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Abstract: We propose the financial generative adversarial network-bidirectional long short-
term memory (FINGAN-BIiLSTM) model to accurately reproduce the complex statistical
properties and stylized facts, namely, heavy-tailed behavior, volatility clustering, and
leverage effects observed in the log returns of the foreign exchange (FX) market. The
proposed model integrates a bidirectional LSTM (BiLSTM) into the conventional FINGAN
framework so that the generator, discriminator, and predictor networks simultaneously
incorporate both past and future information, thereby overcoming the information loss
inherent in unidirectional LSTM architectures. Experimental results, assessed using metrics
such as the Kolmogorov-Smirnov statistic, demonstrate that FINGAN-BIiLSTM effectively
mimics the distributional and dynamic patterns of actual FX data. In particular, the model
significantly reduces the maximum cumulative distribution discrepancy in assets with
high standard deviations and extreme values, such as the Canadian dollar (CAD) and the
Mexican Peso (MXN), while precisely replicating dynamic features like volatility clustering
and leverage effects, thereby outperforming conventional models. The findings suggest that
the proposed deep learning-based forecasting model holds significant promise for practical
applications in financial risk assessment, derivative pricing, and portfolio optimization,
and they highlight the need for further research to enhance its generalization capabilities
through the integration of exogenous economic variables.
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1. Introduction

Machine learning (ML) was introduced in 1959 by Arthur Samuel, who was working
at IBM at the time, and was used to describe pattern recognition tasks that implemented
learning components in pioneering artificial intelligence (Al) systems [1]. Initially, ML
was considered a subset of broader Al systems, but over time, the practical applications
of ML expanded significantly, surpassing the limitations defined by the Al framework [1].
The first mention of machine learning (ML) in the financial sector appeared briefly in the
abstract of [2], but it was not until the study presented in [3] that ML was exclusively
applied to economic problems. Due to the rapid advancement of information and database
technologies, as well as significant improvements in data analysis techniques and computer
hardware, the application of ML technologies has exponentially increased across various
fields, including business and finance [4]. In particular, according to [5], finance is one of
the most actively researched application areas for ML, showing superior performance
compared to traditional models, and today ML is widely applied in financial applications.
In other words, ML can handle vast amounts of structured and unstructured data more
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effectively, outperforming traditional economic models. The advent of ML has provided a
foundation for performing financial forecasting more accurately and efficiently, thanks to
its effective data processing capabilities.

Building on the rapid growth of ML in finance, recent advancements in Al have paved
the way for the development of innovative generative models, particularly in the field
of Generative Al. Generative Al possesses the capability to learn from existing data and
generate new data, opening up innovative application possibilities across various industrial
sectors. Firstly, the autoencoder (AE) compresses input data into a low-dimensional latent
space and then reconstructs it back to the original data, thereby learning the important
features of the data. This feature learning ability can be utilized in various applications
such as noise reduction, dimensionality reduction, and data augmentation, and it holds
particular potential for effectively handling complex, high-dimensional data such as fi-
nancial data, making its use in the financial sector noteworthy. On the other hand, the
generative adversarial network (GAN) consists of two neural networks, the Generator and
the discriminator, which interact and learn together. The generator attempts to produce
data that resembles real data, while the discriminator tries to distinguish whether the
generated data is real or fake. Through this process, the Generator creates increasingly
sophisticated data, resulting in highly realistic synthetic data. Ref. [6] first described the
basic concepts and structure of GANSs, presenting the principles and potential of GANS.
These characteristics highlight the potential of GANs in various financial applications in
various financial applications, including the simulation of financial time series data, data
augmentation, and anomaly detection.

As previously mentioned, ML is currently one of the most widely used techniques in
the financial sector. Although [3] was the first to apply ML to economic problems, the use
of neural networks (NNs) in financial forecasting dates back to 1988, when [7] published a
study predicting IBM’s daily stock returns. From the outset, ML has been primarily utilized
for financial time series forecasting. Subsequently, ML has been applied to a variety of
forecasting problems beyond stock return prediction alone, such as, such as forecasting
Japan’s real gross domestic product (GDP) growth rate [8] and predicting credit risk [9].
In the financial sector, tasks such as classification, in addition to time series forecasting,
play a very important role, and traditional time series forecasting was performed using
simple point estimation methods. However, with the introduction of ML, more accurate
and flexible forecasting utilizing complex time series data has become possible.

Among the recent ML-based forecasting methods, the financial generative adversarial
network (FINGAN) has recently garnered significant research interest. Traditional ML
and time series forecasting methodologies have certain limitations. They either cannot
provide probabilistic forecasts or rely on strong distributional assumptions about future
target variables, which hinders their ability to effectively reflect uncertainty [10]. According
to [11], FINGAN was proposed as a deep learning-based model for financial time series
data modeling. Through the training of FINGAN, it is possible to reproduce stylized
facts such as heavy-tailed distributions, volatility clustering, and leverage effects, thereby
effectively modeling the characteristics of financial time series data.

In this study, we propose a novel FINGAN model based on the GAN framework,
specifically designed to capture the unique characteristics of financial data. To demonstrate
its practical utility and effectiveness, we apply the proposed FINGAN model to generate
return series in the foreign exchange market.

Building on previous work on FINGAN, this study proposes the FINGAN-BiLSTM
model to more accurately capture the complex dynamics and inherent uncertainties of
financial time series data. To address the limitations of conventional FINGAN, the pro-
posed model incorporates a BILSTM architecture, which simultaneously learns forward
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and backward temporal dependencies. The FINGAN-BiLSTM model comprises the fol-
lowing three modules: generator, discriminator, and predictor. The generator synthesizes
realistic financial return sequences by combining random noise with actual time series data,
while the discriminator enhances training stability by effectively distinguishing between
generated and real data. Furthermore, the predictor module employs a BILSTM framework
to provide more accurate forecasting outcomes.

Recognizing the drawbacks of traditional unidirectional long short-term memory
(LSTM) models, particularly the loss of contextual information due to their sequential
processing, the adoption of BILSTM becomes essential. By integrating both forward and
backward contextual cues, BILSTM provides a richer and more comprehensive represen-
tation at each time step. Financial time series data are characterized by intricate patterns,
including interdependencies between past and future events, which are often reflected
in stylized facts such as heavy-tailed distributions, volatility clustering, and leverage
effects. The bidirectional learning mechanism of BiLSTM is expected to capture these
phenomena more effectively, thereby improving both forecasting performance and overall
model stability.

The proposed FINGAN-BIiLSTM model is anticipated to effectively reproduce key
stylized facts observed in the FX market, namely, heavy-tailed distributions, volatility
clustering, and leverage effects, while also capturing financial dynamics that are often
overlooked by conventional models. Moreover, this study aims to empirically demonstrate
that applying the proposed model to the replication of stylized facts allows for a more
robust and reliable simulation of the nuanced characteristics inherent in financial time
series data.

FX return distributions deviate significantly from normality, challenging traditional
financial models. Empirical studies show that FX returns exhibit heavy tails, excess kurtosis,
and skewness, leading to frequent extreme fluctuations that Gaussian-based models fail to
capture [12,13]. Additionally, multifractal properties and volatility clustering suggest long-
range dependence in FX markets [14]. To address these issues, alternative models have been
proposed, including generalized Student distributions, generalized autoregressive condi-
tional heteroscedasticity (GARCH)-type models, and approaches based on non-extensive
statistical mechanics [15,16]. These characteristics impact risk management, derivative
pricing, and algorithmic trading, highlighting the need for more robust statistical models.
This paper explores FX return distributions and their implications for financial modeling
and forecasting.

FX market movements have long posed a significant challenge in financial research.
Ref. [17] emphasized how combining multiple models can enhance prediction accuracy,
while [18] introduced a directional changes framework that captures market trends beyond
traditional methods. Ref. [19] explored how FX risk affects carry trade returns, and [20]
investigated whether market-implied volatility holds additional predictive power. Mean-
while, ref. [21] showed that yield curves can offer valuable insights into FX returns. This
paper critically reviews these forecasting strategies, highlighting their respective strengths,
limitations, and potential applications in financial decision-making.

This study introduces a novel hybrid architecture, FINGAN, enhanced with BiLSTM,
designed to capture the complex dynamics of FX markets. The proposed models demon-
strate superior performance in replicating key stylized facts of financial time series—such
as heavy-tailed, volatility clustering, and leverage effect—when benchmarked against
traditional and contemporary alternatives. Notably, the incorporation of BiLSTM enhances
the model’s ability to capture temporal dependencies and asymmetric information flow,
resulting in more accurate and realistic estimations of the distribution of FX returns. This
contributes meaningfully to the literature by offering a robust framework for distribu-
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tional forecasting in FX markets, with potential implications for risk management, trading
strategies, and policy modeling.

The remainder of this paper is organized as follows. Section 1 introduces the back-
ground and motivation of the study. In Section 2, we review relevant literature on the
application of GAN models in finance and on FX forecasting methods. Section 3 describes
the FX dataset and presents a preliminary statistical analysis of the log-return series for
12 FX pairs. Section 4 details the methodology, including both the conventional FINGAN
model and the proposed FINGAN-BiLSTM architecture that incorporates BILSTM layers.
Section 5 presents the empirical results, including evaluations of the distributional good-
ness of fit and analyses of key stylized facts such as heavy tails, volatility clustering, and
the leverage effect. In Section 6, we discuss the research findings and draw the paper’s
conclusions. Finally, in Section 7, we propose directions for future research.

2. Literature Review

This section provides a brief review of previous studies that have applied GAN models
in the field of finance, as well as existing research on FX prediction.

2.1. Applications of GAN Models in Financial Research
2.1.1. GANin Finance

Ref. [22] utilized a GAN-based model to generate synthetic data that aligns with real
financial data, aiming to reflect the upward and downward trends of the stock market and
improve future stock price prediction performance. The study evaluated the generalization
capability of the model by training it on various global stock indices, including Toronto
Stock Exchange (TSX), Shanghai Stock Exchange (SHCOMP), Korea Composite Stock
Price Index 200 (KOSPI 200), and Standard & Poor’s 500 Index (S&P 500). Experimental
results demonstrated that the proposed model outperformed traditional models such as
the recurrent neural network (RNN), variational autoencoder (VAE), and LSTM in terms of
predictive accuracy. Notably, the model maintained high prediction accuracy during both
training and testing phases, and the generated synthetic data effectively preserved the key
statistical properties of real financial time series data.

Ref. [23] proposed a GAN-based framework to enhance the predictive performance
of trading strategies. The study demonstrated that the discriminator in the GAN model
learns more realistic trading action sequences from historical trading data, allowing it to
more accurately distinguish whether a given sequence is real or generated. Additionally,
experimental results showed that the GAN-based model outperformed traditional LSTM
models in trading performance. The study empirically verified that GANs can exhibit su-
perior performance in stock trading strategy prediction compared to traditional supervised
learning models. In GAN-based financial market prediction, the interaction between the
generator and discriminator plays a crucial role in optimizing trading strategies, ultimately
enabling the development of more effective trading strategies.

Ref. [24] explored a GAN-based approach for financial scenario generation. The study
proposed a conditional financial scenario generation model, integrating a bidirectional
GAN (BiGAN) structure with a Markov Chain Monte Carlo (MCMC) technique under a
Markov framework. This model is designed to generate multivariate financial time series
independently while allowing user-defined macroeconomic scenarios to be incorporated
into financial market modeling. Notably, the study highlighted that this is one of the
first attempts to generate multivariate financial simulations without explicitly relying on a
probabilistic model. Experimental results demonstrated that the proposed model effectively
captures stylized facts of financial markets and enables realistic financial data simulation.
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Ref. [25] proposed a stock price prediction model utilizing GANs and demonstrated
that GANs can generate synthetic stock price data that reflects market sentiment and
volatility. The study developed a model capable of effectively learning and identifying
upward and downward trends in the stock market using GANs. Furthermore, the research
empirically verified that GAN-based models achieve higher prediction accuracy compared
to traditional statistical models (e.g., autoregressive integrated moving average (ARIMA))
and ML-based models (e.g., LSTM). Notably, the study suggested that synthetic data gener-
ated by GANSs can enhance the diversity of financial datasets and serve as a supplement to
improve the precision of learning from actual market data.

¢ Key contributions: GAN-based frameworks reliably synthesize realistic financial time
series—preserving stylized facts such as heavy tails, volatility clustering, and trend
dynamics—and often outperform classical approaches in predictive accuracy and data
augmentation.

e Limitations: A review of the existing literature indicates that prior studies have
predominantly utilized unidirectional generator and discriminator frameworks.

2.1.2. PriorResearch on FINGAN Models

Ref. [11] proposed a GAN-based approach, FINGAN, for financial time series model-
ing. The primary objective of the study was to utilize FINGAN to generate financial time
series that restore key stylized facts, such as heavy-tailed distributions, volatility clustering,
and leverage effects. Additionally, the study highlighted that this was the first attempt to
apply deep learning to construct a model that satisfies the fundamental statistical properties
of financial time series. The experimental results demonstrated that FINGAN effectively re-
produces financial time series with heavy-tailed distributions and long-range dependencies.
This suggests that deep learning-based methodologies can contribute to generating more
realistic financial data compared to traditional financial time series modeling approaches.

Ref. [26] described FINGAN as a model proposed to address the issue of imbalanced
data in analytical customer relationship management (CRM). The model demonstrated
superior area under the ROC curve (AUC) performance compared to traditional GAN
models across three datasets, that is, credit card churn prediction, insurance fraud detec-
tion, and loan default prediction. These findings suggest that FINGAN is an effective
approach to overcoming the challenge of imbalanced data in the financial and insurance
sectors. Notably, when compared to various existing GAN models, FINGAN exhibited
statistically significant performance improvements across all datasets, further enhancing
its applicability in financial data analysis.

Ref. [10] conducted a study on financial time series forecasting using the FINGAN
model and an economics-driven generator loss function. The results showed that FINGAN
improves the Sharpe ratio, alters the generated distribution, and mitigates the mode
collapse problem. Furthermore, FINGAN demonstrated superior performance in terms of
the Sharpe ratio compared to ARIMA, LSTM, long-only strategies, and conventional GAN
models. This suggests that INGAN provides more sophisticated probabilistic forecasting
than traditional financial time series prediction models and has strong potential for real-
world applications in financial markets.

Ref. [27] conducted a study utilizing FINGAN to generate synthetic data with similar
characteristics to stock market datasets. The primary objective of this research was to create
artificial datasets that preserve statistical properties while preventing the disclosure of
complete information from the input data. The study demonstrated that, compared to
conventional GAN models, INGAN more accurately replicates the original distribution
and efficiently generates high-quality continuous synthetic financial data. Furthermore,
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it highlighted that this approach could help address issues related to data scarcity and
limited data availability in the financial sector.

¢ Key contributions: The FINGAN family of GANs effectively reproduces key stylized
facts of financial time series—including heavy-tailed distributions, volatility clustering,
and long-range dependencies—and demonstrates superior performance compared to
ARIMA, LSTM, and VAE models.

¢  Limitations: Prior studies have been applied primarily to stock indices and CRM/insu-
rance datasets, and their generator and discriminator architectures rely on unidirec-
tional LSTMs, precluding the modeling of bidirectional dependencies via BILSTM.

2.2. Forecasting FX
2.2.1. TheLiterature on FX Forecasting Using Conventional Models

Ref. [20] assessed the informational content of market-implied volatility in FX fore-
casting, comparing it with traditional time series models like GARCH and autoregressive
moving average (ARMA). Their research evaluated whether implied volatility provides
additional predictive value beyond historical data, with findings suggesting that it captures
forward-looking market expectations. The study found that integrating implied volatil-
ity with traditional statistical models improves forecasting accuracy. They argued that
volatility measures derived from market options enhance predictions by reflecting investor
sentiment. This insight is particularly relevant for risk management strategies that rely on
forward-looking volatility measures.

Ref. [28] conducted a large-scale empirical comparison of eight major machine learning
models using monthly time series data from the M3 forecasting competition. Their findings
showed that multilayer perceptrons (MLPs) and Gaussian processes (GPs) consistently
outperformed other models in terms of predictive accuracy. The study also emphasized the
critical role of preprocessing strategies—such as lagged inputs and moving averages—on
forecasting performance. These insights highlight the practical suitability of MLPs and GPs
for forecasting noisy and nonlinear series such as FX data, and underscore the importance
of carefully selecting both models and preprocessing methods.

Ref. [21] investigated the relationship between yield curves and FX returns, arguing
that interest rate differentials and term spreads can serve as reliable predictors of exchange
rate movements. Their study suggests that movements in yield curves contain important
signals about future currency valuations. They demonstrated that yield curve predictors
improve exchange rate forecasting by incorporating macroeconomic factors into FX models.
Their analysis highlights the interaction between bond markets and currency markets,
revealing valuable insights for traders and policymakers. By linking yield spreads to
currency expectations, they provide a foundation for macro-driven FX forecasting models.

Ref. [17] proposed a multivariate approach for FX forecasting, demonstrating how
combining different models can improve prediction accuracy. They employed the principal
component analysis and factor models to integrate multiple forecast sources, highlighting
that diversification reduces forecasting errors. Their study emphasizes the importance of
selecting appropriate weightings for combined forecasts to enhance stability. The findings
suggest that integrating multiple predictive signals helps capture the inherent complex-
ity of exchange rate movements. This approach is particularly useful for investors and
policymakers seeking to minimize forecasting risk.

Ref. [19] explored the impact of FX risk on carry trade returns, showing that volatility
plays a crucial role in determining future returns. Their analysis suggests that increased
market uncertainty leads to the unwinding of carry trades, making volatility forecasting an
essential aspect of FX prediction. They proposed that FX risk factors should be incorporated
into predictive models to account for unexpected shocks. By considering risk premia and
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uncertainty measures, their study provides valuable insights into the predictability of
currency movements. These findings help refine forecasting techniques for traders engaged
in carry trade strategies.

Ref. [18] introduced a directional changes framework that identifies market turning
points, providing an alternative to conventional time series models. Their method focused
on capturing significant trend reversals rather than continuous price movements, offering
a different perspective on market behavior. They argued that traditional models often
overlook these structural changes, leading to suboptimal forecasts. By analyzing price
dynamics through a directional lens, their approach improves the ability to predict short-
term fluctuations. This framework enhances FX forecasting by allowing for early detection
of market shifts.

Ref. [29] provided a comprehensive survey of deep learning models for time series
forecasting, outlining their architectural evolution and applications. Their work partic-
ularly emphasizes the strengths of Transformer-based and attention-augmented models
in capturing long-term dependencies and complex temporal patterns—features that are
highly relevant to FX markets. They further discuss the use of multi-horizon forecasting,
probabilistic uncertainty estimation, and the integration of static and exogenous vari-
ables. These methodological advances offer a powerful modeling toolkit for forecasting in
high-frequency and high-volatility environments such as FX markets.

Ref. [30] focused on the theoretical foundations and interpretability of statistical
ML approaches for time series forecasting. Regularized linear models such as the Least
Absolute Shrinkage and Selection Operator (LASSO), Ridge, and Elastic Net are shown
to be effective for high-dimensional forecasting tasks, particularly in selecting relevant
predictors—an essential requirement in FX modeling. In addition, tree-based models and
shallow NNs are presented as interpretable alternatives that balance forecasting perfor-
mance with explainability. The study also advocated for ensemble and hybrid modeling
strategies, which are especially useful in dealing with the structural uncertainty inherent in
FX and other financial time series.

e Key contributions: Conventional models improved FX forecasting performance
through implied volatility integration, MLP/GP-based preprocessing, yield curve
predictors, and multivariate factor models.

* Limitations: Prior studies focused solely on point estimation based on RMSE or AUC,
without modeling the full return distribution or stylized facts in financial time series.

2.2.2. TheLiterature on FX Forecasting Using ML

Ref. [31] explored kernel-based methods for FX forecasting, specifically using sup-
port vector machines (SVMs) and hidden Markov models (HMMs). They introduce the
concept of the Fisher kernel to enhance the predictive power of SVMs by incorporating
time series dependencies. Their results show that hybrid approaches combining kernel
methods and statistical models outperform standard SVM-based classifiers. The study
underscores the potential of machine learning techniques in improving FX forecasting
beyond traditional econometric models. Their findings highlight that kernel-based models
can capture complex nonlinear patterns in FX data.

Ref. [32] proposed an artificial neural network (ANN) approach for FX forecasting,
focusing on the optimization of network parameters such as the number of hidden layers,
neurons, and activation functions. Their study demonstrates that properly tuned ANN
models can enhance forecasting accuracy and aid in trading decision support. By leveraging
historical data from the EUR/USD currency pair, they show that ANN-based models
outperform conventional statistical techniques. The research emphasizes the importance
of training methodology and hyperparameter selection in building effective forecasting
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systems. Their findings suggest that ANN models are a valuable addition to traditional FX
prediction frameworks.

Ref. [33] investigated the use of deep RNNS, particularly LSTM and gated recurrent
unit (GRU) networks, for FX rate prediction. Their study systematically compares these
architectures against traditional feedforward networks and benchmark models. Empirical
results indicate that deep networks offer superior directional forecasting accuracy, though
simpler models may perform similarly in terms of profitability. Their findings emphasize
the challenges of tuning deep learning models for financial forecasting. They conclude that
while deep RNNs are promising, their effectiveness depends on careful architecture design
and optimization.

Ref. [34] proposed a hybrid deep learning model integrating an autoencoder and LSTM
networks to forecast FX volatility. The study utilizes FX Volatility Index (FXVIX) data,
focusing on three major indices—Euro Volatility Index (EUVIX), British Pound Volatility
Index (BPVIX), and Japanese Yen Volatility Index (JYVIX)—from 2010 to 2019. Empirical
results demonstrate that the proposed autoencoder LSTM model outperforms traditional
LSTM models in capturing FX volatility patterns. Additionally, the study investigates
the impact of data distributions and outliers on forecasting accuracy through subperiod
analysis. Their findings suggest that combining an autoencoder with the LSTM enhances
the ability to learn data spread and singularities, improving volatility prediction reliability.

Ref. [35] proposed a two-layer stacked LSTM network combined with correlation
analysis for FX forecasting. Their approach involves selecting datasets using the Hurst
exponent to improve prediction accuracy. They compare their model with single-layer
LSTM, MLP, and other NN architectures, demonstrating superior performance in terms
of mean squared error (MSE) and root mean squared error (RMSE). The study highlights
that integrating correlation analysis with LSTM models enhances FX prediction reliability.
Their findings reinforce the potential of deep learning techniques for capturing complex
relationships in currency markets.

Ref. [36] provided a systematic literature review and meta-analysis of ML approaches
for FX forecasting. They analyze 60 studies covering various algorithms, including LSTM,
ANN, and hybrid models. Their findings highlight that deep learning models, particularly
LSTMs, have gained prominence due to their ability to capture sequential dependencies in
financial data. The study also identifies key challenges such as dataset selection, model
evaluation metrics, and overfitting issues. Their meta-analysis suggests that while machine
learning enhances FX forecasting, further improvements are needed in feature engineering
and model interpretability.

*  Key contributions: Various ML methods—including kernel-based SVM/HMM, ANN,
LSTM, GRU, AE-LSTM hybrids, and stacked LSTM with correlation analysis—have
been shown to improve FX forecasting accuracy and directional performance.

¢ Limitations: These approaches mainly focus on point-estimate metrics such as MSE,
RMSE, and directional accuracy. In other words, existing ML-based FX forecasting
studies do not model the full return distribution or the stylized facts of financial
time series.

In this study, we propose a novel FIN-GAN-based model by integrating a BILSTM
architecture into the traditional FINGAN framework. This new hybrid model is designed to
generate synthetic data that closely resembles real FX return data. Our research contributes
to the growing body of literature on the application of GANs in finance by introducing a
new model architecture. Furthermore, by demonstrating its predictive performance in the
context of FX markets—one of the core assets in the global financial system—our study
also offers meaningful practical implications.
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3. Data Description

The FX data used in this study comprise exchange rate information for six major and
six minor currencies based on trading volume. Data were retrieved from the Yahoo Finance
platform covering the period from 1 January 2020, to 31 December 2024. Descriptive
statistics were computed based on the log returns of each dataset, serving as the foundation
for the subsequent analysis. The study deliberately employs post-2020 data to accurately
capture the structural shifts in the market following the COVID-19 pandemic and to
mitigate discrepancies associated with pre-pandemic data.

Table 1 provides the basic descriptive statistics for the daily log returns of 12 major
and minor currency pairs, such as the Euro (EUR), Japanese yen (JPY), British pound (GBP),
Australian dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), Brazilian real (BRL),
Korean won (KRW), Mexican peso (MXN), Singapore dollar (SGD), South African rand
(ZAR), and Chinese yuan (CNY). Overall, the average returns are exceedingly close to zero.
For example, the EUR exhibits an average return of —0.0001, the JPY —0.0003, and the GBP
approximately zero. Although the differences are subtle, these figures suggest that each
currency pair displays distinct return characteristics in response to the evolving market
and economic conditions.

Table 1. The Jarque-Bera statistic tests the null hypothesis of normality for the sample returns.
tindicates a rejection of the null hypothesis at the 1% significance level. Std. dev. skew. kurt. J.-B.
mean standard deviation, skewness, kurtosis, and Jarque-Bera statistics, respectively. ADF and PP
are the augmented Dickey-Fuller and Phillips—Perron, respectively. T indicates a rejection of the null
hypothesis at the 1% significance level.

FX Mean Max. Min. Std. dev. Skew. Kurt. J.-B. ADF PP

EUR  —0.0001 0.0182 —0.0281 0.0047 —0.1477 1.9901 217.11% -3508 % —35.10%
JPY —0.0003 0.0380 —0.0267 0.0058 0.3822 3.9391 865.66+  —3557% 35611
GBP 0.0001 0.0303 —0.0423 0.0058 —0.3988 6.0108  1978.02F —1629% —34811%
AUD  —0.0001 0.0285 —0.0322 0.0068 —0.0581 1.4456 11260 —3571% —3572%
CAD  —0.0001 0.0319 —0.0297 0.0044 —0.0167 4.3769 1030.01% —18.02%F —37.27%
CHF 0.0001 0.0284 —0.0226 0.0048 0.2965 2.4943 35298+  —3437%  34.38%
BRL  —0.0003 0.0907 —0.0863 0.0111 0.0834 7.6854  317991F —40.02% —4026%
KRW  —0.0002 0.0350 —0.0205 0.0057 0.3813 2.4597 356.24%  —1591%  —39.601%
MXN  —0.0001 0.0326 —0.0608 0.0084 —0.8951 47591  139147% —-3506% —35.10%
SGD 0.0001 0.0129 —0.0150 0.0029 —0.0486 1.7432 16337+  —36.18% —36.22%
ZAR  —0.0002 0.2041 —0.2009 0.0123 0.0616 111.1518  665,572.10F —16.26+% —47.53 %
CNY  0.0001 0.0216 —0.0212 0.0036 0.3246 7.7546  325875% —666F  —4398%

A detailed examination of the extreme values reveals substantial heterogeneity among
the currencies. The ZAR, for instance, reaches a maximum return of 0.2041 and drops
to a minimum return of negative 0.2009, indicating a pronounced potential for extreme
fluctuations. Similarly, the BRL demonstrates a considerable range by attaining a maximum
return of 0.0907 and a minimum return of —0.0863. In contrast, the SGD is characterized by
a more constrained behavior with its maximum return at 0.0129 and its minimum return
at —0.0150, pointing to a comparatively stable return profile. The CAD and the CHF also
display unique distribution characteristics; the CAD attains a maximum return of 0.0319
and a minimum return of —0.0297, while the CHF reaches a maximum return of 0.0284 and
a minimum return of —0.0226.
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Volatility, as measured by the Std. dev., further accentuates these differences. The ZAR
and the BRL, with Std. dev. of 0.0123 and 0.0111, respectively, indicate higher volatility,
whereas the SGD, with a standard deviation of only 0.0029, reflects a notably lower level of
fluctuation. In addition, measures of skew and kurt offer further insight into the asymmetry
and tail behavior of the return distributions. For example, the ZAR exhibits a skew of
0.0616 along with a kurt of 111.1518, indicating extreme deviation from normality. The BRL
similarly deviates from normality, with a skew of 0.0834 and a kurt of 7.6854. Additional
evidence of non-normality is observed in the CAD, which shows a skew of —0.0167 and a
kurt of 4.3769, in the CHF, which has a skew of 0.2965 and a kurt of 2.4943, and in the CNY,
which records a skew of 0.3246 and a kurt of 7.7546.

These distributional characteristics are further substantiated by the ].-B. test statistics.
The ZAR records a test statistic of 665,572.10, while the BRL exhibits a value of 3179.91.
Likewise, the CAD and the CHF display significant test statistics of 1030.01 and 352.98,
respectively, indicating marked departures from normality. Furthermore, the outcomes of
the ADF test and the PP test provide additional support for the stationarity of the daily log
returns across these currency pairs.

In summary, although the daily log returns of these 12 major and minor currency pairs
are characterized by average values that approximate zero, there are significant differences
in terms of extreme returns, volatility, skew, kurt, and normality as indicated by the J.-B. test.
Notably, the ZAR and the BRL are distinguished by their high volatility and an increased
propensity for experiencing extreme return values.

Figure 1 presents the time series patterns of daily log returns for each currency pair, il-
lustrating how the statistical properties—such as mean, variance, extreme values, skewness,
and kurtosis—summarized in Table 1 manifest over time.

In this section, we provide a detailed analysis of the time series patterns for each
currency to elucidate the dynamic characteristics and inherent risk factors observed in the
FX market.

The ZAR exhibits high volatility, with extreme outliers, particularly in late 2024.
This behavior is consistent with its wide return range and exceptionally high kurtosis
(111.15). Similarly, the BRL showed major fluctuations in mid-2020, late 2022, and 2024,
reflecting high risk associated with Brazil’s economic instability and sensitivity to global
commodity prices.

In contrast, the SGD displays notable stability, with narrow return bounds and low
Std. dev. (0.0029), possibly attributable to effective financial management. The EUR shows
moderate volatility, with a sharp decline in early 2020, likely linked to economic or policy
shocks within the eurozone. This indicates that, within the 2020 study period, following the
pronounced downturn in early 2020, a moderate level of volatility persisted in subsequent
intervals, as evidenced by Figure 1.

The CAD and CHF are relatively stable but reveal short-lived volatility spikes (CAD in
2021, CHF in early 2020 and mid-2022). The GBP and JPY indicate sensitivity to short-term
shocks; GBP exhibits pronounced fluctuations and high kurtosis (6.01), while JPY remains
generally stable.

KRW and MXN show moderate volatility, with visible volatility clustering in early 2020
and late 2022 for the KRW and frequent fluctuations (MXN), reflecting their responsiveness
to market uncertainty. The AUD maintains moderate, steady volatility, while CNY remains
stable overall, with a discernible rise in volatility during 2023-2024 amid heightened
global uncertainty.

Overall, the time series patterns in Figure 1 underscore the distinct dynamics of each
currency, reflecting stylized facts such as non-normality, volatility clustering, and extreme
events—thereby providing essential insights into FX market behavior.
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Figure 1. Log return for each ticker from 1 January 2020 to 31 December 2024. (a) EUR, (b) JPY,
(c) GBP, (d) AUD, (e) CAD, (f) CHF, (g) BRL, (h) KRW, (i) MXN, (j) SGD, (k) ZAR, (1) CNY.

4. Methods
4.1. FINGAN

In recent years, a FINGAN-based model has been proposed to effectively replicate
the uncertainties and intricate statistical properties inherent in financial time series data.
Traditional ML and time series forecasting techniques are limited in that they either fail
to provide probabilistic forecasts or require overly stringent assumptions regarding the
distribution of future values, thereby inadequately capturing the inherent variability and
uncertainty of empirical data [10]. In response, ref. [11] introduced a deep learning—based
FINGAN model, which has been empirically shown to effectively reproduce stylized facts
such as heavy-tailed distributions, volatility clustering, and the leverage effect.

The FINGAN framework fundamentally relies on an adversarial training mechanism
between a generator and a discriminator. The generator synthesizes financial time series
data that mimics real data by integrating a random noise vector with salient features derived
from empirical observations, while the discriminator is aimed at distinguishing between
real and generated data. Through this adversarial process, both networks iteratively
refine their performance, ultimately enabling the generator to approximate the complex
distribution of actual financial data with remarkable precision.

4.2. FINGAN with BiLSTM

In this study, we propose the FINGAN-BiLSTM model, an extension of the conven-
tional FINGAN model. The proposed model incorporates a BILSTM architecture across
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the generator, discriminator, and predictor networks. This integration overcomes the limi-
tations of unidirectional LSTM-based models and enables more effective learning of the
complex temporal patterns inherent in financial time series data.

Within the generator network, the input sequence is concatenated with a random noise
vector and processed through two successive BiLSTM layers to learn bidirectional temporal
dependencies. Subsequently, layer normalization and Gaussian Noise are applied. The
output then passes through a residual connection and a dense layer, where tanh activation
and batch normalization are employed to generate synthetic financial time series data that
closely resemble the real data.

The discriminator network employs BiLSTM layers to extract the temporal character-
istics of the input sequence effectively. Following feature extraction, the resultant feature
vector is flattened and processed through a dense layer, where it is combined with the
target data to effectively distinguish between the generated and real data.

In the predictor network, BILSTM layers are utilized to capture the intricate patterns
and volatility inherent in financial time series data. The input sequence is first processed
through a BiLSTM layer to acquire bidirectional temporal dependencies, after which the
output is transformed into a one-dimensional vector via a flattening layer. This vector
is then passed through sequential dense and dropout layers to yield the final prediction,
which serves as the basis for replicating stylized facts such as volatility clustering and
heavy-tailed distribution.

During training, an L2 loss-based GAN (LSGAN) loss function is applied to both the
generator and discriminator networks. Additionally, an L1 loss (absolute error) is applied
on the predictor network to minimize the discrepancy between the real and predicted
values. The training process utilizes mini-batch learning via Gradient Tape, and a Loss
Scale Optimizer is employed to perform gradient scaling and clipping associated with
mixed precision training, thereby ensuring training stability.

Hyperparameters were optimized using a grid search over candidate combinations,
with the optimal configuration selected based on the RMSE of the predictor network during
the initial tuning phase. The model’s predictive performance is evaluated using traditional
metrics such as RMSE, MSE, mean absolute error (MAE), R2, and mean absolute percentage
error (MAPE), along with the Kolmogorov—Smirnov statistic (KS_Stat) to quantitatively
assess the differences between distributions. Moreover, various visualization tools, in-
cluding quantile-quantile (QQ) plots, heavy-tailed analysis, volatility clustering, and the
leverage effect, are employed to thoroughly examine the degree to which the predicted
data reproduces the distributional and temporal characteristics of the real data. Evaluation
results demonstrate that the proposed FINGAN-BiLSTM model accurately reproduces
stylized facts inherent in financial time series data, including heavy-tailed distributions,
volatility clustering, and the leverage effect.

4.3. Model Architecture and Settings

Figure 2 presents the overall structure of the INGAN-BiLSTM model, while Figure 3
details the internal architecture of each generator, discriminator, and predictor module. The
main hyperparameters and training configurations for these components are summarized
in Table 2. Here, “G” denotes the generator network, “D” the discriminator network,
and “P” the predictor network. Sequence length L, input scaling, and batch size were
held constant across all experiments. The noise dimension and BiLSTM depth in the
generator were tuned to enhance diversity while preserving temporal context, whereas
discriminator and predictor dropout rates were set low to maintain adversarial balance
and forecasting robustness. Training was performed using Adam optimizers with separate
learning rates and moment coefficients (81, B2) for G, D, and P, with AMSGrad enabled for
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the generator. Gradient clipping (norm = 1.0) was applied to prevent exploding gradients,
and regularization weights for auxiliary loss, drift penalty, and gradient penalty were
selected based on a preliminary RMSE-guided grid search to ensure stable convergence
and faithful reproduction of FX return stylized facts.

FX Log Return Heavy Tail
Data Distribution
FX Log Discriminator Predictor Volatility
Return Data BiLSTM BiLSTM Clustering
Generator Leverage
BiLSTM Effect

Figure 2. Overview of FINGAN-BiLSTM.

Generator
. . Layer Gaussian . Batch Generate
BiLSTM BiLSTM | Normalization I Noise I Residual | Dense Layer Normalization I Fake Data ]
Discriminator
Concatenate Dense Output Dropout Discriminate Discriminate
Vector Result
Predictor

Discriminate BiLSTM Flatten Dense Layer Dropout Predict Result
Result Layer

Figure 3. Architecture of each component of the FINGAN-BiLSTM.

[ Input BiLSTM H Flatten ]—v[DenseLaver
Sequence l

Input
Sequence

Table 2. Summary of key hyper-parameters and training settings.

Component Hyperparameter Value

Sequence length L 15
Data Log-return scaling mean =0, var =1

Positive-return normalization divide by std

Batch size 128

Noise dimension 64

BiLSTM layers 2 x 128 units, dropout 0.10
Generator o

Layer normalization yes

Gaussian noise std 0.10

BiLSTM layer 1 x 32 units, dropout 0.005
Discriminator Dense + dropout tanh, Drop(0.01)

Flatten — Linear yes

BiLSTM layer 1 x 128 units, dropout 0.001
Predictor Dense + dropout tanh, Drop(0.001)

Flatten — Linear yes
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Table 2. Cont.

Component Hyperparameter Value
Epochs 1000
Optimizer Adam

Training Learning rates G:5x 1074, D:2 x 1074, P:5 x 10~*
Betas B1 =0.0, B2 = 0.9 (AMSGrad for G)
Gradient clipping norm 1.0

Auxiliary loss weight 0.01
Regularization  Drift regularization 1x107°
Gradient-penalty weight 1.0

4.4. Grid-Search-Based Hyperparameter Tuning

Hyperparameter tuning for the proposed FINGAN-BiLSTM model was performed
using a comprehensive grid search approach aimed at maximizing its performance. This
process entails a systematic exploration of all possible combinations within a predefined
set of candidate hyperparameter values, thereby quantitatively evaluating the model
performance for each configuration to identify the optimal parameter set. Specifically,
candidate values were defined for key hyperparameters such as the number of BiLSTM
units, learning rate, dropout rate, and batch size for generator, discriminator, and predictor
models, as well as for auxiliary parameters including the auxiliary loss coefficient and drift
coefficient. The auxiliary loss coefficient functions as a weighting factor for an additional
loss term computed within the generator network to ensure that the generated data more
effectively reflects the characteristics of the real data, while the drift coefficient is applied
to a regularization term during GAN training to mitigate excessive fluctuations in the
discriminator output, thereby enhancing overall training stability.

All candidate combinations were generated via the Cartesian product, and each
configuration was evaluated using a designated training and validation dataset. The
performance of the predictor was quantified through the calculation of the RMSE, which
precisely measures the deviation between the predicted and actual values at each data
point, thus facilitating the selection of the optimal hyperparameter configuration.

Although the final performance evaluation and comparisons with alternative models
employed the KS_Stat to assess the goodness of fit between predicted and actual distribu-
tions, RMSE was prioritized during the hyperparameter tuning phase due to its capability
to directly capture the magnitude of prediction errors. Moreover, hyperparameter tuning
was performed separately for each FX to derive a customized configuration that reflects
the unique characteristics and data distributions of each asset. Ultimately, the optimal
hyperparameter configuration obtained through this process is expected to enhance the
overall predictive accuracy of the model and effectively capture the complex dynamics
inherent in financial time series data.

5. Empirical Results

In this section, we present the prediction results for the 12 FX return series using
the FINGAN-BIiLSTM model. First, we generate synthetic return distributions and com-
pare them with the corresponding real return distributions. Subsequently, we evaluate
the quality of the synthetic data by examining its adherence to key stylized facts com-
monly observed in financial time series, namely heavy-tailed, volatility clustering, and
leverage effects.

For clarity, all metrics and diagnostic plots in this section—such as the KS_Stat, tail
exponent «, volatility decay exponent 8, and leverage effect L(k)—are computed on a single
synthetic return trajectory generated by the model.
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5.1. Return Distribution

In this study, the Kolmogorov-Smirnov statistic, denoted as KS_Stat, is employed to
quantitatively assess the difference between the distribution of predicted values and that of
observed values. The KS_Stat is a nonparametric measure that quantifies the maximum
absolute difference between two cumulative distribution functions (CDFs). The KS_Stat is
defined as follows (Equation (1)):

Dy = S‘iP|Fn(x) — Gm(x)], )

where .
Fa(x) = 1 ) 14X < 1) e

i=1

represents the empirical distribution function (EDF) of the predicted values, and
1 m
Gulx) = - Y 1{yj < v} ®)
j=1

denotes the EDF of the observed values.

In the ideal case where the predicted and observed distributions are identical, the
KS_Stat converges to zero, whereas larger discrepancies between the distributions result
in an increased value of D, ;. Moreover, the KS test does not require any assumptions
regarding the underlying distributional forms, thereby providing robust applicability to a
wide range of distributional shapes.

Table 3 presents the KS_Stat as the primary metric for assessing how well the dis-
tribution predicted by the FINGAN-BiLSTM model reflects the actual data distribution.
The model has demonstrated its capacity to capture key statistical features—such as tail
behavior and the occurrence of extreme values—as evidenced by low KS_Stat values for
many FX tickers. For instance, for EUR, AUD, and CAD, the KS_Stat values computed
by the FINGAN-BiLSTM model are 0.0610, 0.0650, and 0.0894, respectively. The EUR
exhibits moderate volatility (Std. dev. = 0.0047) and occasional policy-driven shocks,
the AUD shows relatively stable fluctuations (Std. dev. = 0.0068), and the CAD—with a
higher Std. dev. of 0.0044 and wider extreme-value range—poses a greater challenge for
distributional emulation. Nonetheless, the proposed model successfully minimizes the
maximum divergence between predicted and empirical cumulative distribution functions
(ECDFs) by effectively learning complex distributional shapes and high-volatility behavior.
This finding suggests that the integration of the GAN-based augmentation module with a
BiLSTM enables precise emulation of distributional properties, including significant tail
risk and extreme movements.

In contrast, in the case of CNY, prior studies have reported that external factors such
as aggressive market interventions and policy adjustments by the central bank signifi-
cantly influence the FX return distribution [37,38]. These external factors entail complex
nonlinearities that are difficult to capture solely by conventional statistical characteristics,
and because the FINGAN-BIiLSTM model is primarily trained on historical data, it has
limitations in fully reflecting abrupt market shifts such as policy changes or central bank in-
terventions. Consequently, for CNY, the predicted distribution fails to effectively reproduce
the abnormal variations or structural changes observed in the actual distribution, resulting
in a relatively high KS_Stat.
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Table 3. Kolmogorov-Smirnov Statistics for individual tickers analyzed by each model.
FX LSTM BiLSTM FINGAN-LSTM FINGAN-BiLSTM
EUR 0.0772 0.1626 0.0853 0.0610
JPY 0.3699 0.1341 0.1138 0.1179
GBP 0.1016 0.1219 0.1178 0.0407
AUD 0.1056 0.1341 0.0853 0.0650
CAD 0.5365 0.1178 0.0934 0.0894
CHF 0.0975 0.1463 0.0853 0.0772
BRL 0.0772 0.1544 0.0975 0.0894
KRW 0.1747 0.1666 0.1219 0.1260
MXN 0.5406 0.1788 0.1097 0.1585
SGD 0.1666 0.1626 0.1097 0.0651
ZAR 0.4105 0.1341 0.0813 0.1545
CNY 0.1097 0.0975 0.1260 0.2358

Thus, the FINGAN-BIiLSTM model effectively minimizes discrepancies between pre-
dicted and actual distributions for tickers with moderate to high volatility—such as EUR
(0.0610), AUD (0.0650), and CAD (0.0894)—while yielding a relatively higher KS_Stat for
CNY, where external interventions play a critical role.

Figure 4 visualizes the results of Table 3, depicting the maximum deviation between the
empirical log-return distribution and the synthetic time series generated by the FINGAN-
BiLSTM model. Overall, most currency pairs exhibit p-values exceeding 0.05, indicating that
the predicted distributions approximate normality. However, CNY constitutes an exception,
for which a statistically significant deviation (p < 0.0001) is observed. This anomaly is
consistent with prior findings [37,38], whereby aggressive central-bank interventions and
policy adjustments impart strong nonlinear effects on the FX return distribution, thereby
undermining the attainability of conventional significance thresholds.

Among the developed-market currencies, GBP (KS_Stat = 0.0370, p = 0.9875),
EUR (KS_Stat = 0.0586, p = 0.7514), AUD (KS_Stat = 0.0613, p = 0.6766), and SGD
(KS_Stat = 0.0621, p = 0.6766) demonstrate superior goodness-of-fit. Their low KS_Stat
and high p-values indicate that the synthetic and empirical distributions do not differ in a
statistically significant manner. In particular, despite the maximum deviation occurring
in the mid-percentile range for GBP and EUR, the model faithfully reproduces the overall
distributional shape. Similarly, AUD and SGD appear to capture moderate-range volatility
dynamics more precisely than extreme-value behavior.

In contrast, emerging-market currencies such as CNY (KS_Stat = 0.2329, p < 0.0001)
and ZAR (KS_Stat = 0.1523, p = 0.0056) exhibit significant distributional mismatches.
CNY’s maximum deviation arises in the tail region, indicating insufficient modeling of
extreme movements. ZAR's largest discrepancies occur within the negative-return quan-
tiles, suggesting that structural regime shifts or sudden market interventions were not
fully incorporated.

Intermediate performance is observed for CAD (KS_Stat = 0.0891, p = 0.2793),
CHF (KS_Stat = 0.0737, p = 0.4561), JPY KS_Stat = (0.1140, p = 0.0654), and KRW
KS_Stat = (0.1230, p = 0.0401). These currencies also record their maximum KS deviations
within central percentiles. Notably, KRW’s p-value of 0.0401 approaches the conventional
significance threshold, indicating potential scope for further model refinement.
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Figure 4. Kolmogorov-Smirnov Statistics of the Predicted Time Series Generated by the FINGAN-
BiLSTM Model. (a) EUR, (b) JPY, (c) GBP, (d) AUD, (e) CAD, (f) CHF, (g) BRL, (h) KRW, (i) MXN,
(j) SGD, (k) ZAR, (1) CNY. The green dashed line marks the log-return of maximal KS distance; the
red shading indicates |F,(x) — G (x)| beyond the 90th percentile.

In summary, while the INGAN-BIiLSTM model demonstrates robust capability in
reproducing the central tendency and moderate-range volatility of developed-market FX
pairs, it remains challenged by the frequent extreme-value occurrences and structural
regime changes characteristic of emerging-market currencies.

Figures 5 and 6 serve as visual diagnostic tools for evaluating the fidelity of the
predicted return distributions.
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Figure 5 illustrates the log-return distributions generated by the FINGAN-BiLSTM
model. This figure visually demonstrates the extent to which the model effectively captures
the heavy-tailed properties and the occurrence of extreme values, the asymmetry, and
the tail behavior of financial data. The figure is designed to provide an overview of the
prediction results for each asset, with the understanding that direct comparisons with
the empirical distribution should be supported by the numerical evaluations provided in
Table 3. Furthermore, the visual comparison with the empirical distribution, complemented
by the numerical evaluations presented in Table 3, facilitates an intuitive assessment of the
predictive accuracy of the FINGAN-BiLSTM model. Moreover, this visual representation
serves as a diagnostic tool for assessing how well the predicted distributions reflect struc-
tural imbalances and non-standard market features. Notably, the figure indirectly indicates
that the model exhibits robust performance for certain assets, such as GBP and EUR, while
showing limitations for assets that are particularly sensitive to exogenous influences, such
as CNY.

Return Distribution Comparison og Return Distribution Comparison

UR Log Return Distribution Comparison

Frequency

2 3 3 =3 1

-1 o o 1 -1 0
Log Returns Log Returns Log Returns

(a) (b) (c)

AUD Log Return Distribution Comparison CAD Log Return Distribution Comparison CHF Log Return Distribution Comparison

ared

Frequency

2 3 &

-1 o -1 3 = - -1 3 1
Log Returns Log Returns Log Returns

(d) (e) )

BRL Log Return Distribution Comparison KRW Log Return Distribution Comparison MXN Log Return Distribution Comparison

Ger
60/ " s0!

Frequency

B o)

i 5 g

=2 0 2 0 1 2 -1 o
Log Returns Log Returns Log Returns

(8 (h) (@)

SGD Log Return Distribution Comparison ZAR Log Return Distribution Comparison CNY Log Return Distribution Comparison

ared

2 3

o = B 2 20 —i0 o 2 o 2 2

2 3 0 o
Log Retums Log Returns Log Returns

G (k) @
Figure 5. Histogram comparing the log-return distribution predicted by the FINGAN-BiLSTM model

with the empirical log-return distribution. (a) EUR, (b) JPY, (c) GBP, (d) AUD, (e) CAD, (f) CHF,
(g) BRL, (h) KRW, (i) MXN, (j) SGD, (k) ZAR, (1) CNY.

Figure 6 provides a QQ plot comparing the quantiles of the predicted log-return
distribution with those of an ideal reference distribution. This diagnostic plot is a critical
tool for visually assessing the fidelity with which the model replicates the tail characteristics
of the actual data. The QQ plot, when considered in conjunction with the numerical
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assessments in Table 3, facilitates a comprehensive evaluation of the FINGAN-BiLSTM
model’s performance in capturing the distributional properties of financial time series data.
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Figure 6. QQ plot predicted by FINGAN-BiLSTM. (a) EUR, (b) JPY, (c) GBP, (d) AUD, (e) CAD,
(f) CHF, (g) BRL, (h) KRW, (i) MXN, (j) SGD, (k) ZAR, (1) CNY. The blue dots represent the empirical
quantiles of the predicted log returns, while the red dashed line indicates the 45-degree reference line,
where the empirical and theoretical quantiles would align under a perfect fit.

Nevertheless, a closer inspection of Figure 6 reveals systematic under-fitting in the
left tail for certain currency pairs, most prominently ZAR and BRL. In these cases, the
model’s predicted quantiles fall below the empirical quantiles, indicating that extreme
negative returns are underestimated. Because risk measures such as value-at-risk (VaRk)
and expected shortfall (ES) are highly sensitive to tail behavior, this underestimation may
lead to overly optimistic assessments of downside risk.
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5.2. Stylized Facts

While canonical empirical studies often report tail exponents « in the interval (3,5) [39,40],
this benchmark reflects aggregate findings across diverse assets and market regimes and
should not be interpreted as a strict acceptance criterion for individual FX pairs. Market
structure, central-bank interventions, and regime shifts may induce true tail behavior that
falls outside this range. Therefore, in the present study, we employ (3,5) merely as a
contextual reference.

Table 4 reports the empirically estimated tail exponents («) and volatility decay expo-
nents (B) for each of the twelve selected FX pairs. The tail exponent a varies from 2.5402
(MXN) to 5.5990 (CAD), indicating differing degrees of heavy-tailed behavior across cur-
rency markets. Likewise, the decay exponent 8 spans from —0.1342 (CHF) to 3.4440 (ZAR),
reflecting heterogeneity in the persistence of volatility. These benchmark values provide a
reference for evaluating the ability of our FINGAN-BiLSTM model to replicate the stylized
distributional properties observed in real FX log-return data.

Table 4. Test « and f values for selected FX pairs. Here, « is the tail exponent, and p is the volatility
decay exponent.

FX EUR JPY GBP AUD CAD CHF
x 3.5388 3.1731 5.2031 3.0902 5.5990 4.8114
B —-0.1134 0.1646 —0.0420 0.0771 0.0922 —0.1342
FX BRL KRW MXN SGD ZAR CNY
x 3.0943 3.3335 2.5402 3.4561 2.9068 3.1112
B 0.2985 0.0813 0.4423 0.1416 3.4440 0.6278

5.2.1. Heavy-TailedDistribution

In financial time series analysis, extreme events occur with a significantly higher
probability than that predicted by a normal distribution. In financial time series data,
the heavy-tailed characteristic signifies that the probability of extreme events occurring is
substantially higher than that predicted by a normal distribution [41,42]. This phenomenon
is a crucial element for quantifying the extreme distribution of asset price fluctuations,
thereby holding considerable significance for risk management and derivative pricing. In
this study, the heavy-tailed characteristic is analyzed through two principal components.
First, the probability density function (PDF) is expressed as follows:

fx) =c-x @

In Equation (4), c is the normalization constant ensuring that the total probability is
unity, and y > 0 is the parameter that determines the rate of tail decay. A smaller value
of v implies a slower decay of the tail, which in turn increases the relative likelihood
of observing extreme values. Another important representation is the complementary
cumulative distribution function (CCDF), given by

S(x) =P(X>x)xx " (5)

In Equation (5), « denotes the tail exponent; a smaller value of « indicates a heavier
tail of the distribution. Empirical observations in financial markets typically report that
the tail index a assumes values within the range of 3 to 5 [39,40]. This finding suggests
that extreme events occur far more frequently than would be expected under a normal
distribution. Thus, the heavy-tailed property amplifies the likelihood of extreme events
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in financial markets [42,43]. It further implies that asset price fluctuations do not follow
an independent and identically distributed (i.i.d.) process but rather exhibit clusters of
high volatility over specific intervals. Moreover, the persistence of high volatility states
indicates a long-term temporal dependence that is not readily captured by conventional
normal distribution models or white noise assumptions. In this study, the complementary
cumulative distribution function (CCDF) form was fitted to the normalized positive returns
of FX data using the powerlaw package and estimation methods such as the maximum
likelihood estimation and nonlinear least squares, thereby estimating the tail exponent «.
In addition, the decay parameter y of the PDF was analyzed to quantitatively assess how
effectively the return distributions of various currency pairs capture extreme volatility.

Therefore, the heavy-tailed characteristic increases the probability of extreme events in
financial markets and functions as an important risk factor that investors and risk managers
must consider. This property serves as a critical benchmark for models seeking to replicate
the complex risk characteristics observed in real markets, particularly in terms of accurately
assessing loss risks under extreme conditions.

Figure 7 and Table 5 present results demonstrating that the FINGAN-BiLSTM model ef-
fectively reproduces the heavy-tailed characteristics observed in real FX exchange rate data
for most cases. For instance, in the case of EUR, the tail index a predicted by the FINGAN-
BiLSTM model is 4.4033, which falls within the range of values typically encountered in
financial time series, while the predicted values for JPY and GBP are 4.0506 and 4.0041,
respectively. These results suggest that the model helps to alleviate the underestimation of
extreme event probabilities inherent in traditional normal distribution models.

Table 5. Predicted heavy-tailed parameters («) of FX log-return distributions by FINGAN-BIiLSTM.

FX LSTM BiLSTM FINGAN-LSTM FINGAN-BiLSTM
EUR 6.7527 4.1954 3.6676 4.4033
JPY 3.4936 3.9288 2.7452 4.0506
GBP 3.5954 16.1255 4.4847 4.0041
AUD 3.0550 7.5813 3.4736 3.5274
CAD 2.5100 6.9978 4.1686 3.4677
CHF 3.4790 3.0392 4.5360 4.5724
BRL 2.7948 2.8501 5.2073 3.3174
KRW 5.9826 4.8150 3.6240 4.5802
MXN 4.2139 2.7520 5.6271 3.5098
SGD 3.6452 5.6661 3.6266 3.6820
ZAR 2.6344 4.0989 2.4277 2.9069
CNY 2.8036 2.6435 2.0566 3.8045

In particular, compared to standalone LSTM or BiLSTM models, the FINGAN-based
model demonstrates an improved ability to reproduce realistic heavy-tailed characteristics.
For example, in the case of CAD, the LSTM model produced an excessively high tail
index (« = 355.7515), whereas the FINGAN-BiLSTM model yielded a value of 3.4677,
thereby more appropriately reflecting the distributional properties of actual financial data.
Furthermore, even in cases where the data is significantly affected by outliers, such as
MXN, the FINGAN-BiLSTM model produces robust tail index estimates, demonstrating
enhanced resistance to outliers.

However, the predictive performance of the FINGAN-BiLSTM model is not uniformly
superior across all FX exchange rates. For example, in the case of ZAR, as indicated by the
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basic statistics in Table 1, although the mean is near zero, the Std. dev. (0.0123), extreme
values (maximum 0.2041, minimum —0.2009), and an exceptionally high kurt (111.1518)
reveal that the distribution is highly abnormal. These characteristics are also clearly
observed in the log-return distribution (Figure 1), where the ZAR data exhibit frequent
outliers and high volatility. Due to these data characteristics, the FINGAN-BiLSTM model
encountered difficulties in generating a stable distribution during training, resulting in
a failure to fully capture the heavy-tailed properties. Specifically, for ZAR, the predicted
tail index is 2.9069, which falls short of the generally expected value of 3 or higher. This
outcome provides evidence that the extreme values and high volatility of the ZAR data

adversely affected the model’s learning process.

Heavy-Tailed - Predicted EUR

Heavy-Tailed - Predicted JPY

Heavy-Tailed - Predicted GBP

) ) )
g w{e ° @ o owwamy g w{e ® @0 ® @moomy T owe o oo
@ @ @
o o o
2 o o
> > >
g £ £
3 107 3 0 3 107
3 3 3
[ e [ [ H
< o | = e | £ H
2 ° | °| 2 ’
g 1072 = ; 1072 & g 102 &
o 107 102 10 10° o 1072 10 10° o 107 102 107 100
Normalized LogReturn (log scale) Normalized LogReturn (log scale) Normalized LogReturn (log scale)
@) (b) (0)
Heavy-Tailed - Predicted AUD Heavy-Tailed - Predicted CAD Heavy-Tailed - Predicted CHF
) ) o)
T 100 00 omee om comme T w{e ®wo o T 0] e ® ooevmmes
@ @ &
o o o
2 2 2
Z z 2z
0 Z 0 5w
3 3 3 s,
< °, < [ r
= ol s S|z <
g el ° |2 °
g 1072 o g 1072 o E 102 o
w 10 100 w 107 102 107 100 w 102 107 100
Normalized LogReturn (log scale) Normalized LogReturn (log scale) Normalized LogReturn (log scale)
(d) (e) ()
Heavy-Tailed - Predicted BRL Heavy-Tailed - Predicted KRW Heavy-Tailed - Predicted MXN
) ) )
T 0] e DICT Y pe— T w0fe o conmmae T 100 cocom® eocoes
% 9 3 S —
o o o
2 2 )
> > >
£ £ £
S Z 10 Z 10
3 3 3
g R - -..
< o = o | = ¢
2 ° g ° 2 °
; 1072 o ; 102 > ; 102 o
w 102 10 100 n 102 10 100 n 107 10°
Normalized LogReturn (log scale) Normalized LogReturn (log scale) Normalized LogReturn (log scale)
(8 (h) (®)
Heavy-Tailed - Predicted SGD Heavy-Tailed - Predicted ZAR Heavy-Tailed - Predicted CNY
) ) 0
T 0] e @o 0 cammo T 1w{ @ o omeo com T 1000 o om e w
@ @ &
o o o
2 2 2
2z 2z 2z
3 10 3 107 Z o
2 2 "y 2
<) 3 < LY < S,
b ° = ° b o
H ? S ° | 2. *
£ - g S .
0 g 10 10° w 102 o

Normalized LogReturn (log scale)

()

107 100
Normalized LogReturn (log scale)

(k)

102 10 10°
Normalized LogReturn (log scale)

o

Figure 7. Heavy-tailed distribution predicted by FINGAN-BILSTM. (a) EUR, (b) JPY, (c) GBP,
(d) AUD, (e) CAD, (f) CHF, (g) BRL, (h) KRW, (i) MXN, (j) SGD, (k) ZAR, (1) CNY.
5.2.2. VolatilityClustering

Volatility clustering is one of the key stylized facts in financial time series data. It
refers to the phenomenon wherein asset price fluctuations are not randomly distributed
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but instead exhibit clusters of high volatility over certain periods [44,45]. The tendency for
high-volatility states to persist consecutively indicates a long-term temporal dependence
that is not readily captured by conventional models assuming homoskedastic, white-
noise residuals [46,47]. However, even under the assumption of normally distributed
innovations, approaches such as GARCH-type models—which explicitly model time-
varying variance—can effectively capture volatility persistence.

In this study, based on the asset’s logarithmic returns r(t), the autocorrelation function
of the absolute returns |r(t)| was utilized to quantitatively evaluate volatility clustering.
Specifically, for each time point in the series {r(t)}, the absolute value |r(t)| was computed,
and the autocorrelation coefficient (ACF) for a lag k was calculated as follows:

ENE (1) = TrT) (Irt + k) = ToT)
o (1r)] - 1)

ACF(k) = (6)

In Equation (6), |r| denotes the mean of the absolute returns over the entire time series.
This equation measures the correlation between absolute returns at various lags, thereby
aiding in the assessment of how persistently high volatility is maintained over time.

Furthermore, to elucidate the decay pattern of the observed autocorrelation coefficients,
these values were fitted to a power-law form:

ACE(k) =a kP 7)

In Equation (7), a is a fitting constant and j is the exponent that characterizes the decay
rate of the autocorrelation with respect to the lag k. In general, if 8 > 0, the autocorrelation
coefficient decreases gradually with increasing lag; a smaller value of § indicates that high
volatility tends to persist for an extended period. This serves as an important indicator
that extreme price fluctuations in financial markets are not merely random or isolated
occurrences but are instead observed in consecutive intervals.

Equation (7) summarizes the decay of volatility clustering through the exponent f.
As Figure 8 shows, microstructure noise further suppresses autocorrelation in the short
horizon (k < 3) [48,49], whereas in the long horizon (k > 50) volatility has largely reverted
to its mean, flattening the ACF near zero [50]. Consequently, a pure power-law relationship
holds only for 3 < k < 30. When the analysis is restricted to this lag window, Equation (7)
remains a valid model for describing volatility clustering in FX markets.

Volatility clustering is interpreted as arising from a variety of factors, including the
information processing behavior of market participants, investor sentiment, and underlying
structural factors. For example, when an economic event or policy announcement induces
an information shock that spreads throughout the market, investors may adopt conservative
strategies in response to uncertainty, resulting in prolonged periods of high volatility. Such
dynamics are crucial for both short-term risk pricing and long-term portfolio management.
Through this analysis, the study evaluates the effectiveness of the model in replicating the
complex phenomenon of volatility clustering observed in real financial markets, thereby
exploring potential enhancements in financial risk assessment models.

These empirically estimated decay exponents § provide a quantitative reinforcement
of the qualitative volatility patterns described in Section 3. Specifically, the low values of
B for CAD (0.0252) and CHF (-0.0751) formally capture the rapid dissipation of volatility
following the short-lived spikes observed in CAD during 2021 and in CHF during early
2020 and mid-2022. Likewise, the modestly positive  for GBP (0.0018), in contrast to the
near-zero f3 for JPY (0.0279), faithfully reflects GBP’s heightened sensitivity to short-term
shocks and JPY’s relative stability as noted in Section 3. Thus, the power-law fit of the ACF
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over the 2020 sample serves as a consistent, quantitative counterpart to the visual patterns
highlighted in Section 3.
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Figure 8. Empirical ACF of absolute log returns |7(t)| for 12 FX pairs, up to lag 100. (a) EUR, (b) JPY,
(c) GBP, (d) AUD, (e) CAD, (f) CHEF, (g) BRL, (h) KRW, (i) MXN, (j) SGD, (k) ZAR, (1) CNY.

Figure 9 and Table 6 present results indicating that the FINGAN-BiLSTM model
effectively reproduces the volatility clustering characteristics observed in real FX exchange
rate data for most currencies. For instance, in the case of JPY, the clustering index
predicted by the FINGAN-BiLSTM model is 0.0279, reflecting the relatively rapid decay of
autocorrelation in absolute returns and appropriately capturing the short-term volatility
persistence observed in the data. Moreover, for BRL and MXN, the predicted p values
are —0.0150 and 0.0494, respectively, suggesting that despite the presence of outliers and
structural volatility inherent in these currencies, the FINGAN-BiLSTM model produces
relatively stable clustering characteristics.

In particular, compared to standalone LSTM or BiLSTM models, the FINGAN-based
model tends to reproduce the volatility clustering characteristics more realistically. For
example, in the case of AUD, the traditional model yielded a  value of —0.1348, indicating
a rapid dissipation of volatility, whereas the FINGAN-BiLSTM model reflects a more
gradual decay in volatility, capturing the long-term autocorrelation structure of financial
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time series more accurately. Furthermore, in the case of CHF, the FINGAN-BiLSTM model
recorded a B value of —0.0751, indicating better alignment with the observed duration and

decay patterns of volatility in the actual data.
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Figure 9. Volatility clustering predicted by FINGAN-BiLSTM. (a) EUR, (b) JPY, (c) GBP, (d) AUD,
(e) CAD, (f) CHF, (g) BRL, (h) KRW, (i) MXN, (j) SGD, (k) ZAR, (1) CNY.

However, the predictive performance of the FINGAN-BiLSTM model is not uniformly
superior across all FX rates. For instance, in the case of ZAR, although the mean is near
zero, as indicated by the basic statistics (Table 1), the high volatility is evident in its Std.
dev. (0.0123), and the extreme values (maximum 0.2041, minimum —0.2009) are striking.
These characteristics are also clearly observed in the log-return distribution (Figure 1),
where the ZAR data exhibit frequent outliers and irregular volatility clustering behavior.
Consequently, the FINGAN-BiLSTM model predicted a g value of 0.2121 for ZAR, which
deviates from the generally expected clustering pattern (i.e., a mild positive § value). This
outcome suggests that the outliers and high volatility in the ZAR data adversely affected
the model’s training and generalization.
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Table 6. Predicted power-law exponents (p) of volatility clustering in fx exchange rates by FINGAN-
BiLSTM.

FX LSTM BiLSTM FINGAN-LSTM FINGAN-BiLSTM
EUR 0.0952 0.0249 0.0545 —0.0395
JPY —0.0834 0.2954 0.3330 0.0279
GBP 0.0037 —0.1873 0.0434 0.0018
AUD 0.1626 —0.0497 0.2103 —0.1348
CAD —0.1970 0.1445 —0.0071 0.0252
CHF 0.0203 0.0706 0.1464 —0.0751
BRL —0.0518 0.0292 0.2250 —0.0150
KRW 0.0519 —0.1307 0.1174 —0.0951
MXN 0.0668 0.4716 0.3997 0.0494
SGD —0.0726 —0.1077 0.5458 —0.2113
ZAR 0.0529 —0.0556 0.4518 0.2121
CNY 0.5594 0.7855 0.3353 0.2482

5.2.3. LeverageEffect

The leverage effect is a stylized fact that quantitatively measures the asymmetric
impact of past returns on future volatility, thereby elucidating the asymmetric risk trans-
mission mechanism that occurs during declines in stock prices or exchange rates [51,52].

In this study, the leverage effect for each lag k is defined using the predicted logarithmic
returns r(t) as follows:

CE[ R — () [P ()]
HE = EFOP) ®

In Equation (8), (t) denotes the logarithmic return at time f, and |r(t)|* represents the
volatility at that time. The numerator, E [r(t) |r(t + k)[> — r(t) |r(t)|?], reflects the average
difference between future and current volatility at a given lag k, while the denominator,

| 2

(E[|r(®)?] )2, normalizes this value by the square of the overall volatility level.

The leverage effect is characterized by the following empirical patterns. First, numer-
ous empirical studies have reported that L(k) assumes negative values, particularly within
the lag range 1 < k < 10, indicating that negative past returns significantly increase future
volatility in the short term [53,54]. Second, the leverage effect exhibits a gradual decay as
the lag increases [11,55].

Given these characteristics, the leverage effect serves as a key metric for quantitatively
assessing the asymmetric risk factor that triggers a rapid increase in volatility following
declines in asset prices in financial markets.

Figure 10 presents results indicating that the FINGAN-BiLSTM model, overall, suc-
cessfully reproduces the typical leverage effect observed in financial markets across most
FX currencies. In the case of major currencies such as EUR, JPY, and GBP, a clear negative
leverage effect is observed at short lags, exhibiting the characteristic pattern of a sharp
increase in volatility during market downturns.

However, for major FX currencies such as AUD, CAD, and CHEF, instances were
observed in which the typical negative leverage effect was not sufficiently manifested.
A review of the basic statistics (Table 1) and log-return distributions (Figure 1) for these
currencies reveals pronounced characteristics of high volatility, frequent outlier occurrences,
and notable asymmetry in their distributions. These properties hinder the model’s ability
to fully capture the tail behavior and asymmetric features during training, which may
result in a weakened amplification effect of short-term negative returns on future volatility,
yielding only a modest negative value or, in some cases, even a positive value. For instance,
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in the case of CAD, although the conventional LSTM model produced an excessively high
tail index due to outlier influence, the FINGAN-BIiLSTM model also failed to adequately
reflect the true distributional properties and, consequently, did not reproduce the expected
negative leverage effect.

For minor FX currencies such as BRL, KRW, MXN, SGD, ZAR, and CNY, external
factors such as economic and political instabilities and shifts in international liquidity lead
to a more complex and irregular manifestation of the leverage effect. BRL and MXN exhibit
a negative leverage effect at short lags; however, as the lag increases, this effect rapidly
diminishes or becomes unstable as the lag increases. Similarly, for ZAR and CNY, the high
volatility and frequent occurrence of outliers observed in the basic statistics impede the full
realization of the typical negative effect.

In summary, while the FINGAN-BiLSTM model successfully reproduces the typical
leverage effect in most FX currencies, it falls short in adequately capturing this effect in
major currencies characterized by high volatility, frequent outliers, and marked asymmetry
(e.g., AUD, CAD, and CHF), as well as in minor currencies that are heavily influenced by
external factors (e.g., BRL, KRW, MXN, SGD, ZAR, and CNY).
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5.3. Risk Measures

In financial time-series analysis, value-at-risk (VaR) and expected shortfall (ES) are
widely used metrics for quantifying extreme loss risk. Under a confidence level of & = 0.95,
the 95% VaR is defined as the (1 — a) quantile of the loss distribution. Denoting the daily
return by r(t) with cumulative distribution function F(r), the VaR at the 95% level is given
by the following:

VaRgs = inf{ x | F(x) > 0.05}, )

which implies that losses will not exceed VaRgs with 95% probability.

The 95% expected shortfall is the conditional expectation of losses exceeding the
95% VaR and, thus, captures tail risk unaccounted for by VaR alone [56,57]. It is defined
as follows:

1 VaRogs
ESos = E[r|r < VaRes] = o= / xdF(x), (10)

where the denominator 0.05 normalizes the tail probability mass and the integral computes
the average of losses in the lower 5% tail.

In this study, we compute VaRgs5 and ESgs separately for the synthetic FX log-return
series generated by the FINGAN-BiLSTM model and for the corresponding empirical
observations using Equations (9) and (10). This comparison allows us to evaluate the
model’s capability to replicate extreme-loss behavior, with a particular focus on currency
pairs exhibiting frequent outliers and heavy tails.

In Table 7, the comparison between actual and predicted VaRgs and ESgs demonstrates
that the FINGAN-BiLSTM model accurately reproduces tail risk for currencies exhibiting
moderate volatility and infrequent extreme events. For example, the AUD has an actual
VaRgs of 1.1566 versus a predicted value of 1.1609, corresponding to an error rate of
only 0.4% (£0.0043). Its ESgs is similarly well-captured, with an actual value of 1.5067
compared to 1.5795, indicating that the model reliably learns both mid-range fluctuations
and tail losses in a distribution whose kurt is 1.4456. Likewise, for the CAD, the predicted
ESos of 1.3498 deviates by merely +2.9% from the actual value of 1.3120, confirming that
currencies with skew ranging from —-0.058 to 0.083 and kurtosis between 1.4456 and 4.3769
are robustly modeled.

Table 7. Comparison of empirical and FINGAN-BiLSTM synthesized time series in terms of VaRgs
and E595.

Actual Predicted
Currency VaRgs ESgs VaRgs ESgs
EUR 1.1497 1.4718 1.1578 1.4097
JPY 2.0495 2.8218 1.7404 2.0546
GBP 1.0436 1.2040 0.9399 1.4654
AUD 1.1566 1.5067 1.1609 1.5795
CAD 0.9381 1.3120 1.1044 1.3498
CHF 1.2779 1.8245 1.0258 1.4625
BRL 1.1081 2.0750 1.1514 1.4436
KRW 1.3750 1.9727 1.0407 1.4344
MXN 1.4050 1.9031 1.0891 1.3437
SGD 1.4940 2.0355 1.2158 1.4923
ZAR 1.1389 2.6586 0.8422 1.0270
CNY 0.9546 1.9471 1.1999 1.5242

By contrast, performance deteriorates markedly for currencies characterized by fre-
quent extremes or exogenous shocks. The ZAR, with its high kurt (111.1518) and persistent
volatility clustering, exhibits substantial underestimation: an actual VaRgs5 of 1.1389 is
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predicted as 0.8422 (-25.9%), and an actual ESgs of 2.6586 is predicted as 1.0270 (-61.4%).
Similarly, discontinuities due to policy interventions in the CNY appear to induce opposite
biases in the model’s outputs: VaRgs is overestimated by +25.6% (actual 0.9546 vs. predicted
1.1999), whereas ESgs is underestimated by —21.7% (actual 1.9471 vs. predicted 1.5242). This
suggests that the model does not fully capture the impact of exogenous intervention timing
on tail-loss magnitude.

In summary, while the FINGAN-BiLSTM model approximates VaR and ES with
high fidelity for currencies with moderate tail behavior, it exhibits significant under- or
overestimation for those with high extreme-event frequency or policy-driven shocks.

5.4. Estimate to APARCH Model

In order to simultaneously capture the asymmetric shock effects and non-stationarity
observed in financial time series data, this study further validates model performance by
employing the asymmetric power ARCH (APARCH) model. The APARCH model is a
generalized specification of conditional variance, defined as follows:

0? = w+a(leir] —yer_1)’ + Bod 4, (11)

In Equation (11), €t = r(t) — u denotes the residual at time t, and ¢ denotes the
corresponding conditional variance. The exponent § > 0 controls the degree of nonlinearity
in the variance response. The constant term w > 0 determines the long-run average
variance, and the coefficient &« > 0 measures the effect of the absolute magnitude of the
previous shock on the variance.

Equation (11) relaxes the symmetry assumption of standard GARCH models and
generalizes the response to shock magnitude in a power form, thus more accurately captur-
ing tail clustering and the leverage effect observed in financial time series [58,59]. In the
empirical analysis of this paper, the parameters (B, y) in Equation (11) are estimated using
quasi-maximum likelihood estimation (QMLE).

The clustering exponent 5 used in this paper is calculated according to Equation (7),
whereas the persistence coefficient § of the APARCH model is defined by Equation (11).

In this study, § is a non-parametric exponent that assumes the ACF of absolute returns
at lag k decays as a power law, and is estimated by linear fitting in the log-log plot,
according to Equation (7).

By contrast, the APARCH model’s § is a parametric coefficient quantifying the autore-
gressive persistence of the conditional variance 7. In Equation (11), it measures the effect
of past variance U’fil on current variance, and is estimated via quasi-maximum likelihood
estimation (QMLE).

In conclusion, the § in this study measures the rate of exponential decay of volatility
clustering via Equation (7), whereas the APARCH model’s B quantifies volatility persistence
in Equation (11).

The leverage-effect statistic L(k) used in this study is computed from Equation (8),
whereas the asymmetry parameter y of the APARCH model is defined by Equation (11).

L(k) is a non-parametric measure obtained from the correlation between past returns
r(t) and future volatility |r(t + k)|? at each lag k, using sample covariances and means.

By contrast, the APARCH parameter v summarizes—using a single constant—the
asymmetric adjustment that the sign of the previous shock |e;_1| imparts to the current
conditional variance ¢?. It is a parametric quantity estimated as a coefficient in Equation (11)
by QMLE.

In Equation (11), ¢ quantifies the directional difference in volatility responses, cap-
turing the degree of asymmetric risk transfer associated with positive versus negative
market shocks.
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Table 8 presents a comparison of the persistence coefficient 81 and the asymmetry
coefficient 1 of the APARCH model, estimated from the actual time series and from the
synthetic time series generated by the FINGAN-BIiLSTM model for each currency pair.

Table 8. Comparison of empirical and FINGAN-BiLSTM synthesized time series in terms of APARCH-
based 1 and ;.

Actual Predicted
Currency ﬁl 71 ﬁl 71
EUR 0.7745 0.9990 0.8289 0.9976
JPY 0.9867 —0.5796 0.9689 —0.9990
GBP 0.9852 0.9999 0.9818 0.9956
AUD 0.9990 —0.9998 0.8314 0.9996
CAD 0.9674 0.9999 0.9204 0.9959
CHF 0.6834 1.0000 0.9597 0.9996
BRL 0.8883 1.0000 0.9990 0.5810
KRW 0.9721 0.4458 0.9781 0.3927
MXN 0.8076 0.9720 0.8067 0.9720
SGD 0.9556 —0.3758 0.9578 0.9944
ZAR 0.6657 0.4682 0.0001 0.4704
CNY 0.3672 0.6183 0.4012 0.9308

For most currency pairs, the absolute difference in 81 between actual and predicted
values is within 0.05, indicating that the proposed model has generally captured the
autoregressive persistence of conditional variance accurately. However, for the CHEF, the
predicted B; = 0.9597 is markedly higher than the actual g; = 0.6834, suggesting that the
model assumes nearly permanent persistence in a market where volatility actually decays
rapidly. Conversely, for the ZAR, the predicted 1 = 0.0001 contrasts sharply with the
actual 1 = 0.6657, indicating a substantial underestimation of volatility persistence.

The analysis of the asymmetry coefficient y; reveals sign reversals and magnitude
discrepancies that vary across currencies. Sign reversals occur only for the AUD and the
SGD. The JPY exhibits an overestimation of negative asymmetry, whereas the CAD shows
a moderate underestimation of positive asymmetry. For the remaining currencies, the
signs of actual and predicted values are consistent, correctly reflecting the direction of the
leverage effect; however, the absolute errors in 7y remain nontrivial for certain pairs.

In summary, the FINGAN-BiLSTM model reliably reproduces volatility persistence
(B1) for the majority of currency pairs, but it does not yet fully learn the currency-specific
leverage effects represented by the asymmetry parameter (1), as evidenced by sign rever-
sals in AUD and SGD and over- or underestimation in JPY and CAD.

6. Discussion

We propose a novel FINGAN-BiLSTM model that integrates the conventional FIN-
GAN framework with a bidirectional LSTM structure. This architecture is applied to
replicate the complex time-series characteristics and representative stylized facts of FX log-
return data. It incorporates BiLSTM layers into the generator, discriminator, and predictor
networks, thus enabling the capture of both past and future dependencies and effectively
reproducing high volatility, asymmetry, and extreme values observed in actual FX returns.
Experimental results show that INGAN-BiLSTM outperforms conventional LSTM and
unidirectional BILSTM baselines in replicating key stylized facts, confirming its utility for
predicting FX return distributions.

The main findings of this study are as follows. First, we propose FINGAN-BiLSTM, a
GAN-based time-series model that integrates bidirectional LSTM layers into the original
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FINGAN framework to address limitations of unidirectional architectures. This model
synthesizes realistic financial series via adversarial training while capturing both past and
future dependencies, thus reducing information loss inherent in conventional approaches.
In addition, FINGAN-BiLSTM preserves complex distributional characteristics through
the adversarial interplay of generator and discriminator networks. Furthermore, empirical
results show that the bidirectional architecture more accurately reproduces stylized facts
and improves distributional predictions of FX log returns compared to standard LSTM
and unidirectional BiLSTM baselines, especially for forecasting tasks that require modeling
bidirectional temporal dependencies.

Second, our empirical results confirm that FINGAN-BiLSTM outperforms conven-
tional LSTM, BiLSTM, and original FINGAN architectures in reproducing key stylized
facts of FX return distributions. Using the Kolmogorov-Smirnov (KS) test, we show that
FINGAN-BiLSTM minimizes the maximum divergence between empirical and predicted
cumulative distribution functions, indicating that it faithfully reproduces the observed
frequency of extreme events and the density of the tail region. It also reproduces volatil-
ity clustering by alternating between high and low volatility regimes and captures the
leverage effect asymmetry, in which negative returns are followed by short-term volatility
increases. These findings demonstrate that FINGAN-BiLSTM overcomes the limitations of
existing models and effectively captures the non-stationary, complex dynamics of financial
time series.

Third, we demonstrate that INGAN-BiLSTM integrates adversarial data generation
with bidirectional LSTM to forecast FX return distributions beyond simple mean-level
predictions. It captures higher-order distributional features and volatility dynamics that
unidirectional LSTM models fail to represent. By simultaneously learning past and future
dependencies, the model reduces information loss inherent in one-way architectures. This
framework demonstrates superior capability in capturing endogenous volatility dynamics,
thereby enabling effective modeling of volatility clustering and risk transmission mecha-
nisms under normal market conditions. Furthermore, empirical evaluations confirm that
FINGAN-BIiLSTM accurately reproduces heavy tails, volatility clustering, and extreme
events in FX returns, thereby modeling the complex uncertainties of financial markets.

Based on the results of the empirical tests, we highlight the following key contributions.
The proposed FINGAN-BiLSTM model effectively captures complex statistical features
of FX returns by integrating BILSTM with GAN, thus reducing the information loss of
unidirectional LSTM architectures. Unlike conventional models that rely solely on past
data, BILSTM learns both forward and backward dependencies. This enables complex
representation of nonlinearity, heavy tails, and extreme-event risks during adversarial
training [60,61]. Consequently, INGAN-BiLSTM, such as volatility clustering and leverage
effects, while minimizing divergence between empirical and generated distributions. These
capabilities enhance extended long-term forecasting performance by providing a more
realistic representation of asymmetric and extreme behaviors compared to conventional
models based on the normal distribution. Furthermore, they can be effectively applied to
practical domains such as risk management, derivative pricing, and portfolio optimization.

In discussing the empirical results, analysis of the KS test across 12 FX assets reveals
that EUR, AUD, and GBP exhibited excellent goodness-of-fit, with low KS test values of
0.0586, 0.0613, and 0.0370, respectively, indicating remarkable correspondence between
the predicted and empirical distributions. Despite maximum deviations for GBP and
EUR occurring in the central percentile regions, the model effectively reproduced the
overall distributional shape. AUD also captured moderate-range volatility more precisely
than extreme-value dynamics, highlighting the model’s robustness for developed-market
currencies. By contrast, CNY exhibited a relatively higher KS test owing to frequent
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structural shifts driven by aggressive central bank interventions and policy adjustments,
and ZAR’s performance was similarly impaired by its extreme values and pronounced
volatility; in both cases, the model trained primarily on historical data was unable to fully
accommodate abrupt distributional changes [37,38].

Regarding outliers, the KS test statistic for the BRL series was 0.0894 prior to the
removal of outliers. After excluding 27 outliers (approximately 1.5% of the sample) using
an interquartile range (IQR)-based filter, the KS test decreased to 0.0488, indicating that the
distributional discrepancy was substantially reduced. In contrast, the ZAR series exhibited
a KS test of 0.1545 both before and after removal of 12 outliers (approximately 0.8% of
the sample), suggesting that filtering alone did not resolve the mismatch. These results
indicate that removing more than 1% of observations can markedly improve model fit
by attenuating extreme-value effects. Conversely, the exclusion of fewer than 1% of data
points has a negligible impact. Moreover, owing to the inherently high volatility of the
ZAR series, its empirical distribution remains unrepeatable even after outlier exclusion.

Furthermore, the heavy-tailed analysis revealed that the FINGAN-BiLSTM model
generally reproduced tails similar to those of the actual data. For instance, assets such as
EUR, JPY, and GBP yielded predicted tail indices (« in Equation (5)) that fell within the
typical range (approximately 3 to 5) observed in financial time series, thereby realistically
reflecting the probability of extreme events. In contrast, while a unidirectional LSTM
produced an excessively high tail index for CAD, the FINGAN-BiLSTM model effectively
corrected this value to a realistic level. Although MXN exhibited some instability in
replicating heavy-tailed characteristics due to the influence of outliers, overall, the model
successfully captured the heavy-tailed property.

In the volatility clustering analysis, assets with pronounced volatility, such as JPY, BRL,
and MXN, showed that the FINGAN-BiLSTM model effectively captured the alternating
pattern of high and low volatility periods. In particular, for JPY, the predicted clustering
index (B in Equation (7)) accurately reflected the short-term persistence of volatility ob-
served in the data, and for AUD and CHEF, the model reproduced a more gradual clustering
effect compared to conventional models, thereby improving the modeling of long-term
temporal dependencies. However, for assets like ZAR, which exhibit extreme values and
high volatility, the reproduction of volatility clustering was unstable, resulting in clustering
indices that deviated from the expected range.

The leverage effect analysis demonstrated that, for major assets such as EUR, JPY, and
GBP, a clear negative leverage effect was observed, indicating that negative returns were fol-
lowed by an increase in short-term volatility. This result indicates that the INGAN-BILSTM
model effectively captures the asymmetric leverage effect of each FX series. Conversely, for
assets such as AUD, CAD, and CHF, which display high volatility and frequent extreme
values, the model occasionally failed to fully reproduce the asymmetric nature of the
leverage effect. This suggests that during the training process, the extreme features in the
original data distribution may not have been entirely captured, leading to discrepancies
between the predicted and actual outcomes. Additionally, for minor assets like CNY and
ZAR that are heavily influenced by external factors, the leverage effect was found to be
unstable, indicating that further development of models incorporating external variables
is warranted.

Overall, the FINGAN-BIiLSTM model demonstrated robust performance in reproduc-
ing key stylized facts of FX returns, including low KS test values, realistic heavy-tailed
properties, effective volatility clustering, and discernible leverage effects for assets such
as CAD, EUR, JPY, and GBP. However, its performance was less robust for assets subject
to significant external shocks or frequent extreme values, notably CNY and ZAR. These
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findings underscore the need for FX return model tuning and suggest directions for future
research to more precisely capture the extreme dynamics of financial time-series data.

7. Concluding Remarks

Our results demonstrate that FINGAN-BILSTM accurately replicates the complex
dynamics of financial time series by reproducing heavy-tailed behavior, volatility cluster-
ing, and leverage effects—features often disregarded by traditional models based on the
normal distribution. Moreover, the proposed model provides a data-driven framework for
quantifying 99% tail losses and directional spillovers between asset classes. In practical
applications, FINGAN-BiLSTM improves market risk assessment through precise VaR
estimation, enhances derivative pricing via simulated return paths, and supports portfolio
optimization by quantifying asymmetric risk transmission. Overall, this study validates the
academic and practical viability of deep learning—based forecasting methods for financial
time series and opens new directions in financial data analysis, risk management, and
decision-making frameworks.

Nonetheless, the dependence of the FINGAN-BiLSTM model on historical data limits
its effectiveness in capturing the dynamics of asset markets like CNY and ZAR, where
sudden structural shifts frequently occur due to significant central bank interventions
and policy changes. Moreover, for assets characterized by frequent extreme events, the
model fails to consistently capture the tail distribution, resulting in discrepancies between
the predicted and empirical distributions. When evaluated against synthetic time series
benchmarks based on GARCH-family models, certain currency pairs demonstrated a
failure to fully reflect the actual volatility structure or tail characteristics; this shortcoming is
attributable to GARCH models’ focus on traditional moment-based conditional variances,
which inadequately account for extreme event frequency, long-range dependencies, and
asymmetric effects [62-64].

To address these limitations, we propose several directions for future research. First,
to overcome the model’s current limitation in capturing the tail behavior of return distri-
butions, we propose the development of enhanced modeling frameworks that integrate
exogenous variables, such as macroeconomic conditions, geopolitical risks, and policy
interventions, capable of accommodating regime shifts under extreme market scenarios.
Furthermore, to reduce biases introduced by extreme observations, future research can
incorporate asset-specific calibration strategies, employ sophisticated normalization meth-
ods, and design customized loss functions aligned with the distributional characteristics of
financial assets.

Second, we suggest conducting comprehensive empirical validations across diverse
asset classes and extended time horizons to reinforce the robustness of our findings. Fur-
thermore, to enhance risk management and portfolio optimization, we encourage further in-
vestigation into the estimation of VaR and ES using conditional return distribution models.

Finally, as the present study is limited to a univariate conditional distribution frame-
work, future research can extend the model to multivariate conditional settings. This
extension would enable the modeling of cross-asset return dynamics under structural
changes and thus improve the model’s applicability to portfolio-level risk management
and asset allocation strategies.
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Abbreviations

The following abbreviations are used in this manuscript:

ACF Autocorrelation Coefficient Function

ADF Augmented Dickey-Fuller

AE Autoencoder

Al Artificial Intelligence

ANN Artificial Neural Network

APARCH Asymmetric Power ARCH

ARCH Autoregressive Conditional Heteroskedasticity
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average

AUC Area Under the ROC Curve

AUD Australian Dollar

BiGAN Bidirectional GAN

BiLSTM Bidirectional LSTM

BPVIX British Pound Volatility Index

BRL Brazilian Real

CAD Canadian Dollar

CCDF Complementary Cumulative Distribution Function
CDF Cumulative Distribution Function

CHF Swiss Franc

CNY Chinese Yuan

CRM Customer Relationship Management

ECDF Empirical Cumulative Distribution Functions
EDF Empirical Distribution Function

ES Expected Shortfall

EUR Euro

EUVIX Euro Volatility Index

FINGAN Financial Generative Adversarial Network

FINGAN-BiLSTM

Financial Generative Adversarial Network-Bidirectional Long-Short Term

Memory
FX Foreign exchange
EXVIX FX Volatility Index
GAN Generative Adversarial Network
GP Gaussian Processes
GARCH Generalized Autoregressive Conditional Heteroscedasticity
GDP Gross Domestic Product
GRU Gated Recurrent Unit
HMM Hidden Markov Model
iid. Independent and Identically Distributed
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IOR Interquartile Range

J.-B. Jarque-Bera

JPY Japanese Yen

JYVIX Japanese Yen Volatility Index

KS Kolmogorov-Smirnov

KS_Stat Kolmogorov-Smirnov Statistic
KOSPI 200 Korea Composite Stock Price Index 200
Kurt Kurtosis

KRW Korean Won

LASSO Least Absolute Shrinkage and Selection Operator
LSTM Long-Short Term Memory
LSGAN L2 loss-based GAN

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MCMC Markov Chain Monte Carlo

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

MXN Mexican Peso

PDF Probability Density Function

PP Phillips—Perron

OMLE Quasi-Maximum Likelihood Estimation
QQ plot Quantile-Quantile plot

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

S&P 500 Standard & Poor’s 500 Index
SHCOMP Shanghai Stock Exchange

Skew Skewness

SGD Singapore Dollar

Std. dewv. Standard Deviation

SVM Support Vector Machine

TSX Toronto Stock Exchange

VAE Variational Autoencoder

VaR Value-at-Risk
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