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Abstract 

Background and objective

Speech disorders can arise from various causes, including congenital conditions, 

neurological damage, diseases, and other disorders. Traditionally, medical profes-

sionals have used changes in voice to diagnose the underlying causes of these 

disorders. With the advancement of artificial intelligence (AI), new possibilities have 

emerged in this field. However, most existing studies primarily focus on comparing 

voice data between normal individuals and those with speech disorders. Research 

that classifies the causes of these disorders within the abnormal voice data, attribut-

ing them to specific etiologies, remains limited. Therefore, our objective was to clas-

sify the specific causes of speech disorders from voice data resulting from various 

conditions, such as stroke and hearing impairments (HI).

Methods

We experimentally developed a deep learning model to analyze Korean speech 

disorder voice data caused by stroke and HI. Our goal was to classify the disorders 

caused by these specific conditions. To achieve effective classification, we employed 

the ResNet-18, Inception V3, and SEResNeXt-18 models for feature extraction and 

training processes.

Results

The models demonstrated promising results, with area under the curve (AUC) values of 

0.839 for ResNet-18, 0.913 for Inception V3, and 0.906 for SEResNeXt-18, respectively.

Conclusions

These outcomes suggest the feasibility of using AI to efficiently classify the origins of 

speech disorders through the analysis of voice data.
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Introduction

Speech disorders significantly impair communication abilities, drastically diminishing 
the quality of life of affected individuals [1–3]. These disorders can stem from various 
causes, including congenital conditions, neurological damage, diseases, or other 
disorders [4–10]. Consequently, medical professionals have traditionally used vocal 
changes to diagnose the origins of speech disorders. Initial assessments relied on 
the auditory judgments of examiners; however, advancements in science and tech-
nology have enabled more precise acoustical analysis [11,12]. This progress has 
enhanced the quantification and accuracy of diagnoses, although limitations remain 
in fully understanding and interpreting complex voice signals. Currently, various 
studies have leveraged the advantages of AI for diagnosing causes through acous-
tical analysis of voices. AI has demonstrated the potential to deliver diagnoses that 
are more accurate than those made by medical specialists or to support specialists in 
making more informed diagnostic decisions [13–15].

In 2023, Kim et al. extracted features using Mel-frequency cepstral coefficients 
(MFCC) from the voice data of 230 healthy individuals and 230 stroke patients and 
applied them to a convolutional neural network (CNN), achieving an accuracy of 
99.60% [16]. In 2020, Singh and Xu extracted features using MFCC from the voice 
data of 860 healthy individuals and 140 Parkinson’s patients, applying the data 
to a support vector machine (SVM) and achieving an accuracy of 99.00% [17]. 
In 2018, Wu et al. achieved an accuracy of 77.00% by extracting features via the 
short-time Fourier transform (STFT) from the voice data of 482 healthy individuals 
and 482 patients with various speech disorders and applying them to a 2D-CNN 
[18]. Using both 2D-CNN and long short-term memory (LSTM) approaches, Syed 
et al. compared and researched the application of features extracted using MFCC 
on voice data from 1600 healthy individuals and 400 patients experiencing various 
speech disorders, achieving an accuracy of 97.11% using 2D-CNN [19]. Shih et al. 
extracted features using STFT and MFCC and applied them to convolutional neural 
network-gated recurrent units (CNN-GRU), CNN, and LSTM for comparison; they 
achieved an accuracy of 98.38% using CNN-GRU [20].

Despite the attainment of high accuracy rates, existing research is limited. Most 
studies are based on small datasets and primarily focus on comparing voice data 
between normal individuals and those experiencing speech disorders. Consequently, 
classification tasks have often focused on a single cause among the various origins 
of speech disorders, such as laryngeal cancer or Parkinson’s disease.

“This study aims to overcome these limitations by utilizing speech disorder data 
collected through scripts from patients with stroke, the representative neurological 
disease, and HI, to classify whether the speech disorders are caused by stroke or HI 
using a CNN-based algorithm.”

Materials and methods

Experimental setup

The research environment for this study was established using a system equipped 
with two NVIDIA RTX 2080 Ti GPUs (NVIDIA, Santa Clara, CA, USA), 329 GB RAM, 
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and a 22-core Intel(R) Xeon(R) Gold 6238 CPU @ 2.10 GHz (Intel, Santa Clara, CA, USA). The system operated on the 
Ubuntu LTS operating system (version 16.04.7) within a Python environment (version 3.6.10). Data preprocessing was 
conducted using the Librosa (version 0.9.2) and Pandas (version 1.1.5) libraries, while model training was performed 
using the TensorFlow library (version 2.6.2). Additionally, statistical analysis and evaluation were conducted using libraries 
such as Sklearn (version 0.24.2), Imblearn (version 0.8.1), and Matplotlib (version 3.3.4), alongside the R environment 
(version 4.3.3), utilizing the pROC package (version 1.18.5) for Receiver Operating Characteristic (ROC) curve analysis.

Data

This study was designed as a retrospective analysis using pre-existing clinical voice data collected from patients with 
stroke and hearing impairment at Ewha Womans University Seoul Hospital. The institutional review board of Ewha 
Womans University Seoul Hospital (IRB Number: SEUMC 2022-03-012) approved this study; the requirement of informed 
consent was waived due to the retrospective nature of the study design. The data collection targeted 250 patients with 
stroke and 250 patients with HI, both representing potential congenital or acquired causes of speech disorders. Detailed 
information on the patients’ gender, age, diagnosis, intelligibility, and degree of disability is summarized in Table 1.

Recordings were made in a lossless format to ensure high quality. In collaboration with medical personnel and HI spe-
cialists, patients were provided with 702 types of diverse scripts that one might encounter in daily life. These scripts were 
presented in full sentences to maintain the continuous characteristics of speech and were recorded, resulting in a total of 
2,000 voice data sets. Each recording was assigned a ground truth label of either stroke or hearing impairment (HI) based 
on clinical diagnoses confirmed by certified neurologists and audiologists at Ewha Womans University Seoul Hospital. To 
ensure the reliability of these labels, an independent review was conducted by speech-language pathologists who cross-
checked the diagnostic information with the observed speech characteristics, such as nasalization and consonant weak-
ening for stroke patients and syllable segmentation for HI patients. This multi-step verification process minimized labeling 
errors and ensured that each voice sample accurately represented its corresponding disorder category. The recordings 
were collected in soundproof speech therapy rooms and underwent a comprehensive data review, cleansing, and pro-
cessing procedure. Particularly, considering the speech characteristics of severely disabled individuals, voice data were 
cleansed and processed in collaboration with speech therapists based on the International Phonetic Alphabet. The scripts 
used for the recordings are listed in Table 2.

Waveforms for comparison between voice data are depicted in Fig 1. In the case of individuals with speech disorders, 
two notable characteristics are observed: (1) nasalization, where the airflow from the vocal tract resonates simultaneously 
in the nasal and oral cavities, causing syllables to merge and sound muffled; and (2) consonant weakening, where the 
boundaries between consonants and vowels become unclear. Additionally, in the case of HI, the characteristic of syllable 
segmentation is more pronounced compared with stroke patients.

The recorded set of 2,000 voice data was divided into training, validation, and testing datasets at a ratio of 8:1:1, result-
ing in 1,600 data points for the training dataset, 200 for the validation dataset, and 200 for the testing dataset.

Data preprocessing

As illustrated in Fig 2, data preprocessing began with the resampling of all voice data to 16 kHz, in accordance with the 
Nyquist–Shannon sampling theorem. To ensure consistency in data handling, all voice recordings were uniformly seg-
mented to a length of 4 s. Recordings shorter than 2 s were excluded from the analysis, and recordings between 2 and 
4 s were extended to a uniform length using zero padding, thereby enhancing signal stability, frequency transformation, 
and resolution. Additionally, to address variations in the distance between the recorder and the patient during recording 
sessions, voice signals were normalized to a range of -1–1. Subsequently, signals were re-normalized to a range of 0–1 
to optimize model training efficiency. Through dataset preprocessing, we ultimately secured 2,914 data points for training, 
382 for validation, and 378 for testing purposes.
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Table 1.  Characteristics of data on gender, age, diagnosis, intelligibility, and degree of disability  
for stroke and Hearing-Impaired (HI) patients.

Data information Count Ratio

Gender Male 265 53.00

Female 235 47.00

Age 10–20 131 26.20

30–40 124 24.80

50–60 155 31.0

Over 70 90 18.00

Diagnosis Stroke 1000 50.00

HI* 1000 50.00

Intelligibility SIR1** 106 5.30

SIR2 151 7.55

SIR3 331 16.55

SIR4 695 34.75

SIR5 717 35.85

Degree of disability Mild 840 42.00

Moderate 239 11.95

Moderately 100 5.00

Severe 268 13.40

Profound 553 27.65
*HI, Hearing Impairment.
**SIR, Speech Intelligibility Rating.

https://doi.org/10.1371/journal.pone.0315286.t001

Table 2.  List of Diverse Scripts Used for One-Sentence Unit Voice Recordings.

ID Content Count

1 “코클리어 엔 세븐 블루투스 연결 방법 알려 줘.”
(“Please show me how to connect the Cochlear N7 with Bluetooth.”)

2

2 “펜션 근처 지하철역 조회 부탁합니다.”
(“I’d like to know the nearest subway station to a rental cottage.”)

7

3 “만성 중이염 검색해 줘.”
(“Search for chronic otitis media for me. “)

3

4 “삼십 번 좌석 예약을 그만둘게. “
(“I’ll cancel the reservation for seat thirty.”)

2

5 “즐겨찾기 메뉴를 켜줘. “
(“Please open the bookmarks.”)

2

⁝ ⁝ ⁝
698 “생수 두 병 부탁해요. “

(“Could you bring me two bottles of water?”)
3

699 “지금 날씨는 좀 나아졌는지 알아봐 줘. “
(“Check if the weather has improved.”)

4

700 “오늘 비 소식 있어? “
(“Is there any rain forecast for today?”)

1

701 “탁상 취침 등 꺼. “
(“Turn off the bedside lamp.”)

7

702 “오늘 태풍 온다는 것 같았는데 맞아? “
(“Was there supposed to be a typhoon today?”)

2

https://doi.org/10.1371/journal.pone.0315286.t002

https://doi.org/10.1371/journal.pone.0315286.t001
https://doi.org/10.1371/journal.pone.0315286.t002
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Models for classifying the causes of speech disorder using voice data

Feature extraction, as shown in Fig 2, was performed using a 1D-CNN model by applying convolution operations to voice 
data. This study adopted the 1D-CNN approach due to existing research indicating the superior performance of 1D-CNNs 
over methods utilizing recurrent neural networks (RNN) such as LSTM, MFCC, and 2D-CNNs that use spectrograms for 
voice data processing [21,22].

Fig 1.  Data Waveform Samples. (a) Normal Speech Waveform, (b) Stroke Patient’s Waveform, (c) Hearing-Impaired (HI) Patient’s Waveform.

https://doi.org/10.1371/journal.pone.0315286.g001

Fig 2.  Flow chart for feature extraction and classification of stroke and HI using speech data. * Data cleaning performed using Audacity ** Resa-
mpling to 16,000Hz; Normalization to a range of -1 to 1; Segmentation into 4s intervals with zero-padding, resulting in 3,674 segments, each containing 
64,000 samples; Normalization to a range of 0 to 1 applied to each segment; Creation of a single NumPy file for training *** 1D-CNN for data-driven 
feature extraction and training using ResNet-18, Inception V3, and SEResNeXt-18 models.

https://doi.org/10.1371/journal.pone.0315286.g002

https://doi.org/10.1371/journal.pone.0315286.g001
https://doi.org/10.1371/journal.pone.0315286.g002
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The model incorporated three architectures: ResNet, SEResNeXt, and Inception. The ResNet model employed by He 
et al. in 2016 addressed the vanishing gradient problem in deep neural networks through residual connections [23]. As 
illustrated by Szegedy et al., the Inception network enables the efficient extraction of spatial information at multiple lev-
els using filters of various dimensions [24]. A set of transformations with the same topology defines the building blocks 
of the ResNeXt architecture, a modular variation of ResNet, which implements a multi-branch architecture based on an 
additional dimension known as cardinality [25]. The SEResNeXt architecture is built upon ResNeXt with the integration 
of squeeze-and-excitation (SE) blocks, enhancing the network’s representational power through dynamic channel-wise 
feature recalibration [26].

Hyperparameters were set with a batch size of 16 and a learning rate of 0.0001. The ReduceLROnPlateau algorithm 
was applied to optimize performance by gradually decreasing the learning rate if the model plateaued during training. 
The Adam optimizer was used to train the model over 200 epochs, and an early stopping algorithm using the binary 
cross-entropy loss function was introduced to prevent overfitting.

Results

In this study, the performance of the trained models was validated against a separately constructed test dataset. The 
evaluation metrics employed were sensitivity, specificity, and accuracy, calculated based on the true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN) ratios from the confusion matrix. Additionally, AUC was used as 
a performance metric derived from the ROC curve. Delong’s test was utilized to verify the statistical significance of per-
formance differences between the models. A comparative analysis among the three models was conducted based on the 
versions that exhibited the best performance.

As shown in Table 3, all models demonstrated excellent performance across all evaluation metrics. In terms of sensi-
tivity, ResNet-18 recorded a performance of 77.53, Inception V3 93.26, and SEResNeXt-18 87.64. ResNet-18 exhibited a 
specificity of 82.00, Inception V3 84.50, and SEResNeXt-18 84.00. ResNet-18 demonstrated an accuracy of 79.89, Incep-
tion V3 88.62, and SEResNeXt-18 85.71. Overall, based on the evaluation metrics derived from the confusion matrix, 
Inception V3 demonstrated relatively high performance among the three architectures.

Fig 3 presents the confusion matrices of each model, illustrating the detailed classification performance for stroke and 
hearing-impaired (HI) patients. It shows how each model performed in terms of true positive, true negative, false positive, 
and false negative counts for each class. Notably, Inception V3 in Fig 3b has significantly fewer false negatives, with 12 
cases, compared to 40 in ResNet-18 in Fig 3a and 22 in SEResNeXt-18 in Fig 3c. Additionally, Inception V3 exhibits fewer 
false positives, with 31 cases, compared to 36 in ResNet-18 and a similar count of 32 in SEResNeXt-18. The comparison 
of the confusion matrices provides an additional layer of insight into the classification behavior of each model, highlighting 
how they handle classification errors across different classes.

Table 3.  Performance Metrics of a Binary Classifier for Differentiating Between Stroke and Hearing-Impaired (HI) Patients Using Speech Disor-
der Data.

Model Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

AUC
(95% CI)*

ResNet-18 77.53 ± 8.01
(71.40 ~ 83.66)

82.00 ± 2.01
(76.68 ~ 87.32)

79.89 ± 2.94
(75.85 ~ 83.93)

0.839 ± 0.038
(0.800 ~ 0.881)

Inception V3 93.26 ± 4.47
(89.57 ~ 96.94)

84.50 ± 2.50
(79.48 ~ 89.52)

88.62 ± 0.70
(85.42 ~ 91.83)

0.913 ± 0.019
(0.881 ~ 0.947)

SEResNeXt-18 87.64 ± 5.09
(82.81 ~ 92.48)

84.00 ± 2.92
(78.92 ~ 89.08)

85.71 ± 2.34
(82.19 ~ 89.24)

0.906 ± 0.009
(0.872 ~ 0.939)

*The 95% confidence intervals for AUC were estimated via the bootstrap method.

https://doi.org/10.1371/journal.pone.0315286.t003

https://doi.org/10.1371/journal.pone.0315286.t003
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Fig 4 shows a comparison of performance in terms of AUC, confirming that the models effectively classify both stroke 
and HI. ResNet-18 recorded an AUC of 0.839 with a standard deviation of 0.038 and a 95% confidence interval of 0.800–
0.881, demonstrating relatively lower figures compared with the other two models. Inception V3 demonstrated the highest 
performance with an AUC of 0.913, a standard deviation of 0.019, and a 95% confidence interval of 0.881–0.947. Among 
all three models, SEResNeXt-18 exhibited a moderate performance with an AUC of 0.906, a standard deviation of 0.009, 
and a 95% confidence interval of 0.872–0.939.

As shown in Table 4, the comparison of AUC between models through Delong’s test revealed that the performance 
difference between ResNet-18 and the other two models was statistically significant, with p < 0.05. However, the perfor-
mance difference between Inception V3 and SEResNeXt-18 was not statistically significant, as indicated by p < 0.227.

Discussion

This paper presents a study on classifying stroke and HI using speech disorder voice data. We acquired high-quality 
source data and engaged in data cleansing and processing, which included effective noise removal. Subsequently, we 
performed data preprocessing steps such as normalization, zero-padding, and segmentation. Utilizing a 1D convolution 
layer, we automatically extracted and learned the local characteristics of complex waveform patterns from raw voice data. 
This model-based approach afforded remarkable classification performance, with accuracy scores of 79.89 for ResNet-18, 
88.62 for Inception V3, and 85.71 for SEResNeXt-18. The AUC scores of 0.839 for ResNet-18, 0.913 for Inception V3, 
and 0.906 for SEResNeXt-18 confirm the models’ effective differentiation between speech disorders caused by stroke and 
HI. However, despite all models demonstrating strong performance, there were notable differences in their classification 
accuracy. These differences can be attributed to the distinct architectural characteristics of each model. ResNet-18, while 
benefiting from residual connections that mitigate the vanishing gradient problem and enable deeper network training, is 
primarily optimized for simplicity and computational efficiency [23]. This results in an inability to effectively capture sub-
tle, multi-scale features in complex datasets such as speech disorder data, which requires a more nuanced approach to 
feature extraction. Consequently, ResNet-18’s lower performance may be linked to its reliance on standard convolutional 
filters that do not adapt as dynamically to varying spatial patterns, making it less suited for highly variable speech signals. 
Similarly, SEResNeXt-18, which incorporates Squeeze-and-Excitation (SE) blocks to adaptively recalibrate feature maps 
and enhance sensitivity to important features, showed improved performance over ResNet-18 but still fell short compared 
to Inception V3. While SEResNeXt-18 excels in focusing on critical features by adjusting the significance of channel-wise 
information, its relatively narrower network structure and limited ability to analyze complex patterns at multiple scales may 

Fig 3.  Confusion Matrices Comparison of Deep Learning Models for Classifying Stroke and HI Disorders. (a) ResNet-18, (b) Inception V3, (c) 
SEResNeXt-18.

https://doi.org/10.1371/journal.pone.0315286.g003

https://doi.org/10.1371/journal.pone.0315286.g003
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hinder its performance when faced with highly heterogeneous speech patterns. The SE block’s recalibration advantage is 
effective, but it may not be sufficient for capturing complex temporal dynamics in voice data [25,26]. In contrast, Inception 
V3’s superior performance can be attributed to its distinctive multi-branch architecture, which utilizes multiple convolutional 
filter sizes within a single layer to capture diverse spatial hierarchies. This design allows Inception V3 to learn both fine-
grained and coarse features simultaneously, making it particularly well-suited for the intricate and multi-scale nature of 
speech disorder data. Moreover, Inception V3 employs factorized convolutions and auxiliary classifiers, which help reduce 
computational complexity while preserving its capacity to analyze deep feature representations. This combination of deep 
feature extraction and efficient computational strategies enables the model to maintain high classification accuracy even in 
the presence of subtle variations in speech patterns caused by stroke and HI [24]. Consequently, Inception V3’s ability to 
balance depth, width, and multi-scale feature extraction makes it the most effective model for the given task, demonstrating 

Fig 4.  ROC Curve Comparison of Models Classifying Stroke and HI from Speech Disorder Data.

https://doi.org/10.1371/journal.pone.0315286.g004

Table 4.  Statistical Significance of Performance Differences Among Models as Determined by  
Pairwise Delong’s Test P-value Comparisons in Terms of AUC.

Model Comparison P-Value†

ResNet-18 Inception V3 SEResNeXt-18

ResNet-18 P < 0.05* P < 0.05*

Inception V3 P = 0.227

SEResNeXt-18
†p-value based on pairwise comparison of ROC curves.
*Results were considered statistically significant at p-value < 0.05.

https://doi.org/10.1371/journal.pone.0315286.t004

https://doi.org/10.1371/journal.pone.0315286.g004
https://doi.org/10.1371/journal.pone.0315286.t004
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not only the highest overall accuracy but also the most balanced performance in differentiating between stroke and HI 
speech disorder classes. In addition to each model’s structural characteristics, the number of parameters likely also contrib-
uted to the observed performance differences. Within the constraints of our experimental environment, this study selected 
the highest-performing variant from each model family—ResNet-18, Inception V3, and SEResNeXt-18—for comparison 
across models. ResNet-18 has 925,697 parameters, Inception V3 has 12,345,761, and SEResNeXt-18 has 1,308,033, 
with Inception V3 containing the highest parameter count among the models. In the AUC comparison, Delong’s test results 
showed a statistically significant difference between ResNet-18 and the other two models (p < 0.05), while no significant 
difference was observed between Inception V3 and SEResNeXt-18 (p < 0.227). These findings further support the suitability 
of Inception V3’s balanced architecture and higher parameter count for complex speech classification tasks [27].

This research is significant for utilizing a larger dataset compared with those used in previous studies and achieving 
excellent performance across various evaluation metrics. It excels in accurately classifying speech disorder voices caused 
by stroke and HI rather than merely distinguishing between normal and abnormal speakers. Unlike previous research that 
primarily focused on the phonation of the vowel/a/, this study utilized entire scripts, allowing for a more comprehensive 
analysis of speech patterns and characteristics such as pitch breaks, voice fatigue, and voice breaks, which is expected to 
enhance accuracy and flexibility in screening diagnoses [28,29].

However, this study is limited to Korean voice data and focuses only on stroke and HI among various causes of speech 
disorders, which indicates a lack of diversity in the data. Toward the development of multi-classification or cause-specific 
classification models, future research should aim to build datasets suitable for various languages and cultures and secure 
extensive voice datasets for diverse causes inducing speech disorders, such as amyotrophic lateral sclerosis, Parkinson’s 
disease, Down syndrome, and multiple sclerosis. This paper presents significant results in experimentally classifying the 
causes of speech disorders stemming from stroke and HI using speech disorder voice data. The developed classification 
models can be employed for the early detection and diagnosis of speech disorders, potentially mitigating symptom sever-
ity and enhancing the effectiveness of treatments. In particular, the high sensitivity and balanced performance of these 
models make them well-suited for identifying early signs of speech deterioration, even when symptoms are subtle and not 
easily detectable by the human ear. This capability is crucial in clinical practice, where early intervention is often the key 
to preventing further progression of speech disorders. For instance, in stroke rehabilitation, prompt detection of dysarthria 
or other related symptoms can help tailor personalized speech therapy programs, thereby improving recovery outcomes. 
Moreover, these models can serve as efficient tools for remote monitoring and risk assessment. By leveraging automated 
voice analysis through digital devices, clinicians can track patients’ speech changes over time and adjust treatment plans 
accordingly without requiring frequent hospital visits. This approach not only reduces the burden on healthcare facilities 
but also improves patient accessibility to specialized care, especially for those in rural or medically underserved areas. 
Additionally, in contexts such as pandemics or when mobility is restricted, remote voice monitoring provides a safe and 
effective way to ensure continuous health management and intervention.

The advancement of AI technology and its integration with the medical field are expected to play a significant role in 
assisting medical diagnoses and improving accuracy and speed, leading to the realization of enhanced medical services. 
As demonstrated in this study, machine learning models can contribute to more nuanced diagnostic capabilities, poten-
tially extending beyond speech disorders to other areas where precise pattern recognition is crucial. This evolution in diag-
nostic methodology could ultimately pave the way for AI-assisted systems that support clinicians in making more informed 
decisions, thereby optimizing patient outcomes and revolutionizing healthcare delivery.
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