Alumina 30.0 3960 880 0.25
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contrast, reducing the rarefied gas pressure significantly lowers the 
overall heat transfer coefficient, steepening the temperature gradient 
and raising the upstream temperature.

The transient response, shown in Fig. 8(b), exhibits different 
behavior. Materials with higher thermal conductivity exhibit greater 
thermal inertia, which slows the cooling rate due to their higher heat 
capacity. Conversely, increased surface emissivity and lower gas pres
sure both accelerate cooling by enhancing heat rejection, reducing the 
time required to reach the target cryogenic temperature at the detector 
tip. These findings underscore the complex interplay between material 
properties and environmental conditions. Notably, gas pressure exerts a 
dominant influence under vacuum-like conditions where rarefied gas 
conduction becomes the limiting factor. Surface emissivity primarily 
affects local radiative losses at the warm end, while thermal conduc
tivity dictates the rate of internal heat diffusion. Together, these results 
highlight the necessity of multi-parameter optimization in cryogenic 
system design, as performance metrics such as steady-state cooling load 
and cooldown time may respond in opposing ways to a single material 

change.

4. Configuring inverse problems for direct cryochamber design 
optimization

One of the major advantages of PINNs is their ability to address in
verse problems [47–49] where the parameters of a given system can be 
directly adjusted to achieve desired target output variables. In this 
study, we apply the inverse problem configuration to the developed 
PINNs solution for rarefied gas heat transfer. The target variables for the 
cryogenic chamber are the steady cooling load and cooldown time. 
Thus, the primary objective of the inverse problem is to determine the 
parameters of the cryogenic chamber, including material properties and 
operating conditions, that meet the requirements for steady cooling load 
and cooldown time.

The key design parameter for the cryogenic chamber is the thermal 
conductivity k of the vessel material, which significantly influences the 
cooling characteristics. Additionally, the heat transfer coefficient h of 
the cold well, determined by factors such as the vessel’s dimensions, 
surface emissivity, and rarefied gas pressure, plays a critical role in the 
overall system performance. Consequently, the inverse problem involves 
tuning the thermal conductivity and heat transfer coefficient to achieve 
the desired values for steady cooling load and cooldown time. This 
optimization process balances material properties, geometric configu
rations, and operational conditions to meet predefined targets, ensuring 
the cryogenic system’s reliability and efficiency under practical 
conditions.

The configuration of the inverse problem to achieve the targeted 
steady and transient thermal characteristics is illustrated in Fig. 9. In this 
approach, parameters such as thermal conductivity and heat transfer 

Fig. 7. Variations in steady cooling load and cool down time by cryochamber materials.

Table 3 
Simulation cases with varying thermal conductivity, surface emissivity, and 
rarefied gas pressure for evaluating their influence on transient heat transfer 
behavior.

Conductivity 
(W/m•K)

Emissivity Pressure(Torr)

Case 1 (Reference) 0.8 0.02 1
Case 2 (High conductivity) 2.4 0.02 1
Case 3 (High emissivity) 0.8 0.60 1
Case 4 (Low pressure) 0.8 0.02 10-4

Fig. 8. (a) Steady-state temperature distribution along the cold well for different parameter variations: increased thermal conductivity, increased surface emissivity, 
and reduced gas pressure. (b) Transient temperature evolution at the detector end, showing cooldown behavior under the same parameter variations.
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coefficient are treated as trainable variables within the PINN-based in
verse problem solver. To ensure the desired outcomes, specific loss 
functions are introduced to impose constraints on the steady cooling 
load and cooldown time. The cooling load is directly computed by 
summing the conductive heat flux at the tip (x = L) and a heat gener
ation in the detector: Q = − kAcm(Td − T∞) coshmL

sinhmL + Qbias. The loss 
function for the steady cooling load is defined as Jsteady =

1
n
∑n

i=1
(
QPINN − Qtarget

)2. This loss ensures that the predicted cooling 
load matches the desired target value. For the transient state, the cool
down time is constrained by evaluating the time it takes for the tem
perature at x = L to reach the target temperature Td. The loss function 
for the cooldown time is defined as Jtransient = 1

n
∑n

i=1
(
tPINN − ttarget

)2. 
Here, tPINN is the predicted cooldown time, and ttarget is the desired target 
time.

The results of resolving the inverse problem are demonstrated in 
Figs. 10 and 11, corresponding to the steady-state and transient state, 
respectively. We first resolve the inverse problem to determine the 
thermal conductivity of the vessel by varying the requirements for 
steady cooling load, as shown in Fig. 10(a) and (b). Fig. 10(a) verifies 
that the PINN-based solver successfully optimizes the thermal conduc
tivity to achieve the desired steady cooling load, as indicated by the 
black line in the forward simulation results. The directly optimized 
condition exhibits good agreement with these results, as depicted by the 
range plot in blue, which represents the min–max range of the pre
dictions from ten repetitive optimization trials. The optimized thermal 
conductivity aligns closely with the forward problem results, as illus
trated in Fig. 10(b), which shows the relationship between target cooling 
load and thermal conductivity. Furthermore, the rarefied gas pressure, a 
crucial operating condition, can also be directly optimized using the 
presented PINN-based solver. This is demonstrated in Fig. 10(c), which 

plots gas pressure against the target cooling load. The black line repre
sents the forward simulation results, while the green error bars indicate 
the optimized gas pressure conditions for achieving the target steady 
cooling load. These results confirm the capability of the PINN-based 
solver to directly optimize material properties and operating condi
tions of the cold well to satisfy the requirements for steady cooling load.

For the transient-state case, the temporal evolution of the tempera
ture profile is solved under dynamic conditions, with the requirement 
that the cooldown time reaches a temperature of 77 K at the cold well 
tip. The results are presented in Fig. 11 where the cooldown time for the 
inversely determined conductivity condition is compared to the target 
cooldown time in Fig. 11(a). The inverse solver accurately captures the 
thermal conductivity that satisfies the target cooldown time, as shown in 
Fig. 11(b), which presents the plot of conductivity versus cooldown 
time. Overall, the inverse problem framework builds upon the estab
lished forward problem methodology, leveraging the same governing 
equations and optimization techniques while extending the solution to 
identify optimal parameters for achieving target thermal performance 
metrics. This unified approach enhances the applicability of PINNs for 
solving complex heat transfer problems in cryogenic systems.

5. Effect of axial geometry on heat transfer coefficients

The practical application of an IR detector cryochamber involves 
additional geometric complexities, such as a tapered cold well, as 
schematically illustrated in Fig. 12. This tapered geometry offers several 
advantages, including enhanced structural stability, improved thermal 
insulation, and better optical access [50]. However, it also introduces a 
more complex heat transfer process due to spatial variations along the x- 
axis. These variations significantly affect both conductive and radiative 
heat transfer characteristics, as they alter the cross-sectional area and 

Fig. 9. Schematic illustration of the configured inverse problem-solving PINN solver for cryochamber design optimization.

Fig. 10. Results of the inverse problem for optimizing thermal conductivity and rarefied gas pressure by varying the requirements for steady cooling load. (a) 
Verification of meeting the cooling load requirement. Directly obtained (b) thermal conductivity and (c) cooling load for various target cooling loads. The black line 
corresponds to the solution curve for thermal conductivity and rarefied gas pressure versus cooling load. The red and green lines indicate the optimized thermal 
conductivity and gas pressure, respectively. Error bars represent the range of predictions over ten repeated trials.
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surface-to-volume ratio along the axial direction. This section in
vestigates how such geometric changes influence the overall cooling 
performance.

The cryochamber geometry is defined by a fixed outer radius and a 
linearly tapering inner radius, resulting in an axial variation described 
by equation ri(x) = ri0 − αix. In typical cryochamber designs, the vari
ation in the inner radius is relatively small compared to the absolute 
values of the inner and outer radii. As a result, we assume that the local 
heat transfer coefficient, hlocal, can be reasonably approximated based 
on the instantaneous local values of ri(x) and ro, while neglecting higher- 
order effects from axial gradients such as lateral conduction or radiation 
view factor changes.

Additionally, the tapered structure alters the rarefied gas conduction 
pathway, deviating from the classical heat transfer between concentric 
cylinders. The local heat transfer coefficients, accounting for geometric 
variations, are determined as follows. The rarefied gas conduction co
efficient is given by 

hgc(x,T(x)) =
kair(x,T(x))

ri(x)⋅ln(ro/ri(x))
(14) 

where kair(x) is the local effective thermal conductivity of air [51]. This 

local effective thermal conductivity is expressed as 

kair(x,T(x)) =
k0

1 +
7.6 × 10− 5

P⋅
(

ro − ri(x)
Tm(x)

) (15) 

With k0 = 0.02643 W/m•K, P is the local pressure (in bar), and Tm(x) the 
mean gas temperature. The mean gas temperature is defined as based on 
the local temperature T(x) and the ambient temperature T∞ at corre
sponding x section. The radiative heat transfer coefficient is defined by 

hrad(x) = σε
(

T2
∞ + T(x)2

)
(T∞ + T(x)) (16) 

based on the linearized Stefan-Boltzmann approximation based on 
Eqs.10 and 11.

The total heat transfer coefficient is expressed as 
htotal(x,T(x) ) = hgc(x, T(x)) + hrad(x,T(x)). This formulation captures 
the position- and temperature-dependent thermal behavior of the 
tapered configuration while maintaining a tractable modeling approach, 
as described by Eqs. (14) and (16). These expressions reflect both the 
pressure-sensitive characteristics of rarefied gas conduction and the 

Fig. 11. Results of the inverse problem for optimizing thermal conductivity by varying the requirements for cooldown time. (a) Verification of meeting the cooldown 
time requirement. (b) Directly obtained thermal conductivity for various target cooldown times. The black line represents the solution curve for thermal conductivity 
versus cooling load, while the blue and red lines indicate the results of the inverse problems. Error bars represent the prediction ranges over ten repeated trials.

Fig. 12. (a) Schematic of the tapered cryogenic chamber where the inner radius ri decreases along the axial direction, forming a conical geometry. The outer 
diameter ro is held constant. The tapering structure introduces spatial variation in the gas gap and surface area, which affects both rarefied gas conduction and 
radiative heat transfer coefficient. (b) Steady-state temperature distribution along the cold well. (c) Temporal evolution of the temperature at the tip of the cold well, 
with a dashed line indicating the target detector temperature of 77  K. (d) Three-dimensional visualization of the temperature field within the tapered geometry 
under steady-state conditions, highlighting the radial symmetry and cooling behavior.
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nonlinear nature of radiative heat transfer near the cold well walls. 
However, the local heat transfer coefficients themselves are functions of 
the temperature distribution, resulting in a coupled nonlinear heat 
transfer problem. Since both hgc and hrad depend on the local tempera
ture, they must be evaluated self-consistently as part of the solution to 
the governing heat transfer equation. Solving this equation yields the 
temperature profile, which in turn determines the local heat transfer 
coefficients, ensuring that they satisfy both the physical constraints and 
the thermal boundary conditions described below.

We first present the simulation results for steady-state heat transfer, 
as shown in Fig. 13, by varying the rarefied gas pressure. The heat 
transfer process exhibits characteristic transitions, which are reflected in 
the spatial distribution of the local heat transfer coefficients. The gas 
conduction coefficient hgc decreases significantly as the chamber pres
sure drops from 1 Torr to 10− 4 Torr. At 1 Torr, hgc exceeds 4.25 W/m2⋅K, 
dominating the overall heat transfer as shown in Fig. 13(a). However, as 
the pressure decreases, molecular collisions become increasingly rare, 
causing the effective thermal conductivity of the gas to decline shar
ply—falling below 0.03 W/m2⋅K at 10-4 Torr. In contrast, the radiative 
component hrad remains largely independent of pressure but exhibits 
spatial variation due to the temperature gradient along the cold well. 
Specifically, hrad decreases monotonically from the warm entrance to the 
cryogenically cooled tip, contributing more significantly near the inlet 
and less at the coldest end.

At high pressures, such as 1  Torr, the total coefficient closely follows 
the behavior of hgc, with minimal contribution from radiation. As the 
pressure decreases to 0.1  Torr, conduction still dominates; however, the 
relative contribution from radiation becomes more noticeable—partic
ularly near the entrance where the temperature is higher, as shown in 
Fig. 13(b). A distinct transition occurs around 10− 3 Torr (Fig. 13(c)) 
where gas conduction and radiation reach comparable magnitudes 
across different spatial regions. Specifically, radiation dominates near 
the warm entrance, while gas conduction becomes more significant 

toward the cold end. This opposing behavior results in a U-shaped 
profile for the total heat transfer coefficient, with a minimum occurring 
at mid-length and increasing values toward both ends. This regime 
marks a crossover zone in which neither mechanism is negligible, 
requiring accurate resolution of both contributions for realistic thermal 
modeling.

Further decreasing rarefied gas pressure (as shown in Fig. 13(d), 
corresponding to 10− 4 Torr), the total heat transfer becomes increas
ingly dominated by radiation, as gas conduction drops below 0.03  W/ 
m2⋅K. In this deep-vacuum regime, the total coefficient decreases 
monotonically along the axial direction, closely following the spatial 
trend of hrad. The resulting smooth profile indicates that radiation is the 
sole significant contributor to thermal losses under these conditions. 
This marks a clear transition from conduction-dominated to radiation- 
dominated heat transfer behavior as pressure decreases. Accurately 
capturing this shift is essential for designing cryochambers operating 
under varying vacuum levels and for selecting appropriate cooling 
strategies.

The transient cooling process additionally introduces time depen
dence into the local heat transfer coefficient, which is governed by the 
temporal evolution of the temperature profile. The variation of heat 
transfer coefficients over time exhibits characteristic transitions 
depending on the rarefied gas pressure, corresponding to the steady- 
state behavior shown in Fig. 14. At high pressures (e.g., Fig. 14(a), 1 
Torr), the rarefied gas temperature dominates, hgc(x = L, t,T(x, t)) in
creases sharply and stabilizes, while hrad(x = L, t,T(x, t)) decreases 
rapidly dure to the strong early temperature gradient. The total heat 
transfer coefficient stabilizes quickly, indicating rapid energy dissipa
tion at the cold tip. In constrast, at intermediate pressures (e.g., Fig. 14
(b) and (c)), the interplay between conduction and radiation is more 
balanced. The total coefficient increases more gradually, highlighting a 
transitional regime where more mechanisms significantly contribute at 
different stages of cooling.

At very low pressures (e.g., Fig. 14(d), 10–4 Torr), conduction is 

Fig. 13. Spatial variation of the heat transfer coefficients along the cold well under steady-state conditions at different rarefied gas pressures: (a) 1  Torr, (b) 10-1 

Torr, (c) 10-3 Torr, and (d) 10-4 Torr.
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severely suppressed due to limited molecular interactions, making 
radiative cooling dominant in the early stages. As the temperature de
creases and the radiative term weakens, the overall heat dissipation 
slows markedly, as reflected by the nearly flat htotal(x = L, t,T(x, t))
curve. These results demonstrate that, under transient conditions, the 
dynamic evolution of temperature substantially alters the relative con
tributions of gas conduction and radiation. Properly capturing their 
spatiotemporal dependence is therefore essential for accurately 
modeling and optimizing cooldown performance in cryogenic systems.

Fig. 15 highlights the spatiotemporal evolution of heat transfer co
efficients (hgc, hrad, and htotal) based on 2-dimensional contour plots at 
rarefied gas pressure of 10-3 Torr. The rarefied gas heat transfer coeffi
cient that hgc gradually increases along the axial direction and stabilizes 
over time due to the saturation of thermal gradients. Meanwhile, hrad 
rapidly decays as the chamber cools, reflecting its strong dependency on 
high temperatures. The total heat transfer coefficient exhibits a 
nonlinear interaction between the two modes: it initially decreases due 
to the dominant drop in hgc, resulting in a concave profile in the 

spatial–temporal plane. This dynamic behavior emphasizes the impor
tance of capturing both heat transfer modes to accurately model cooling 
performance when geometrical complexity is additionally involved.

6. Conclusion

This study presents a PINN solution for determining thermal 
conductance in a cryogenic chamber, with a focus on the effects of 
rarefied gas conduction and radiative heat transfer. By utilizing both 
steady-state and transient-state models, the study accurately captures 
rarefied heat transfer in the cryogenic chamber. The PINN framework 
incorporates differential equation constraints and boundary conditions 
into the loss functions, enabling solutions through optimization pro
cesses, such as training neural networks. The results demonstrate that 
solid body conductivity, surface emissivity, and gas pressure signifi
cantly influence the cooling load. The transient-state model further 
highlights the importance of accurately modeling boundary conditions 
and dynamic thermal properties to reflect real-world scenarios. The use 

Fig. 14. Temporal variation of heat transfer coefficients at the cold well tip (x = L) under transient conditions for different rarefied gas pressures: (a) 1  Torr, (b) 10-1 

Torr, (c) 10-3 Torr, and (d) 10-4 Torr.

Fig. 15. Spatiotemporal evolution of heat transfer coefficients near the cold tip from 40 to 48  mm along the axial direction. Each panel presents a 2D color map 
showing how local heat transfer mechanisms vary over both time and position.

S.-H. Rhie et al.                                                                                                                                                                                                                                 Applied Thermal Engineering 277 (2025) 127104 

13 



of weighted loss functions particularly emphasizes these critical factors.
Additionally, the presented PINN solution is extended to construct an 

inverse problem solver, aiming to identify material properties or oper
ating conditions that satisfy specific requirements in cryogenic cham
bers, such as steady cooling load and cooldown time. Example cases 
include determining the thermal conductivity of the cold well and the 
rarefied gas pressure in the vessel. The results of the inverse problem 
solver correspond favorably with those of forward problem simulations 
across a range of steady cooling loads and cooldown times. These find
ings suggest that the proposed methodology can not only simulate heat 
transfer in cryogenic systems, particularly those involving rarefied gas 
conduction, but also directly optimize material and operating parame
ters that determine the thermal characteristics of cryogenic systems.

This study assumes idealized boundary conditions and material 
properties, which may not fully capture the complexities of practical 
cryogenic systems. Additionally, the focus on one-dimensional heat 
transfer limits the model’s applicability to more complex geometries. A 
promising future direction is the exploration of inverse problems where 
the developed models could be used to determine unknown thermal 
properties or boundary conditions from observed temperature data. This 
approach has the potential to enhance the design and real-time opti
mization of cryogenic systems. Extending the models to multidimen
sional scenarios and incorporating more detailed material properties 
would further improve their accuracy and applicability. In summary, 
this work provides a valuable framework for understanding and opti
mizing cryogenic systems. It not only deepens the understanding of 

thermal behaviors but also lays the groundwork for future applications, 
including the potential to solve inverse problems. Such advancements 
could significantly impact the design and control of advanced cryogenic 
technologies.
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analysis. Sanga Lee: Data curation, Resources. Wonjong Jung: Super
vision, Investigation, Conceptualization. Jeongsu Lee: Writing – review 
& editing, Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgement

This work was supported by the National Research Foundation of 
Korea (NRF), funded by the Korean government (MSIT), under Grant 
No. RS-2023-00279929. It was also supported by the Korea Institute of 
Industrial Technology (KITECH), under Grant No. EH250001.

Appendix A 

Comparative Analysis of CPU and GPU Training

Fig. A1. Results of training loss for steady and transient analyses. The temperature profile along the length and the tip temperature over time are presented for 
verification. The rows correspond to the following computational conditions: CPU computation with steady-state epochs of 200 and transient-state epochs of 400, 
followed by steady-state epochs of 1000 and transient-state epochs of 2000, then steady-state epochs of 5000 and transient-state epochs of 10000, and finally steady- 
state epochs of 10000 and transient-state epochs of 20000.
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Fig. A2. Results of training loss for steady and transient analyses. The temperature profile along the length and the tip temperature over time are presented for 
verification. The rows correspond to the following computational conditions: GPU computation with steady-state epochs of 200 and transient-state epochs of 400, 
steady-state epochs of 1000 and transient-state epochs of 2000, steady-state epochs of 5000 and transient-state epochs of 10000, and steady-state epochs of 10000 
and transient-state epochs of 20000.

This appendix presents a brief comparison of the training processes for PINNs using both CPU and GPU computing, along with the observed 
challenges related to the use of the L-BFGS-B optimizer. The analysis focuses on convergence behavior, efficiency, and potential issues encountered 
during the training of both steady-state and transient-state models.

CPU-based training tends to be slower due to its sequential processing nature. While the steady-state model can achieve convergence within a 
reasonable number of epochs, the transient-state model—requiring more complex, time-dependent computations—demands significantly more 
training iterations. This leads to longer training times on CPU, especially when handling transient dynamics. In contrast, GPU-based training leverages 
parallel processing, significantly improving efficiency for deep learning tasks like PINNs. The GPU allowed for rapid convergence in the early stages, 
reducing the overall number of epochs required for the steady-state model. However, the transient-state model on GPU still experienced some 
instability, with the loss function showing fluctuations, indicating that additional adjustments might be necessary for handling time-dependent 
complexity.

L-BFGS-B is widely recognized for its precise optimization capabilities. However, during the training process, particularly for the transient-state 
model, several challenges emerged after transitioning from the Adam optimizer. One of the primary issues was the instability in the loss function, 
especially with the transient model. This instability likely stems from the inherent complexity of transient heat transfer where the time-dependent 
nature introduces additional nonlinearities that can complicate the optimization process. As a result, L-BFGS-B struggled to stabilize the loss func
tion effectively.

Another challenge was L-BFGS-B’s sensitivity to initial conditions set during the Adam phase. If the Adam optimizer does not sufficiently guide the 
model toward an optimal state, L-BFGS-B can have difficulty refining the solution further, leading to unpredictable loss behavior. This sensitivity 
means that the success of L-BFGS-B depends heavily on the quality of the pre-training phase.

Additionally, L-BFGS-B requires full-batch processing, meaning all data points must be considered at once when updating parameters. This can be 
computationally expensive, particularly for transient-state problems with large datasets. In contrast, optimizers like Adam handle mini-batches more 
efficiently, which may explain why L-BFGS-B showed instability when processing large amounts of data in one pass.

In both CPU and GPU cases, the GPU required fewer epochs to achieve convergence. However, even with fewer epochs, the transient model on GPU 
faced challenges, particularly when switching to L-BFGS-B, which highlights that hardware improvements alone do not fully resolve optimization 
difficulties.

Although GPUs significantly accelerates the training process, the transient-state model encounters inherent challenges, especially when using L- 
BFGS-B as the optimizer. The oscillations in the loss function and instability in transient problems indicate the need for further refinement of 
hyperparameters, sampling strategies, and pre-training with Adam. CPUs, while slower, tend to exhibit more stable convergence but require sub
stantially more epochs, particularly for time-dependent models. Resolving issues related to L-BFGS-B, such as its sensitivity to initial conditions and 
reliance on full-batch updates, could enhance overall training stability.
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Data availability

The source codes are available at https://github.com/SHRhie/.
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