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Abstract 

Stroke is the second leading cause of death, accounting for 11% of deaths world-

wide. Comparing diffusion-weighted imaging (DWI) and apparent diffusion coefficient 

(ADC) images is important for stroke diagnosis, but most studies have focused on 

lesion segmentation using DWI. In this study, we compared the performance of lesion 

segmentation using DWI and ADC images. This study was conducted using a retro-

spective design A dataset was constructed using data from 360 patients with isch-

emic stroke collected from Gachon University Gil Medical Center. Artificial intelligence 

models, U-Net, and a fully connected network (FCN), were used to train each type 

of image data. The performance of the models was validated using five-fold cross-

validation and evaluated based on metrics such as the dice similarity coefficient 

(DSC), accuracy, precision, and recall. As a result, the U-Net model demonstrated 

a DSC of 92.13 ± 0.91% on DWI and 83.68 ± 10% on ADC, whereas the FCN model 

exhibited a DSC of 82.86 ± 1.56% on DWI and 79.26 ± 1.19% on ADC. These metrics 

indicated that the trained models were suitable for lesion segmentation. A compara-

tive analysis of DWI and ADC based on the trained models revealed similar results 

across the models, suggesting that lesion segmentation on ADC images is appropri-

ate. For future research, the accuracy of ADC images is recommended to be impor-

ved by utilizing images with different b-values, or training models with datasets that 

combe DWI and ADC images based on enhanced data.

Introduction

Stroke is the second most common cause of death worldwide, accounting for 11% 
of all deaths [1]. The primary lesion of ischemic stroke is cerebral infarction, which 
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is primarily caused by embolization and cerebrovascular disease [2]. When a blood 
vessel in the brain ruptures, bleeding and oxygen supply is interrupted, resulting in 
cerebral infarction, which can lead to mental disability and even death [3]. There-
fore, early detection of stroke is crucial for a quick recovery [4]. However, in the early 
stages of ischemic stroke, the changes are subtle and the boundaries are unclear, 
making it difficult to detect and segment the lesion with computed tomography (CT) 
[5]. For this reason, magnetic resonance imaging (MRI) is utilized, as shown in (Fig 
1), to segment the patient’s lesions by comparing diffusion-weighted images (DWI) 
(a) and apparent diffusion coefficient (ADC) images (b) obtained from MRI scans 
[6]. The size and location of the ischemic lesion on MRI is an important factor that 
directly affects the patient [7]. The restricted diffuse area observed on DWI is con-
sidered to be the core of the infarct, and the size of this area, along with the ADC 
value, is directly related to patient outcome, making the interpretation of both images 
crucial [7]. However, MRI interpretation can be challenging due to lesions mimicking 
stroke lesions, and the process relies heavily on the clinical experience of the expert, 
which requires significant time and labor costs [8]. To solve this problem, researchers 
initially turned to artificial intelligence (AI) using classifiers for lesion segmentation 
[8]. However, segmentation using classifiers shows inconsistent performance and 
low accuracy [9]. To overcome these limitations, a ‘U’-shaped U-Net with encoder 
and decoder was proposed, utilizing a fully connected network (FCN) [10]. Since the 
introduction of U-Net, the accuracy of lesion segmentation in ischemic stroke has 
improved significantly compared to traditional classifiers, and studies using U-Net for 
lesion segmentation have become widespread [11,12]. Since then, several improved 
models have been proposed based on U-Net, and various studies have been con-
ducted on ischemic stroke segmentation using U-Net evaluation metrics [13,14].

In particular, deep learning-based image analysis techniques are utilized to 
automatically process MRI data to detect lesions and quantitatively assess their 
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Fig 1.  Examples of stroke lesions. (a) Ischernic stroke diffusion-weighted image. (b) Ischernic stroke 
appearent diffusion coefficient map image. Each lesion is indicated by an arrow.
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characteristics based on DWI and ADC values [15]. AI algorithms provide faster and more consistent results than tra-
ditional manual segmentation, and can detect lesions in patients earlier to support treatment decisions [16]. Machine 
learning models can also perform integrated analysis of various clinical data to predict the progression of ischemic lesions 
and contribute to the development of treatment strategies tailored to individual patients [17]. These technologies play an 
important role in improving the prognosis of stroke patients by assisting neurologists’ readings and enabling faster and 
more accurate diagnoses [18].

In 2017, Chen et al. developed a lesion segmentation model using DWI scans from 741 acute stroke patients, employ-
ing DeconvNet as the base network to construct EDD Net, which could be combined with MUCLE Net [19]. EDD Net 
achieved a Dice score of 0.67 alone and 0.83 for larger lesions, while the combination with MUCLE Net reached the 
highest performance metric of 0.88 [19]. In 2020, Liu et al. processed 3D MRI data in a subacute ischemic stroke lesion 
segmentation task using 742 two-dimensional (2D) images and proposed DRANet based on the U-Net architecture [20]. 
In this study, U-Net achieved a Dice score of 64.04% for lesion segmentation, whereas the proposed DRANet achieved 
a significantly improved Dice score of 76.39% [20]. In the same year, Amash Kumar et al. introduced CSNet for ischemic 
stroke lesion segmentation, utilizing datasets provided by the MICCAI Ischemic Stroke Lesion Segmentation (ISLES) chal-
lenges from 2015 and 2017 for model training [21]. Their study demonstrated that CSNet outperformed other challenge 
participants, achieving the highest evaluation metric with a DSC of 0.84 ± 0.11 [22].

Despite the importance of comparing DWI and ADC in ischemic stroke lesion segmentation, most previous studies have 
mainly utilized DWI. Therefore, there is a lack of analysis of performance differences between AI models using both images. 
In this study, we constructed a dataset using DWI and ADC images of the same patient, and compared the lesion segmenta-
tion results of DWI and ADC using U-Net and FCN models. Based on these results, we analyze the suitability of each image 
type for AI training in stroke lesion segmentation and suggest the feasibility of lesion segmentation on ADC images.

Methods

Dataset description

Slice data demonstrating lesions were collected from 360 patients aged 19 years and older diagnosed with ischemic 
stroke at Gachon University Gil Medical Center btween January 2012 and June 2023. A specialist who can dagnose cere-
brovascular disease made a determination of ischemic stroke for each patient. The collected data was de-identified to pro-
tect patient privacy after receiving approval (GDIRB2023–285) from the Institutional Review Board of Gachon University 
Gil Medical Center, Incheon, to use it for model training. A retrospective design was employed for this study. In this study, 
the corresponding data were used from 15/01/2024–25/11/2024. The images used in DWI were acquired via T3 MRI 
and a b-value of 1000 was used. The number and volume of lesions varied significantly across patients. To construct the 
dataset, DWI and ADC images were extracted for each patient, and labeling was performed by creating masks of ground-
truth (GT) data for ischemic stroke lesion areas within the DWI and ADC images. To improve the accuracy of the labeling, 
we cross-validated it with two experts. A total of 999 random pairs of DWI and ADC images, corresponding to the same 
locations were used from the collected data and GT data. The flowchart in (Fig 2) illustrates the experimental process.

The dataset consisted of Digital Imaging and Communications in Medicine (DICOM) data of randomly sized lesions 
(Fig 3), along with their corresponding GT data. To prepare the data for model training, the dataset was split into training 
and test sets at a ratio of 8:2, resulting in 799 images for training and 200 images for testing. Subsequently, five-fold cross 
validation was employed.

Model learning enviroment

The computer environment employed for the study consisted of an NVIDIA GeForce RTX 3060 (NVIDIA, Santa Clara, CA, 
USA) graphics processing unit, Intel Core i5 12400F (NVIDIA, Santa Clara, CA, USA) CPU, and 16GB RAM operating in 
a Windows 10 environment.
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Segmentation models have been used to ischemic stroke lesions. These models comprise an encoder and a decoder. 
The encoder consists of multiple layers that are utilized for extracting the image features. Based on the VGG16 model, 
convolution layers and pooling were employed to extract the features of the target image within the input data and con-
vert them into low-dimensional data [23]. The decoder transforms low-demensional data using the encoder, performs 

Fig 2.  Experimental process flow chart. Flowchart for comparing lesion segmentation performance of apparent diffusion coefficient and 
diffusion-weighted image.

https://doi.org/10.1371/journal.pone.0324021.g002

Fig 3.  Dataset composostion. (a) Examples of Digital Imaging and Communications in Medicine (DICOM)-converted images. (b) DICOM-labeled 
images of lesions within DICOM that make up teh dataset.

https://doi.org/10.1371/journal.pone.0324021.g003
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operations such as upsampling, and expands the data to high-resolution output images for target prediction [24]. As 
illustrated in Fig 4 (a), the FCN model was used. As demostrated in (Fig 4) (b), U-Net, a model commonly used in medical 
image segmentation, was also utilized. Both the models have the aforementioned encoder-decoder structure. The FCN 
model modifies the VGG16 architecture by replacing the fully connected (FC) layer with a 1 × 1 convolution layer, enabling 
it to perform semantic segmentation entirely by using convolution layers [25]. U-Net, which is based on the FCN model, 
leverages the “skip architecture” concept of FCN. Unlike the conventional FCN model, U-Net achieves high-resolution 
results through multiple upsampling and is widely used in medical lesion segmentation owing to its high accuracy in 
semantic segmentation tasks [26].

Parameters used for learning

The parameters used for training each model were consistently maintained, with batch sizes of eight and 50 epochs, 
adjusted according to the computing power. Dropout and batch normalization were used within each model to prevent 
overfitting. For dropout, the input value was set to 0.5 and applied. Adam optimization algorithm was used, with the value 
of K-fold cross-validation set to 5 to validate the model performance.

Results

The parameters used for training each model were kept consistent, with batch sizes of eight and 50 epochs, adjusted 
according to the computing power. The Adam optimization algorithm was employed, and five-fold cross validation was 
conducted to compare the evaluation metrics for each model.

In this study, a test dataset consisting of 200 separate cases was used to evaluate the segmentation performance of 
the trained models. Evaluation metrics were derived for each model and the type of images used. The U-Net model and 
FCN model were trained on the DWI and ADC datasets, respectively.

To verify the adequacy of lesion segmentation for both imaging modalities, the trained models were validated using 
five-fold cross validation, as presented in Table 1. The predicted results were compared with those of the original mask 

Fig 4.  Models Architecture. (a) Architecture of the model used in the experiment fully connencted network (FCN) architecture. (b) U-Net architecture.

https://doi.org/10.1371/journal.pone.0324021.g004
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images. The performance of the trained models was assessed based on the accuracy, precision, recall, and DSC. The 
results are summarized in Table 1.

Based on the evaluation metrics confirmed above, the trained models were used to verify how well each model seg-
mented the lesion areas. As demostrated in (Fig 5), a comparison of lesion segmentation between U-Net and FCN 
revealed that both models performed effective lesion segmentation, with the predicted segmentation results of U-Net and 
FCN indicating the successful delineation of lesion areas.

Comparisone of apparent diffusion coefficient and diffusion-weighted image predictions from different images.
As illustrated (Fig 6), a Bland Altman plot was used to assess the distribution of the predicted lesion segmentation 

results by comparing the predicted lesion areas with the GT areas.
In the graph, the x-axis represents the normalized count of the test data being compared, while the y-axis displays the 

normalized area difference between the original and predicted data. As the original and predicted masking data consisted 
of black and white pixels, comparing their areas allows for an assessment of concordance. Therefore, to compare the 
areas of the original and predicted data, each was calculated at the pixel level and the area differences were plotted.

The results indicated that for both models, the distribution of segmentation predictions for lesion areas in DWI and ADC 
images aligned reasonably well with the areas labeled by specialists.

Discussion

In this study, the U-Net and FCN models were used to train ischemic stroke lesion segmentation to compare the suitability 
of lesion segmentation between DWI and ADC images. The lesion segmentation results and evaluation metrics of the two 
images were compared for each model, and five-fold cross validation was conducted to assess the performance of each 
model. Previous studies on lesion segmentation based on DWI have reported an average DSC of 80%. When comparing 
the evaluation metrics of the trained models, a significant difference was observed between the DWI and ADC values 
(p < 0.05). The U-Net model achieved a DSC of 92.13 ± 0.91% for DWI and 83.68 ± 10% for ADC, whereas the FCN model 
demonstrated a DSC of 82.86 ± 1.56% for DWI and 79.26 ± 1.19% for ADC.

The evaluation metrics were compared to assess the suitability of each model for lesion segmentation. As presented 
in Table 1, the results of the two models differed significantly (p < 0.05). When comparing the evaluation metrics for DWI 
and ADC within each model, U-Net exhibited a difference of approximately 9%, whereas FCN demonstrated a difference 
of approximately 3%. These results were visualized to compare the lesion segmentation outcomes between the DWI and 
ADC images.

During the dataset construction for this study, two specialists labeled the GT data, with lesions marked based on agree-
ment between the specialists. Given the inherent limitations of capturing fine details during labeling, the GT lesions often 
appear as solid masses, (Fig 5). Therefore, the GT data used during training did not exclusively label the lesions. Despite 
this, U-Net successfully avoided non-lesioned areas during segmentation, whereas the FCN struggled to segment only 
lesions within the original images. This discrepancy likely stems from differences in model performance, as U-Net’s supe-
rior segmentation results can be attributed to its more complex structure with a greater number of layers compared to the 
FCN. This suggests that using a high performing model can further address segmentation challenges. The results were 

Table 1.  Learning results of the model using U-net and FCN.

Precision Recall Accuracy DSC P-value

U-Net DWI 92.03 ± 1.91 92.35 ± 2.55 99.62 ± 0.03 92.13 ± 0.91 <0.05

ADC 90.22 ± 3.16 80.52 ± 15.74 98.97 ± 0.94 83.68 ± 10

FCN DWI 84.05 ± 1.27 81.79 ± 2.38 99.14 ± 0.09 82.86 ± 1.56 <0.05

ADC 81.38 ± 4.99 77.81 ± 4.10 98.97 ± 0.08 79.26 ± 1.19

https://doi.org/10.1371/journal.pone.0324021.t001

https://doi.org/10.1371/journal.pone.0324021.t001


PLOS One | https://doi.org/10.1371/journal.pone.0324021  June 9, 2025 7 / 10

primarily utilized to determine the suitability of the models for lesion segmentation. By comparing the lesion prediction out-
comes for each image in Fig.5 and 6, the predictions for both images were observed to closely match the GT. When com-
paring the Bland-Altman plots for the test data, the results demonstrated some variance between models, but the lesion 
segmentation outcomes for both DWI and ADC did not significantly differ from the specialists’ results. Notably, the evalu-
ation metrics for the models trained on ADC were similar to those in previous studies, and although the predicted images 
were not as finely segmented as those by U-Net, they closely resembled the GT. Therefore, based on the evaluation 
metrics and predicted outcomes for each model, a conclusion can be drawn that lesion segmentation using DWI and ADC 
with AI is feasible. However, despite the dataset comprising lesions of various sizes, both images encountered challenges 
in segmenting lesions smaller than 3 mm. This is potentially attributed to the limited number of data points and the difficulty 

Fig 5.  Lesions segmentation results in each model. Comparisone of apparent diffusion coefficient and diffusion-weighted image predictions from 
different images.

https://doi.org/10.1371/journal.pone.0324021.g005
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of models in detecting small lesions. Additionally, the performance of the models trained on datasets composed of ADC 
images was lower than that of the models trained on datasets with DWI images. The difference in performance metrics 
for each model trained on DWI and ADC images is likely due to differences in the clarity of the lesions in the images. In 
DWI, lesions appear high-signal and have a large contrast with normal tissue, clearly differentiating them from non-lesions 
(Fig.1 (a)). In ADC, due to factors such as edema and signal mixing effects, we can see that there is a difference between 
the lesion and the non-lesion part of the image, but the boundary separating the two is faint (Fig 2 (b)). Future studies may 
yield more meaningful results by incorporating larger datasets or improving the model with image enhancement filters to 
specifically detect focal lesions.

Due to the retrospective design of this study, the parameter values of DWI and ADC used in the dataset were fixed, 
and the limitations of sample collection due to the limited number of patients prevented us from conducting experiments in 
various environments. Therefore, future studies should collect data and samples under various conditions, construct data-
sets using image processing techniques that can further clarify the boundary between lesions and normal tissue in ADC 
images, consider the differences in ADC images depending on the b value, and identify the optimal b value to construct a 
training dataset that includes both DWI and ADC, which is expected to improve segmentation accuracy

Conclusion

In this study, demonstrated that using deep learning models for ischemic stroke lesion segmentation is feasible on both 
DWI and ADC images. U-Net consistently outperformed FCN, especially on high-contrast DWI images. However, seg-
mentation performance was lower on ADC images due to poorer lesion visibility. These results highlight the importance of 
image characteristics in determining model performance

Fig 6.  Bland altman plot for area for each model. (a) Ground truth (GT) and predictive images in U-Net models trained on diffusion image (DWI) 
data. (b) GT and predictive images in U-Net models trained on apparent diffusion coefficient (ADC) data. (c) GT and predictive images in fully connected 
network (FCN) models trained on DWI data. (d) GT and predictive images in FCN models trained on ADC data.

https://doi.org/10.1371/journal.pone.0324021.g006

https://doi.org/10.1371/journal.pone.0324021.g006
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